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REPRESENTATION THEOREM FOR FINITE QUASI.BOOLEAN ALGEBRAS

Virgilio MU0160KARDIN

University of Bristol, BRISTOL, Great Britain

INTRODUCTION

In constrast to the classical logic it has been recognised that a statement may fail to be
either true or false. This recognition has been clearly embeded in the notion of oinexact

predicate» developed by K6rner (7.). An associated logic, called the logic of inexactness, is a
three-valued logic based on Kleene’s «strong tables» (6.). Algebras related to this logic in the
same way as boolean algebras (BA) are related to the classical logic are termed quasi-boolean
algebras (QBA). By definition, Q = (Q; I, 0, V, 1B , ’) is a QBA if and only if (iff)
(Q; I, 0, V , A ) is a distributive lattice with unit I and zero 0, and ’ is an unary operation
such that x" = x and (x V y)l = y’, (x A y)l = x’ V y’ for any x, y in Q. If for every
x, y in Q the additional condition x A x’ ~ y V y’ holds, Q is a normal QBA. Actually,
QBAs accompaning the logic of inexactness are normal. The relation between the logic of
inexactness and normal QBAs has been observed and studied by Cleave (3.), (4.). See also (5.).
Quasi-boolean algebras were termed so by Bialynicki-Birula and Rasiowa (1.). In the same paper
they gave the general representation theorem for QBAs which corresponds to the well known
Stone’s result for BAs. However, it is also well known that for finite BAs a stronger result is
obtained. The aim of this paper is to give the corresponding representation theorem for
finite QBAS.

Every finite BA is isomorphic with the field of all subsets of the set of its atoms. (The
atoms of a finite BA are of course the join-irreducible elements.) For a finite QBA an analogous

I

result is obtained by considering the partially ordered set (poset) of its join-irreducible elements.
In order to state our representation theorem we need the notion of an involutive poset.
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INVOLUTIVE POSETS.

DEFINITION 1. P = (P ; L, ~ ) is an involutive poset iff V a, b e P :

I.e. An involutive poset is a partially ordered set with an involution which reverses the

ordering defined on it.
’ 

DEFINITION 2. Let (P ; ~ ) be any poset and p c: P. p is an initial subset of P iff

DEFINITION 3. For any poset (P ; ~), Q(P) denotes the set of all initial subsets of P.

DEFINITION 4. Let P = (P ; ~, ~ ) be an involutive poset. For every p E Q(P) define

DEFINITION 5. Let P and Q(P) be as in Definition 4. Define a quasi-complementation ’
on Q(P) by

v p P N g .
Here B is the set-theoretic difference operator.

One can easily verify from these definitions

LEMMA 1. For every P = (P ; ~ , ~ ), Q(P) defined by Definition 3. is closed under the
set-theoretic union U and intersection r) as well as under the quasi-complementation ’
defined in Definition 5.

This result gives rise to the following definition.

DEFINITION 6. Q(P) = (Q(P) ; P, ~ , is called the quasi-field o f all initial subsets
o f an involutive poset P.

Note : The notion of a quasi-field of sets was first defined by Bialynicki-Birula and Rasiowa (l.).

TIIEOREM 2. Every quasi-field of all initial subsets of an involutive poset of m elements is
a quasi-boolean algebra of dimension m.

The notions of dimension d(x) of an element x of a QBA Q = (Q ; I, 0, ~ , ~ , ’ ) and
of dimension d(Q) of a QBA itself coincide with the corresponding notions defined on the
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distributive lattice (Q ; I, 0, ~ , ~ ). For these and other fundamental lattice-theoretic notions

see Birkhoff (2.).

PROOF. Let Q(P) be as in Definition 6. By J4emma 1. (Q(P) ; P, ,~, U, n) is a ring of sets
and therefore a distributive lattice where P, ~ are its unit element, zero element respectively.

Furthermore, by Definition 5. and Lemma 1. p" = P B p ’. From Definition 4. and Definition
1(5). we get p ’ = P ~ p. Thus p" = p. One easily establishes

and using this result proves that ’ fulfills De Morgan’s laws. It remains to prove
d(Q(P)) = card(P) . (2)

It is easy to see that card(p) = d(p) for every p in Q(P) because elements of Q(P) are
ordered by  . Hence (2) follows. Q.E.D.

LEMMA 3. Let Q = (Q ; I, 0, V, 1B , ’) be any finite QBA and (,j(Q) ; ~ ) the partially
ordered set of all non-zero join-irreducible elements of Q, and Q(J) the set of all initial subsets
of J(Q). Then (Q ; I, 0, V, ~ ) ’-’ (Q(J) ; J(Q), ~ , U , n ) where U , n are the set-theoretic

union, intersection respectively.
Observe that in the case Q is a BA, J(Q) is the set of its atoms and consequently unordered

set. Of course, Q( J) is then the set of all subsets of J(Q).

PROOF. Observe that both (Q ; I, 0, V , A ) and (Q(J) ; J(Q), ø, U , ft) are distributive
lattices. For any finite distributive lattice the mapping J : a ~., J(a), a E Q is bijective.
Recall that J(a)= { x E ,J(Q) : x ! a ~ . We show that
Q(J) = { J(a) : a E Q 1 . (

Obviously, V a c Q, J(a) E Q(,J). Now take any p E Q(J). Then there exists an a in Q such
that a = V ai. Using Lemma l. in (2) p 139 we deduce J(a) ~ p. But J(a) contains

ai E p

all join-irreducible elements a. Therefore J(a) = p. This establishes (3).
The mapping J : Q - Q( J) is obviously isotone (order preserving) and so a desired

isomorphism. Q.E.D.

Since J : Q - Q( J) is an isomorphism, we can transfer ’ : Q - Q to ’ : Q(J) - Q(,J )
in an obvious unique way :
COROLLARY 4. Define the unary operation ’ on Q(J) by
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Our main result can now be stated.

THEOREM 5. Let Q be any finite QBA and Q(J) the isomorphic QBA (5).
Then an involution - on J(Q) can be defined uniquely such that

](Q) " (J(Q) ; ~ , ~ )
is an involutive poset and 

-

THE REPRESENTATION THEOREM

In order to prove Theorem 5. we need some further definitions and lemmas. Recall :

DEFINITION 7. a e P is a minimal element in a poset (P ; ~ ) iff
V x e P: x G a - x = a.

Note. If (P ; ~ ) is a poset and a e P a minimal element, then (P B { a} ; ~ ) is a poset.

DEFINITION 8. Definition of - on J(Q).
Suppose card(J(Q)) = m. Order the elements of J(Q) in the following way :

Let a, be any minimal element of J(Q) ;

Let a2 be any minimal element of J(Q) B a,)
etc.

Then J(Q) - ~ al, ..., am } . Clearly, by construction, every set pk = 
k ~ m, is an initial subset of J(Q) i.e. pk e Q(J), and

is a complete chain in the sense that for all k  m pk -c Pk + i , where  -c » denotes

the covering relation (cf. (2.)) for sets. The covering relation between elements of any poset
we shall denote by ’ . Observe that

Note : J(x’o) = J(Q), J(x’m) = ø. Thus, ranging k from o to m-l, each difference

J(x’k) B J(x’k + 1) introduces a new element of J(Q). For each ai e J(Q) define ai by

Obviously, the mapping - : J(Q) - J(Q) so defined is bijective.
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PROOF. Assume

Without loss of generality we can also assume

for ,J(x) N J(y) = J(x) B J(x 1B y) and J(x 1B y) C- J(x) ; similarly for s, z. Now, if J(x) = ~
or J(x) = J(y), then (11) in conunction with (12) yields J(y’) ~ ,J(x’) _ ,J(z’) ~ ,j(s’) = d
and our lemma holds. Therefore from now on we assume

Let us firstly suppose

Since J is an isomorphism : Q - Q(J) (cf. Lemma 3., Corollary 4.), (14) is equivalent to :

In accordance with (14), let

Observe

Clearly,

(i) e is meet-irreducible.

a ~ y = e. Hence, by assumption (i), y = e.

Then, trivially, x = a. A similar argument yields z = e, s = a.

Hence the lemma follows.

(ii) e is meet-reducible.

Since e ~ y, there exists a complete chain

By the covering conditions (Corollary 2. in (2.) p 66)

Applying the same argument on el. e2 we get a2 &#x3E;- a, , etc., until eventually we reach

a__i V em = am = x. It is easy to see that we shall reach x just as am , for Q satisfies
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Jordan-Dedekind chain condition (see (2.) p 11 and Theorem 3. p 68) - 2 fixed points being e,x.
Thus we have 2 complete chains

,

Applying the same argument on s and z we get : 
,

Hence, ai = ei V a. In general, min.

Diagram I illustrates the preceeding analysis.

Note : In particular cases some of ei may coincide with ei.
We know that ’ reverses the ordering of elements in Q, i.e. converts ’ into ~- .

Thus we have :

From (18) and (20) one deduces
... ... - - .

Again by (18) and (20) one deduces inductively
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The same argument applied to s’, z’ yields
J(e’) B J(a’) = J(z’) B J(s’) = ( b ) , which establishes our lemma under the assumption (14).

Diagram II is obtained by applying’ on the elements of Diagram I.

It remains to prove the lemma without restriction (14), i.e. when y  x &#x26; z  s.

But then, there exist complete chains :

By (11), ~ = k, and for each i there exists j (i, j = 1, ..., k) s.t.

and vice versa. But (23) satisfies assumption (14). Hence

J(y’i-l)B J(y’i) = J(z’j-l) B J(z’j)’ This completes the proof. Q.E.D.i i

LEMMA 7. Given a finite QBA Q, the mapping -: J(Q) - J(Q) defined by Definitions 8.
is unique, i.e. does not depend on the choice of a maximal chain (8) in Q(J).

PROOF. Suppose card(J(Q)) = m. Let (aI’ ..., am) be any ordering of the elements of J(Q)
such that

a, is a minimal element of J(Q) and

ai is a minimal element of J(Q) B (al, ..., ai-1) ( ~)

for 1 ~ i 
. 

~ m. 

It is obvious that such an ordering exists.

Suppose a~,..., am and b~,..., bm are two orderings of J(Q) satisfying (*). Define
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We must prove that ai= bj -&#x3E; ai = b..1 J 1 J

If ai = b. , then from (24) by Lemma 6. follows ai = bj’ Q.E.D.
J J

LEMMA 8. - defined by Definition 8. is an involution on J(Q).

, 
PROOF. Let ai , ai be defined by (9), (10) respectively. By Lemma 7.

= J(xi’ ) B J(x" ) = 

PROOF. Let J(Q) be ordered as in Definition 8. and ai , aj,ai,aj defined accordingly by (9), 
"

° 1 J J

(10). Obviously ai -&#x3E; ai = aj .
Assume ai a. Then J(xj) and since J(xi), J(xi) C Hence

xi.l - xi xj-1 - xj and equivalently

Observe that

If ai = x’i-1 the proof is trivial, for then J(x’i-1 ) = and by (25)

J(x’j-1)c J(ai). Hence, since J(x’j-1) (like (26)), J(ai) i.e. aj  aii J . i J

as required.
Let us now consider the general case. Since x’i ~ x’ 1.1 (25), there exists a complete chain

By (26) ai ~ x’_i . Thus there exists a complete chain

(See Diagram III below). I

It is easy to see that the elements

form the chain in Q and

Now, we also find the following chains in Q :
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defined recursively by

where yio , i 
= 0, ..., k are defined by (28) and yoj, j ~ 0, .,., n are given by (27).

From (29), (30), (31) we conclude ci .
In particular,

Now observe the chains :

Proceeding in this way we get

which completes the proof. Q.E,D .

Diagram III
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PROOF OF THEOREM 5. Since J(Q) is a partially ordered set, it satisfies 1., 2., 3. of
Definition 1. By Definition 8. and lemmas 7.. 9. it also satisfies 4., 5., 6. of Definition l.

Hence, J(Q) is an involutive poset.
Definition of fi(x) in Theorem 5. is equivalent to

To complete the proof of Theorem 5. is to prove (7) ; by (4), this is to prove

We firstly establish

Suppose a e J(x). By construction of Q(J) :

Conversely, if a e J(x’), then the above argument would yield a g J(x), for are
involutive. ,Hence (36) holds.

Now (35) follows trivially. Q.E.D.

COROLLARY 10. Representation theorem.

Every finite quasi-boolean algebra is isomorphic with the quasi-field of all initial subsets of
the involutive poset of its non-zero join-irreducible elements.

PROOF. By theorem 5. ’ : Q(J) - Q(J) is a quasi-complementation on Q(j) (cf. Def. 5)
and Q(J) is the quasi-field of all initial subsets of the involutive poset _J(Q) (cf. Def. 6). Now,

Corollary 10. follows from Corollary 4. Q.E.D.

COROLLARY 11. The number of (non isomorphic) quasi-boolean algebras of dimension m
is equal to the number of (non-isomorphic) involutive posets of m elements. ,

PROOF. Recall : d(Q) = card(J(Q)). The corollary follows from Theorem 2. and Corollary
10. Q.E.D.

Thus every involutive poset can be regarded as the involutive poset of all non-zero

join-irreducible elements of a QBA.
Notice also

COROLLARY 12. Ql ’-’ Q2 ‘-’ 1(21) ~ -](Q2)’
THEOREM 13. A QBA Q is normal iff

PROOF. Recall, by definition, Q is normal iff
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Since J : Q - Q(J) is an isomorphism, (38) is equivalent to

a 0 J(x) n J(x’) by (36). This in conjunction with the assumption (37) yields :

for J(x) n J(x’) is an initial set.

Trivially, a e J(y) or a ~ J(y). If a e J(y), then a fortiori a e J(y) U J(y’).
If a g J(y), then a f J(y’) by (36), and by (40) a E ,J(y’). Thus again a E J(y) U .J(y’),
as required by (39).

Conversely, assume the negation of (37), i.e.

contradicts (41). Also, by (36), â’ ~ J(a’). Hence, ’a 0 J(a) U J(a’). Again by (36)

Similarly we get a E J(a’) and by (36)

what contradicts (39). Q.E.D.

THEOREM 14. Let o be the identity function on J(Q) i.e.

Then Q is a boolean algebra iff

PROOF. Assume that Q is a BA. If for some a, b f J(Q), a  b, then there exists
.,--

what contradicts b E J(Q). Hence J(Q) is an unordered set ( J{Q) ; = ). Since BA is a normal
0

QBA, a = a by Theorem 13. Thus (45).

Conversely, assume (45). Then by (36), (44), J(x) r1 J(x’) = ~ , or equivalently,

But this is just the condition which makes a QBA into a BA. Q.E.D.
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