Annales scientifiques DE L'Université de Clermont-Ferrand 2 Série Mathématiques

MATATYAHU RUBIN

The theory of boolean algebras with a distinguished subalgebra is undecidable

Annales scientifiques de l'Université de Clermont-Ferrand 2, tome 60, série Mathématiques, nº 13 (1976), p. 129-134

http://www.numdam.org/item?id=ASCFM_1976__60_13_129_0

© Université de Clermont-Ferrand 2, 1976, tous droits réservés.

L'accès aux archives de la revue « Annales scientifiques de l'Université de Clermont-Ferrand 2 » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

THE THEORY OF BOOLEAN ALGEBRAS WITH A DISTINGUISHED SUBALGEBRA IS UNDECIDABLE

Matatvahu RUBIN*

The Hebrew University, JERUSALEM, Israel

§ 0. INTRODUCTION

We prove the following theorems:

Theorem 1** Let T_1 and T_2 be theories in the language $L = \{ \cup, \cap, -, 0, 1 \}$ such that there are infinite Boolean algebras (hereafter denoted by BA) B_1 , B_2 such that $B_i \models T_i$ i = 1,2, let P be a unary predicate and $S = T_1 \cup T_2^{(P)}$, where $T_2^{(P)}$ is the relativization of T_2 to P, then S is undecidable.

Theorem 2: The theory of 1-dimensional cylindric algebras (denoted by CA₁) is undecidable. Theorems 1 and 2 answer a question of Henkin and Monk in [2] Problem 7; there they also point out that the decidability problems of theorems 1 and 2 are closely related, this relation is formulated in the following proposition:

Proposition: (a) Let $\langle B, c \rangle$ be a CA₁ where B is a BA and c a unary operation on B then A = { b | b \in B and c(b) = b } is a subalgebra of B, and for every b \in B c(b) is the minimum of the set { a | b \subseteq a \in A}.

(b) Let B be a BA and A be a subalgebra of B suppose that for every $b \in B$ $a_b = \min(\{a \mid b \subseteq a \in A\})$ exists; define $c(b) = a_b$, then $< B, c > a \in A_1$.

Let T_C be the theory of CA_1 's and T_B be the theory of BA's with a distinguished subalgebra P, with the additional axiom that for every b there is a minimal a_b such that $P(a_b)$ and $b \subseteq a_b$, then certainly T_C and T_B are bi-interpretable.

^{*} This paper is part of the author's doctoral dissertation prepared at the Hebrew University under the supervision of Professor Saharon Shelah.

^{**} R. McKenzie proved independently at about the same time, that the theory of Boolean algebras with a distinguished subalgebra is undecidable. The method of his proof is different from ours.

The classical result about the decidability of the theory of BA's appears in Tarski's [5], and in Ershov [1]. Ershov in [1] also proved that the theory of BA's with a distinguished maximal ideal is decidable, Rabin [4] proved the decidability of the theory of countable BA's with quantification over ideals.

Henkin proved that the equational theory of CA 's is decidable and Tarski proved the undecidability of the equational theory of CA 's for $n \ge 4$.

In our construction we interpret the theory of two equivalence relations in a model $< B, U, \cap, -$, 0, 1, A > but neither B nor A are complete BA's. We do not know the answer to the following question:

Let $K = \{ \langle B, \cup, \cap, -, 0, 1, A \rangle \mid B \text{ is a BA, A is a subalgebra of B, A and B are complete } \}$ is Th(K) decidable?

We also do not know whether an analogue of theorem 1 for T_B holds. For instance let S be T_B together with the axioms that say that both the universe and P are atomic $B\Lambda$'s is S decidable?

§ 1. THE CONSTRUCTION

U, \cap , -, 0, 1 denote the operations and constants of a BA and \subseteq denotes its partial order. A,B,C denote BA's; At(B), A &(B), As(B) denote the set of atoms of B, the set of non-zero, non-maximal atomless elements of B and the set of non-zero, non-maximal atomic elements of B respectively. Let I(B) be the ideal generated by A&(B) \cup As(B), B(1) = B/I(B) and if b \in B b(1) = b/I(B). If D \subseteq B c&(D) denotes the subalgebra of B generated by D. B × C denotes the direct product of B and C. $\prod_{j \in J} B_j$ denotes the direct product of $\{B_j \mid j \in J\}$, and we assume that for every $j_1 \neq j_2$ $B_{j_1} \cap B_{j_2} = \{0\}$, so we can identify the element c of B_{j_0} with the element $f_c \in \prod_{j \in J} B_j$ where $f_c(j) = 0$ if $j \neq j_0$ and $f_c(j_0) = c$. We denote by 1_B the maximal element of B.

Let B_T be the BA of finite and cofinite subsets of ω and B_L the countable atomless BA. Let F_1 be the non-principal ultrafilter of B_T and F_2 be an ultrafilter in B_L ; let B_M be the following subalgebra of $B_T \times B_L : B_M = \{ (a,b) | a \in F_1 \text{ iff } b \in F_2 \}$; notice that $B_M^{(1)} \cong \{0,1\}$. For every i let $B_i \cong B_M$, $B^> = \prod_{i \in \omega} B_i$ and $B^< = \operatorname{cl}(\bigcup_{i \in \omega} B_i)$. We denote 1_{B_i} by 1_i .

Lemma 3: Let E_0 and E_1 be equivalence relations on ω then there is a model $M = \langle B, \cup, \cap, -, 0, 1, A \rangle \models T_B$ such that $\langle \omega, E_0, E_1 \rangle$ is explicitly interpretable in M.

Proof: We denote by i/E $_{\epsilon}$ the E $_{\epsilon}$ -equivalence class of i and by $_{\omega}$ /E $_{\epsilon}$ the set of E $_{\epsilon}$ -equivalence classes. For every i \in $_{\omega}$ let

$$\begin{vmatrix} \tilde{a}^{i} \\ \epsilon_{\bullet}\sigma, j \end{vmatrix} = \begin{cases} 1 & \epsilon = 0 & \text{and } i \in \sigma \\ 2 & \epsilon = 0 & \text{and } i \notin \sigma \\ 3 & \epsilon = 1 & \text{and } i \notin \sigma \end{cases}$$

For every ε , σ and j as above let $c_{\varepsilon,\sigma,j} \in B^{>}$ be $c_{\varepsilon,\sigma,j} = \bigcup \{b_{\varepsilon,\sigma,j}^{i} \cup \bigcup_{\varepsilon,\sigma,j}^{i} | i \in \omega\} \text{ where } \bigcup D \text{ denotes the supremum of } D \text{ in } B^{>}. \text{ Let } A = c \, \ell(\{c_{\varepsilon,\sigma,j} | \varepsilon \in \{0,l\}, \sigma \in \omega/E_{\varepsilon,j} \in \omega\}, B = c \ell (B^{<} \cup A) \text{ and } M = \langle B, \cup, \cap, \neg, 0, 1, A \rangle. \text{ We show that } M \models T_{B}. \text{ It suffices to show that } a_{b} = \min(\{a \mid b \subseteq a \in A\}) \text{ exists for elements } b \in B \text{ of the following forms : } b \in At(B_{i}) \cup A\ell(B_{i}); b \in B_{i} \text{ and } b^{(1)} = 1_{i}^{(1)}; b \in B^{<} \text{ and } 1_{i} \subseteq b \text{ for almost all } i \in \omega \text{ ; this follows from the fact that every } b \in B \text{ can be represented in the form } \bigcup_{i=1}^{n} (b_{i} \cap a_{i}) \text{ where each } b_{i} \text{ is of the above form and } a_{i} \in A. \text{ In each of the above cases the existence of } a_{b} \text{ is easily checked. Thus } M \models T_{B}.$

We now define formulas $\varphi_U(x)$, $\varphi_{Eq}(x,y)$, $\varphi_{\varepsilon}(x,y)$ $\varepsilon \in \{0,1\}$ such that $M \models \varphi_U[a]$ iff for some $i \in \omega$ $a^{(1)} = 1_i^{(1)}$, $M \models \varphi_{Eq}[a,b]$ iff $a^{(1)} = b^{(1)}$ and $M \models \varphi_{\varepsilon}[a_1,a_2]$ iff for some $i_j \in \omega$ $a_j^{(1)} = 1_{i_j}^{(1)}$ and $\langle i_1,i_2 \rangle \in E_{\varepsilon}$. $\varphi_U(x)$ says that $x^{(1)} \in At(B^{(1)})$ and for no $y \in At(A)$ $x^{(1)} = y^{(1)}$. $\varphi_{Eq}(x,y)$ says that $x^{(1)} = y^{(1)}$. $\varphi_0(x,y)$ says: $\varphi_U(x) \land \varphi_U(y)$ and there are x_1,y_1 such that $x^{(1)} = x_1^{(1)}$, $y^{(1)} = y_1^{(1)}$ and for every $z \in At(A)$ $|\{u \mid z \cap x_1 \ni u \in At(B)\}| = 1$ iff $|\{u \mid z \cap y_1 \ni u \in At(B)\}| = 1$. φ_1 is defined similarly. The desired properties of φ_U , φ_{Eq} and φ_{ε} are easily checked, and the lemma is proved.

Since the theory of two equivalence relations is undecidable T_B and T_C are undecidable and theorem 2 is proved.

Theorem 1 easily follows from the following lemma.

Lemma 4: Let E_1 , E_2 be equivalence relations on ω then there are models $M_i = \langle B_i, \cup, \cap, \cdot, 0, 1, A_i \rangle$ i = 1,..., 4 such that $\langle \omega, E_1, E_2 \rangle$ is explicitly interpretable in M_i and B_1 , A_1 are atomic, B_2 , A_2 are atomless, B_3 is atomic A_3 is atomless, and B_4 is atomless A_4 is atomic.

Proof: Let B_0 , A_0 , M_0 denote B, A and M of lemma 3 respectively. For i=1,2 M_i can easily be constructed so that $\langle B_i/H_i \rangle$, \cup , \cap , -, 0, 1, $A_i/H_i \rangle \cong M_0$ where $H_i = \{ b \mid b \in B_i \text{ and for every a } \subseteq b \text{ a } \in A_i \}$. Since such an H_i is definable in M_i M_0 can be interpreted in M_i i=1,2.

For i = 3 a similar construction works. Let B be an atomic saturated countable BA and I a maximal non-principal ideal of B. Let A be an atomless subalgebra of B such that : (a) for every $b \in B$ which contains infinitely many atoms there is a non-zero $a \in A$ such that $a \subseteq b$;

(b) for every $b \in A_s(B)$ there is an $a \in A$ such that $(a-b) \cup (b-a)$ contains only finitely many atoms of B. Let $J = I \cap A$. For every non-zero $a \in B_0$ let F_a be an ultrafilter in B which contains a,

and < B_a , A_a , I_a , J_a > a copy of < B, A, I, J> . Let B^1 = Π {B_a | 0 \neq a \in B₀} and let B₃ be the following subalgebra of B^1 :

$$\begin{split} B_3 &= c \, \& (\cup \{ I_a \mid \ 0 \neq a \in B_0 \} \cup \{ g_a \mid 0 \neq a \in B_0 \}) \text{ where } g_a(b) = I_{B_b} \text{ iff } a \in F_b \text{ and} \\ g_a(b) &= 0 \text{ otherwise. Let } A_3 = c \& (\cup \{ J_a \mid 0 \neq a \in B_0 \} \cup \{ g_a \mid a \in A_0 \}). \\ \text{Certainly } B_3 \text{ is atomic and } A_3 \text{ is atomless. Let } I = \{ a \mid |\{ b \mid a \geq b \in At(B_3) \} | < \aleph_0 \}. \\ \text{I is an ideal in } B_3 \text{ , and I is definable in } M_3 \text{ by the formula} \end{split}$$

In order to construct M_4 we assume that B_1 is a subalgebra of $P(\omega)$ and $At(B_1) = \{\{\ n\ \} \mid \ n \in \omega\} \ . \ Let \ B_L^i \cong B_L \ \text{ for every } i \in \omega \ B_4 \ \text{ is the following subalgebra of } i \in \omega B_L^i : B_4 = c \ \ell \ (\bigcup_{i \in \omega} B_L^i \cup \{\ f_a \mid \ a \in B_1\ \}) \ \text{where } f_a(n) = 1 \\ B_L^n \ \text{ if } n \in a \ \text{ and } f_a(n) = 0 \ \text{ otherwise. Let } A_4 = c \ell \ (\{\ f_a \mid \ a \in A_1\} \) \ \text{ and } M_4 = < B_4\ , \ \cup\ , \ \cap\ , \cdot, 0, 1, A_4^>\ .$

Certainly B_4 is atomless and A_4 is atomic. Let B_4^1 = { $b \mid b \in B_4$ and for every $a \in At(A_4) \text{ either } b \supseteq a \text{ or } \text{-}b \supseteq a \} \text{ , then } < B_4^1, \ \cup, \ \cap, \text{-}, 0, 1, A_4 \ge \cong M_1 \text{ and } B_4^1$ is certainly definable in M_4 , thus $< \omega, E_1$, $E_2 \ge$ is definable in M_4 and the lemma is proved.

We omit the proof of theorem 1 which follows easily from lemma 4, the fact that every countable BA can be embedded in e.g. $B_{\rm L}$, and from [6] pp. 293-302.

REFERENCES

- [1] Yu. L. ERSHOV, Decidability of relatively complemented distributive lattices and the theory of filters, Algebra i. Logika Sem. 3 (1964), p. 5-12.
- [2] L. HENKIN and J.D. MONK, Cylindric algebras and related structures, Proceedings of the Tarski Symposium, 1974, p. 105-121.
- [3] L. HENKIN, J.D. MONK and A. TARSKI, Cylindric Algebras, North-Holland, 1971.
- [4] M.O. RABIN, Decidability of second order theories and automata on infinite trees, Trans. Amer. Math. Soc. 141 (1969) 1-35.
- [5] A. TARSKI, Arithmetical classes and types of Boolean algebras, Bull. Amer. Math. Soc. 55 (1949), p. 64.
- [6] C.C. CHANG and H.J. KEISLER, Model theory, North-Holland, 1973.