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THE RULE OF INDUCTION IN THE THREE VARIABLE ARITHMETIC BASED ON + AND.

J.C. SHEPHERDSON

UNIVERSITY OF BRISTOL, ENGLAND

I - INTRODUCTION

Shoenfield [1] has shown for the free variable system with constants 0,’ 1 (successor), P

(predecessor), + and axioms :

that the rule of induction

is equivalent to the four axioms

Wo do the same here for the system obtained from Al - 5 by adding a new constant . and
axioms

We show that here the rule of induction is equivalent to Bl - 4 above plus

and

By constructing non standard models we show the non finite axiomatisability of this theory
and the independence from it of various simple axioms, e, g, of x3 + y3 # z3 v xyz = 0 which answers

a question of Kreisel [1 1. I am grateful to Kreisel for his infectious interest in such free variable
systems and to M.D. Gladstone whose unpublished work was the starting point of this.
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2 - RULES AND AXIOMS OF INDUCTION -

Although our main interest is in free variable systems we will work throughout in the full

first order predicate calculus with identity. This will allow us to consider the relative strengths of

the free variable rule of induction and various axioms containing quantifiers. The completeness
theorem for the free variable calculus tells us that the theorems of the free variable system based
on certain quantifier free axioms and the rule of induction above coincide with the open (i, e, quanti-
fier free) theorems of the first order system with the same axioms and the restricted rule of induc-

tion

In this framework we can now state our result and Shoenfield’s in stronger terms.

Consider the axiom schema of induction

This is clearly at least as strong as RIO ; in general it is not derivable from RIO - the usual

proof of the axiom of induction from the rule of induction uses the rule on a quantified formula .
However both in Shoenfield’s case and ours it turns out that AIO is derivable from the other axioms
and RIO for :

Theorem 1. Al-5, Bl - 4 imply all instances of AIO arising from formulae A(x)which contain
only the constants 0,’, P, +, .

Theorem 2. A 1- 7, B1- 7, C Id (d = 2, 3, ... ) impl y all 1 instances of AIO ari s i nt from formul aeA (x)
0,’, P, + , .

Theorem 1 was proved by Shoenfield ; theorem 2 will be proved here. Since it is routine to

show that B1 - 4 (B1- 7, C’d respectively) are provable from A 1 - 5 (A 1 - 7) by RIO applied to for-
mulae in 0,’ , , P, + only ( 0,’ P, +, ’) these theorems are all that is needed to give the equivalences
referred to above. Note that the fact that AIO is provable means that these equivalences are preserved
under the addition of new axioms. (For a fuller discussion of the relation between RIO and axioms
of induction see Shepherdson [2]). The formula A(x) in AIO is of course allowed to contain other

free variables ; replacing these by constants standing for elements of a model we get the model
theoretic version of theorem 2 which is what we shall prove :

Lemma 1. I f M is any model Bl-7, Cdl (d = 2, 3, ... ), and~ A (x) is any formul a bui l t

up from the lof tcal constants -1, V, = and the non logical constants 0,’, P, +, · to~ether with indi utdual
constants of M, then i f A(0), (x) (A(x) are true in M so is (x)A(x).

3 - OUTLINE OF THE PROOF -

We first observe that, being a model for A1 - 7, Bl - 71 M can in the familiar waybe embedded
in a commutative ring R (of formal differences). From now on we shall work mainly in R. We note
that ’ , P can be eliminated, viz. replace x’ by x + 1 (we write n for 0’... (n times) ...’, so 1 = 0’ 1

is the unit element of R), replace B(Pt) by (t = 0 A 0 A B(t- 1)). In this way the atomic
formulae of A (x) are reduced to equations between terms built up using +, -, · from x and elements
of M. These can be further reduced, since R is a ring, to equations of the form f(x) = 0 where f
is a polynomial with coefficients in R. Note that axioms C’ can in R be expressed by

[This is easy but not quite as obvious as it looks for we are asserting its truth for all x, y of

R, not merely for all x of M and y of R. I

Now since A (0), (x) (A(x)- A(x + 1 )) are supposed true in M,A(x) is certainly true for all
natural x of M (numbers of the form 0’...’). So we have only to show that A (a) is true for all

unnatural elements a of M. Axiom Bl implies that for such an a the model M contains elements
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all distinct; we call such a set of elements (i.e an equivalence class under the relation x-y = integer) a
comparison ctass. We now briefly sketch Shoenfield’s proof of theorem 1 since our argument is best

regarded as an extension of it. In his case (+ only) the basic equations of A (x) were linear equations
bx + c = 0. Axioms A l - 5, Bl - 4 are not sufficient to imply that a non identical equation of this kind
has at most one solution but they do imply it has at most one solution in each comparison class .
Thus, for sufficiently large n, the equation has the same truth value for n and for a-n (viz : T if

it is an identity, F otherwise). This property is clearly preserved under -1, V so the whole formula

A(x) has it. But A(n) is true for all natural n, hence A (a-n) is true for sufficiently large n, and
this together with the truth of (x) (A (x) -A(x + 1 )) shows that A (a) is true.

Gladstone (unpublished) observed that if we add axioms which ensure that our ring R is an
integral domain then Shoenfield’s argument carries over to the case of multiplication and shows
that the enlarged axiom system implies AIO. For in an integral domain a non identical polynomial
equation of the nth degree has at most n roots. We shall see that Gladstone’s axioms have a non
standard model containing elements t, t such that t3 + t3 = (t V2)3 which answers Kreisel’ s

question about the independence of this. However Gladstone’s axioms themselves are not derivable
by RIO from A 1- 7 so they do not give an answer to our problem of finding an equivalent open
axiom system without induction. From the system A 1- 7, Bl20137, Cd (d = 2, 3, ... ) which we claim
is the answer, we cannot prove that R is an integral domain. We cannot even prove that every
non identical polynomial equation has only a finite number of solutions in each comparison class .
Instead we define for each positive integer d the ideal Id of R formed by all elements which anni-
hilate all elements annihilated by d :

(the variables now range over R). We show

Lemma 2. For each positive integer d each element of R is congruent modulo Ia to one of 0, 1, ... , d -1

Lemma 3. If, in R, a polynomial equation of the nth degree has more than n distinct roots in some compa-
rtson class then there is a positive integer d such that the set of its roots is the unison of certain

residue classes modulo Ia· "
The proofs of these are given in the next two sections. We proceed to show how to obtain

Lemma 1 from them. First

Lemma 4. For each open formuln A(x) of M With x as the only free variable there exists a positive inte-
ger d such that

for’ almost all’ x, y in R, i. e.

far all 1 x, y E R - E where the exceptional set E contains at most a f ini te number of elements in

each comparison class. Proof o f Lemma 4. Take first the case where A(x) is a non identical polynomial
equation f(x) = 0. Let Z be its set of roots. Then A (x) is false for all x E R - Z so if Z has only a finite
number of elements in each comparison class the lemma is -satisfied with d = 1 (as it clearly is if
f(x) = 0 is identically true). And if Z has an infinity of elements in any comparison class we can

take the d given by lemma 3 and E as the null set. Now if the result is true for A (x) it is clearly true

for "") A (x), If true for A 1 (x) with d = d, and E = E 1 and for A 2(x) with d = d2 and E = E 2 it is true
for Ai(x) V A 2(x) with d = dld2" For I d so Id C ~2 and hence X y (Id) 201320132013~

x = y A x - y (Id2). Hence it is true for all open formulae A (x). 
1 2

Proof of Lemma 1 from lemmas 4,2. Let a be any unnatural element of M. Since a, a - 1, a - 2, ·, · are

distinct elements of the same comparison class at least one of them, a - n say, does not belong to
E. By lemma 2 there exists i, 0  i  d - 1 such that a - n - i (Id). Now i may belong to E but

at least one of the infinity of comparable elements i, i + d, i + 2d, ’’’ ’, say i + kd, does not belong
to E. Now i + kd == i (Id) so a - n and since neither of a - n, i + kd E E lemma 4 gives
A (a - + kd). But i + kd is a natural element so as above A (i + kd) is true. Hence A (a-n)
is true and since (x) (A (x) -A(x + 1 )) is true this yields as above the truth of A (a).

Before giving the proof of lemma 2 we observe that it is not necessary if all we want is to

give a set of open sentences equivalent to Al - 7 plus RIO. For examination of the proofs just given
and the proof of lemma 3 which follows later will show that we do in fact deal only with a finite
number of elements of Id at a time so that instead of Id we could use each time an ideal 1~ .
consisting of all elements of R which annihilate all of x 1" ..., x, where x,, ... , xn are certain
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elements annihilated by d. If we then choose instead of Cd the apparently stronger axioms (d = 2,3,...;
n = 1,2,3 ···)

which are easily seen to be provable from A 1- ? by RIO, we have already the result corresponding
to lemma 2 and can proceed straight to lemma 3. What we are really doing in the next section is

showing that the CJ. D are not independent but all follow from the C d.l.

4 - PROOF OF LEMMA 2 -

We first prove in 2 steps that,

E d : order d and dX2= 0 andzxl= 0 then ZX2 = 0,

holds for all d. Here when we say x is of order d we mean that d is the least positive integer
which annihilates x,

Lemma 5. Ed holds for d of the form p’ (p prime) .

Proof. By induction on n. If n = 0 both x,, X2 are 0 and the result is trivial. Suppose now n &#x3E; 0.
Since dx, = dxa = 0, d(xl + x~ - 0 also. Hence, by C~" for some i, j, 0  i, j,  d,

Subtracting and using zx, = 0 we get

If j = 0 then z(xl + xj = 0 from which the desired result zx2 = 0 follows ; if j = i then

jx, = 0 so xi 1 is of order  d, contrary to hypothesis. So we may assume both j, j- i # 0. Let

pk (k  n) be the highest power of p which divides j - i so that j - i = ptb2 where p t b2’ Multi-

plying (1) by we get

since p° x2 = 0. Hence p° I pn-kj i, e. i, e, j - pkal 1 and (1) takes the form

Now 1 is of order pk and z (P’-kxI) = p°’tzx 1 = 0 so by the induction hypothesis (2) gives

Since zxl = 0 this gives zb2x2 = 0. But p $ b2so (pi b2) = 1 and there exist a, b such that

ab2 + bpn =1.
Thus

which completes the proof.

Lemma S. are coprime 

Proo f : If Xl is of order dld2 then dlxl is of order d2 ; also if dld2x2 = 0 then d2(d,x,) = 0., Now if ZX1 = 0
we have z(d,x,) = 0 so, by Ed2,. zdlx2 = 0 ; similarly by E , -1 zd2X2 = 0. Hence z(ad, + bdOX2 = 0

for all a, b. Since dl, d2 are coprime we can choose a, b so that adl + bd2 = 1 which gives zx 2 = 0 .

Lemmas 5, 6 tell us that Ed is true for all d. Note that Ed can be written in the equivalent
form : if x, is of order d then

so if d is such that there exists an element x 1 of order d, Cd applied to x 1 gives the result of
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lemma 2 at once, viz (z + = 0 for some i, 0 ~ i  d, i.e. (z + i) E Id i.e. z = -i (Id) i.e.
z = one of 0, 1; .. , d - 1 (Id), for d =0(1~). If there is no element of order d but there are non zero

elements annihilated by d (if there aren’t the result is trivially true) and d = · P: 1 where
are distinct primes, then if P1 B1,..., pkBk are the highest powers of pl, · · · , Pk for which

there exist non-zero elements xl, · · · , x~ of these orders which are annihilated by d, it is easily
seen that the element x = xi + x~ +... + xk is of order d1 = pfl ... ~k and that dy = = 0 ,
hence Id = Id 

1 
from which the result follows as above since d14 d.

5 - PROOF OF LEMMA 3 -

Let

Consider the Lagrange interpolation formula ’in the form (i, j,r, s run from 0 to n) :

This is an equation between polynomials in x, ao, · · . , an, ao, ~ ~ ~ , an with integer coefficients.

By the usual proof it is true for all elements x, ao, · · · , a, ao’..." an of any field, in particular
of any infinite field. Hence it is a polynomial identity. In particular the polynomials Lk and Rk
which are the coefficients of xk on the LHS and RHS are equal (k = 0"..." n). Hence for all elements

CXo’ ..." a"~ ao ~ · · · , an from any commutative ring Lk = R y i, e. the formula is an identity between
polynomials in x valid in any commutative ring.

Now apply this to the ring R supposing that ..., aa are n + 1 distinct roots of f(x) = 0 from
the same comparison class, i.e, such that all differences ar - are integers. Then 
is an integer and df(x) = 0 an identity between polynomials in x with coefficients in R, i, e.

(A result which could equally well be reached via the other familiar proof that an equation of the
ntb degree has at most n roots in a field, viz using the Vandermonde determinant).

Now if f(x) = 0 and x = xo(Id) then x 0 k (Id) (k = 0"..., n) so, since da = 0, (x~ - xo) ak = 0
i. e. ak X k = and so f(x) = f(xo) is also = 0, which completes the proof of lemma 3.

6 - SOME INDEPENDENCE RESULTS

It is easy to characterise the models for Al - 7, B 1- 7 :

Lemma 7. If R is a commutative rin~ with unit and M a subset of R which is closed under + , · , x - I

(for x 1 0), contains 0,1 but not - 1, then if’, P are defined on M by x’ = x + 1, Px = x ~~ 1 (x~0)
PO = 0 we get a model 7, B l - 7. All l models may be obtained in this way.

Now take for R the ring I[u,v] of polynomials in two indeterminates u,v with integer coeffi-
cients, modulo the ideal (p(u-v)) where p is a prime. Take the subset M consisting of 0 and those
elements which are images of elements of I [u,v] with the property that all coefficients of the terms of
highest degree (i, e. all terms aumv’ which are not dominated by terms a1u°1vn1 with m &#x3E; mt’ n &#x3E;n1
and at least one of these inequalities strict) are positive. M clearly satisfies all the conditions of

lemma 7 except possibly the last, i. e, that it does not contain -1. This means that no polynomial
f (u, v) with positive leading terms should be - - 1 (p(u - v)) i. e, that p(u - v) ~ I f(u,v) + 1. This is

so for if p(u-v) ~ I f(u,v) + 1 then putting u = v we should have f(u,u) + 1 = 0 which is clearly impos-
sible for such a polynomial. So M is a model for Al - 7, Bl - 7. It also satisfies Cd, for all d such
that p f d, for if p f d then dy = = y, (viz : in the ring I[u,v] if p(u-v) ~ B d (y- yl) then

p(u - v) ~ I (y-y,)). But it does not satisfy CI,for pu = pv,but for no integer i is (u + i)u = (u +i)v for this
would mean p(u-v) I (u+i) (u - v) in I [u, v] . Thus :

Theorem 3. For p prime CD is independent of A 1- 7, Bl-7 C2 ..., A 1- 7, Bl-7, C~(d= 2,3...)
is not finitely axiomatisable. The C~ are however not independent. It is easy to check that if dlB d2

that if dl" d 2 are coprime Ca 1 A Cd And a slightly more complicated
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version of the above model shows that if p is prime C’n is not a consequence of So a

basis for the C§ must contain these for a set of d’s which contains multiples of all prime powers ;
no such set is independent. The stronger axioms

are provable by double induction, A (x, 0), A(0,y), A(x,y)20132013~A(x’.y’) ~---A (~, y) applied to open
formulae or by single induction applied to quantified formulae. But they are not provable using only
RIO ; in fact no finite subset of them will yield the rest using only RIO, for

Theorem 4. If p is prime Qts independent of 

So by theorem 2 it is not provable from them using RIO. For a proof use the above argument
with the ideal (p(u-v), u(u-v), v(u-v)). This gives for all p a model which satisfies C( for all d,
and fails to satisfy C p. If p is prime it satisfies all of C 1, · . · , 

It follows from this that

Theorem 5. The axiom

is independent Cd(d-2,3,...).
.

For C 
* 

implies all of the Cd. A direct independance proof can be given as above using the ideal

(u(u-v),v(u-v)). Since the system Al-7,Bl -7 C~ (d = 2, 3, ...) is closed under RIO so C*
is not provable from these by RIO, although it is provable by a double induction. The stronger
axiom

which implies that the ring R obtained from a model is an integral domain, is also provable by
double induction from A 1- 7, but is not provable by RIO from Al20137, Bl - 7, C* (use polynomials
in y , Y2’ z~, z2 modulo the ideal ((yl ~ y2) (zl - Z2». Shoenfield showed that all true open sentences in

’,P. + were provable from A 1- 5,B1 - 5, Cd (d = 2,3, ...) and

We have already shown that the Cd are not provable from A 1-7, til - 7 by RIO and now observe
that even if we add all the C~, in fact even C~ we still cannot prove the by RIO (although they are

again provable by double induction). For we get a model for A120137.B120137, C~ by taking the ring
R[t] of polynomials in t with rational coefficients and the elements of M to be 0 and those polynomials
with leading coefficient a positive integer. This does not satisfy any of the for mt + n = m(t + n/m) .
In this model not only are some elements e.g. 2t + 1, both even and odd, but some e. g. t, are

neither. So one would hardly expect a relatively deep result like x3 + y3 =/ Z 3 1B xyz = 0 or the irra-

tionality of 1r2 to be provable from A 1- 7 by RIO. To get a model which shows their unprovability
from Al - 7, C~ we need only take. polynomials in t with real coefficients, the elements of M, being
0 and those polynomials with positive leading coefficient. (In Shepherdson [1] we have shown they
are unprovable by RIO even in a system containing -, , [x/n] (n = 2,3,..’)).

Once I , with suitable axioms is added, the rule of double induction mentioned above becomes
derivable from RIO. On the other hand as we have seen, in the system based on 0,’,P, +, · this

rule of double induction is definitely stronger than RIO. It would be interesting to know exactly how
strong it is, i. e, to find a simple set of open axioms whose consequences coincide with those obtai-
nable from Al - 7 by the use of this form of double ( or triple, ... ) induction.
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