Annales scientifiques DE L'Université de Clermont-Ferrand 2 Série Mathématiques

J. H. B. KEMPERMAN

On an oscillating random walk

Annales scientifiques de l'Université de Clermont-Ferrand 2, tome 51, série Mathématiques, nº 9 (1974), p. 31-34

http://www.numdam.org/item?id=ASCFM 1974 51 9 31 0>

© Université de Clermont-Ferrand 2, 1974, tous droits réservés.

L'accès aux archives de la revue « Annales scientifiques de l'Université de Clermont-Ferrand 2 » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

ON AN OSCILLATING RADOM WALK

J.H.B. KEMPERMAN

Let $\{Y_n, n > 0 : Y_0 = x\}$ be a Markov chain with values in R and such that

Pr
$$(Y_{n+1} - y \in A \mid Y_n = y) = \mu (A)$$
 if $y < 0$;
$$= \nu (A)$$
 if $y > 0$;
$$= \alpha \mu (A) + \beta \nu (A)$$
 if $y = 0$.

Here, μ and ν denote given probability measures on R, while α and β are non negative constants, α + β = 1. We are interested in recurrence properties and exact formulae for the process $\{Y_n\}$.

The special case $\mu = \nu$ is precisely the ordinary random walk governed by the measure μ . The special case $\nu(A) = \mu(-A)$ will be called the antisymmetric case. In that case one may identify the points y and -y and thus obtain the process $Y_{n+1} = |Y_n - X_{n+1}|$; here, $\{X_n\}$ denotes an i.i.d. sequence of random variables with a common distribution μ . If moreover the measure μ is carried by $[0, +\infty)$ one may speak of a one-sided antisymmetric case. For an application to the construction of electrical cables, see [6] and [4] [9]. 208.

For the case where both μ and ν are carried by $\{-1,\,0,\,+1\}$, this process was already treated by Bhat [1], [2]. The general process has applications

in statistics, see [3] , and in information theory, see [5].

Consider the measure

$$Q(A) = \sum_{n=0}^{\infty} t^n \Pr \{Y_n \in A\},$$

where t is a fixed number, |t| < 1 . It satisfies the identity

$$(Q^{-} + \alpha Q^{\circ}) (\delta_{0} - t \mu) + (Q^{+} + \beta Q^{\circ}) (\delta_{0} - t \nu) = \delta_{x}$$

Here, Q^- denotes the restriction of Q to $(-\infty, 0)$. Similarly, Q° and Q^+ . Further, δ_X denotes the probability measure supported by $\{x\}$. Finally, the above equation is to be interpreted in terms of the Banach algebra of all finite measures, where the multiplication is taken as the ordinary convolution. Let

$$L_{\mu}^{+} = \sum_{n=1}^{\infty} \frac{t^{n}}{n} (\mu^{n})^{+},$$

similarly, $L_{\rm u}^{\circ}$, $L_{\rm v}^{-}$, etc. Using that

$$\delta_{0} - t\mu = \exp(-L_{u}^{-} - L_{u}^{\circ} - L_{u}^{+})$$
,

one easily finds that

$$Q^{\circ} = \lambda_{-x} \left(\alpha e^{-L_{\mu}^{\circ}} + \beta e^{-L_{\nu}^{\circ}}\right)^{-1},$$

where λ_i is defined by

$$\lambda = e^{\int_{\mu}^{+} e^{\int_{\nu}^{-}} = \int_{j=-\infty}^{+\infty} \lambda_{j} \delta_{j}$$

If μ and ν are absolutely continuous (relative to Lebesgue measure) and $x \neq 0$ then one further has that

$$Q^{-} = (\delta_{x} \lambda)^{-} e^{L_{y}^{-} - L_{y}^{-}};$$

$$Q^{+} = (\delta_{x} \lambda)^{+} e^{L_{y}^{+} - L_{y}^{+}}.$$

These formulae have many applications.

We discuss in detail the case where both μ and ν are supported by the set Z of all integers. For instance, in the one-sided antisymmetric case the state O is recurrent if and only if

$$\int_{-\varepsilon}^{+\varepsilon} \left| 1 - \widehat{\mu} \left(\theta \right) \right|^{-2} d\theta = + \infty .$$

Here, $\hat{\mu}(\theta)$ denotes the Fourier transform of μ . In the general case, the state 0 is recurrent if and only if

$$\sum_{h=1}^{\infty} C_{\mu}^{+} (h) C_{\nu}^{-} (h) = + \infty.$$

Here,

$$\begin{array}{l} C_{\mu}^{+} \; (h) \; = \; \sum\limits_{n=1}^{\infty} \; P_{\mu} \; (S_{n} = h \; ; \; S_{m} > 0 \quad \text{if} \quad 1 \leqslant m \leqslant n) \; ; \\ \\ C_{\nu}^{-} \; (h) \; = \; \sum\limits_{n=1}^{\infty} \; P_{\nu} \; (S_{n} = - h \; ; \; S_{m} < 0 \; \text{if} \; 1 \leqslant m \leqslant n) \; . \end{array}$$

Here, the index μ in P $_{\mu}$ indicates that (S $_n$ = X $_1$ + ... + X $_n$) is an ordinary random walk governed by the measure μ . The quantity C_{μ}^{+} (h) may also be interpreted as the renewal function associated with the random variable $Z_{\mu}^{+} = S_{N} \quad \text{with } N = \inf \left\{ n > 0 \; ; \; S_{n} > 0 \right\}, \; \text{see} \; \boxed{7} \; . \; \text{Similarly, for} \; C_{\nu}^{-} \; (h) \; .$

Let \textbf{m}_{μ} and $\sigma_{\ \mu}^2$ denote the mean (assumed finite) and variance associated with the measure μ ; similarly, \textbf{m}_{ν} and σ_{ν}^2 . Then the following conditions are each sufficient for the state 0 to be recurrent.

(i)
$$0 < m_{11} < \infty$$
 ; $-\infty < m_{12} < 0$;

(ii)
$$0 < m_{11} < \infty$$
 ; $-\infty < m_{12} < 0$;

(iii)
$$m_{\mu} = 0$$
; $m_{\nu} = 0$; either $\sigma_{\mu}^2 < \infty$ or $\sigma_{\nu}^2 < \infty$.

Non-recurrent would be for instance the case where μ is supported by $[0,\infty)$ such that μ ({n}) \sim n^{-a-1}, while ν is supported by $(-\infty,0]$ such that ν ({-n}) \sim n^{-b-1}, with a and b as positive constants such that a + b < 1. With a positive probability 0 will never be reached, though the process always moves in the direction of 0, occasionally making huge jumps across 0.

REFERENCES

- [1] B.R. BHAT, On pendulum-like random walk, J. Karnatak Univ. (Science)
 13 (1968) 97-104.
- [2] B.R. BHAT, Ocillating random walk and diffusion under centripetal force, Sankhya Ser. A 31 (1969) 391-402.
- [3] D. FELDMAN, Contribution to the "two-armed bandit" problem, Annals Math. Statist. 33 (1962) 847-856
- [4] W. FELLER, An introduction to probability theory and its applications, second ed., vol. II, Wiley, New York, 1971.
- [5] J.P.M. SCHALKWIJK and K.A. POST, On the error probability for a class of binary recursive feed back strategies, 51 pages, to appear.
- [6] H. VON SCHELLING, "Uber die Verteilung der Kopplungswerte in gekreuzten Fernmeldekabeln grosser Länge, Electrische Nachr, Technik 20 (1943) 251-259.
- [7] F. SPITZER, Principles of random walk, D. van Nostrand, New-York, 1964.