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CLASSES OF MODELS AND SETS OF SENTENCES WITH

THE INTERSECTION PROPERTY (*)

Michael O. RABIN
Jerusalem

INTRODUCTION.

The usual structures such as groups, rings, fields, and algebraically-closed fields, consi-
dered in Algebra have the property that the intersection of substructures of any of these structures
is again a structure of the same kind. This intersection property is a fundamental feature of alge-
braic structures and is used, for example, whenever we want to prove existence of subsystem ge-
nerated by a set of elements.

From the logician’s point of view the classes of structures mentioned above have another spe-
cial property. Each class is the class of all models of a sentence or set of sentences of first-
order logic. In other words, these are elementary, or elementary in the wider sense, classes of
structures.

It is thus natural to ask : what can be said in general about elementary classes of structures
with intersection property. Alternatively we may wish to obtain general results concerning sets S
of formal sentences (axioms) of first-order logic having the property that the class of all models
of S has the intersection property.

A. Robinson was the first to study classes with i, p. in a systematic way, as part of his
scheme of application of logic to algebra, in his book [ 5 ]. The important Theorem 2 is quoted from
his work. The intersection property was introduced by Robinson under the name "convexity". We
prefer the former name firstly because it seems to describe more directly the property in ques-
tion, and secondly because "convexity" has meanwhile been expropriated by some logicians to name
another, completely unrelated, concept.

The intersection property of a set S of sentences is a semanttcal property of S, i, e. it is de-
fined by referring to models of S. Whenever dealing with a semantical property P of formal sen-
tences (or sets of sentences), one of the natural and fundamental problems is to find a syntactical
characterization of sentences having property P. We try to describe in syntactical (i. e. by refe-
rence only to the form of sentences) a set E of sentences such that every 6 E Z has property P
and furthermore, if a sentence ~1 has P, then there exists a sentence 0’1 E E such that ~ a1
is logically valid. Usually we also try to find such a set E which is recursive. Such characteriza-
tion problems were solved for several semantical properties P.

Here we solve the problem of syntactical characterization for sentences with intersection pro-
perty (Theorem 7) as well as sets of sentences with i. p. (Theorem 8). We distinguish between the
case of a single sentence (or finite set of sentences) and the case of an (infinite) set of sentences
for the following reason. The characterization for single sentences is of the kind described ,before
(with a suitable recursive E ). The characterization theorem for sets of sentences, however, is of
a new kind and is different in form from characterizations found in the literature for other seman-
tical properties. We explain this situation in Section 8 and prove that there does not exist a cha-
racterization of the usual kind.

The main tool for obtaining the syntactical characterization is a new concept introduced here

---------------

(*) Several of the results in this paper were obtained while the author was visiting at University of California, J
Berkeley. This research was supported in part by National Science Foundation Grants NSFG-19673 and
NSFG -1992 .
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(Section 3) under the name relative intersection property. We establish some basic properties of this
notion and also give syntactical characterization of the property that a sentence J has intersection
property relative to a sentence T (Theorem 6).

Given an elementary class K of structures with intersection property we may assume that the
sentence a defining K has the syntactical form given in the characterization theorem. In proving
theorems about elementary classes with intersection property we may use this assumption without
loss of generality. In fact the test for usefulness of such a characterization theorem is whether by
using the characterization we can obtain results about classes with intersection property which are
not obvious from the definition of intersection property. In Chapter III we apply the characterization
theorems to obtain results about models of a set S with intersection property which are generated
by a set of elements. We also prove that each element of such a model has just a finite number
of conjugates by automorphisms of the model over the set of generators.

We conclude this paper by discussing a conjecture of C. C. Chang and indicating another
characterization of classes with intersection property as algebras with respect to generalized multi-
valued operations.
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CHAPTER I

BASIC NOTIONS AND RESULTS

0 - NOTATIONS.

We shall employ first-order calculi (languages) with equality having the individual variables
vo , v~,... ~ and the usual logical constants =, A , V, -~ , ~ . Universal and existential quantification
with respect to a variable v i will be denoted by IBv¡ and ilv, respectively.

In pratice we shall rarely write actual formulas of the formal calculus, instead we shall use

meta-mathematical abbreviations to denote the formulas we have in mind. The notational conventions
to be adopted are the following.

x, y, z, xl, Y 1" Z1, - - - , (sometimes also with superscripts) will be used as meta-mathematical
variables denoting the individual variables of the formal calculus.

Bold face letters will denote sequences. In particular, s, t u will denote arbitrary sequences
of positive integers ; k, n, m, p, q, n+k, etc. will denote the sequences ~1, 2....... k) ... , ~ 1, 2,..., n+k)
which are initial segments of the sequence of positive integers.

If 1. =  iI, ..... i q &#x3E; then by, definition,

If a~, a2, ... , is a sequence of variables or elements of a set and t is as above then at will
denote the sequence a I J..." a iq ; ; thus xn denotes xl , ... , xn . 

-

/%F ¡ abbreviates the conjunction Fl A, . , A F ; ; similarly for disjunction.
1T n 

~ z

/B~ abbreviates the string/~xl.../~xn of n universal quantifiers ; similarly for existential

quantifiers. Thus Ax,, Vlm B(2E,,, ~m ) denotes the formula

Let A be a formula with q variable-places, V A(x~) denotes the repeated disjunction)t)r -

of rq substitution instances of A.

Let S = (jl,...,jp), t - Cil, ... , iq~ the formula ~~ C y~ abbreviates

In words : everyxj. equals some Yin. Thus if ~p C 11 ~ (this does not denote a formula of the cal-

culus, what is meant is that the sequences of elements ~ 1, ... ,~ p , .. 71 T) q sat isf y the formula

xp C yq), then {~l"...’ ~p } ç { 11 1 .... , 11 q} . ..
A sentence is a formula without free variables. Tne notation S F T means that every sentence

in T is a logical consequence of the set S of sentences. The sets S and T will be called equtvalent
(notation : S ~ T) if S F T and T t- S.

A sentence is said to be universal-extstential if it is in prenex form and all universal quan-
tifiers precede all existential quantifiers (e. g.Â VIVV2 P(vi, V2))-

AE will denote the set of all universal-existential sentences.
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1 - STRUCTURES AND MODELS.

Even though the results in this paper are general and apply to structures with an arbitrary
fixed number of operations and relations (e. g. ordered fields) we shall restrict the discussion, for
the sake of notational simplicity, to structures of type ~2~ .

By a first-order structure (of type (2)) we mean a system W = (A, R ~ where A = D(~I) is
a set called the domain of if , and R C A x A is a binary relation on A. The structure (0, 0 ) with
empty domain will be referred to as the improper structure.

Inasmuch as structures of types other than (2) will be used as examples or in proofs, the

deviation from the restriction to type (2) will be obvious from the context.

The restrict ion S A of a relation S C B x B to a subset A C B is defined by S I A= S n (A x A) .
A structure ill = (A, R is a substructure of a structure %3 = 2013~B, S~ (notation ;  C 63) if A C B
and R = S ~ A.

If ~1 = (A,, R;) , i E I, is a set of structures then the union and intersection of these struc-

tures are defined by

Note that the intersection of a set of structures may be the improper structure.

With the class of all structures (of type (2) ) we associate a first-order calculus L having,
besides the individual variables and logical constants, J a binary predicate P.

We assume the notion of sat is fact ion of a formula F(vo , ... , vn) of L by a sequence of elements
ao’... an E in the structure 1.4 to be known. If the sequence satisfies the formula in It we

shall write

and say that F(ao, ... , a,,) holds or is true in 91.

A structure 91 is called a model l of a set S of sen tences (notation : It P-- S) if 0 E S implies
W F (J. The improper structure is considered to be a model of every set of sentences. S and
S is held fixed in the discussion, then a substructure 9t will be called a submodel S.

2 - THE INTERSECTION PROPERTY.

We turn now to the basic concept of this investigation namely the intersection property (i. p. ) .
We start by defining both the i. p. and the finite i. p. for classes of structures.

DEFINITION 1. A class K of structures is said to have the intersection property if (i) K contains the
improper structure, (ii) ar E K and 9t; t ç ’if i E K, for i E I, imply Q W t E K. K is said to

have the finite i.p. if (i) and (ii) hold with the sets I in (ii) restricted to finite sets.

The class of all rings (considered as structures of an appropriate type), which is assumed
in this context to contain the improper ring having an empty domain, is an example of a class with
i. p. Similarly fields, groups, boolean algebras, and in fact most of the systems usually considered
in algebra clearly have i. p. Somewhat more sophisticated examples of classes with i, p. are alge-
braically closed fields and real closed fields (we shall omit the proofs of these two statements).

Not much can be said about general classes with i, p. All the above classes, however, are

elementary classes (in the wider sense) of structures, i. e. classes of models of certain sets of
sentences. For this more restricted case of elementary classes with i, p, we can in fact develop a
detailed theory. We are thus led to the following.

DEFINITION 2. A (consistent) set S of sentences of L has the i.p. (finite i.p.) if the class K(S) of
all models of S has the i. p. (finite i. p. ). A sentence a is said to have i. p. (finite i. p. ) if { 6 } has
i. p. (finite i. p. ).

For general classes of structures the finite i. p. does not imply the i. p. All the above examples ,
however, satisfy both finite i. p. and i, p. This is not accidental in view of the following result which
was announced without proof by Chang [ 1 ] and later rediscovered by the present author.
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THEOREJI 1. If S has the finite intersection property then S has the (unrestricted) intersection property .
PROOF . 0 Let W = (A, R) be a model of S and ~I’I" i E I, be a system of submodels. Denote the
substructure I 91 by S. Augment the language L to a language L’ by adding one individual
constant ~ for each element C of D(K) (the same constant is used to denote the element in the meta-

language), and a one-place predicate B(x). If 6 is a sentence of L then will denote sentence
of L’ obtained from 0’ by relativizing all quantifiers of 6 to B(x)(# ~. SBt x) will be the set o E S } .

Consider a finite subset { ~1 , ..... I ç, .. ~~~1 , ,...,~} of D(~) such that C i 0 D(~).. li j i n ,

~k E D(%3), n+1 _ k ~ m. For each 1 ~ j ~n there exists an ij E I such that Cj 4 Let
= ; ~1 is a submodel of W (by finite i. p. of S). By interpreting B(x) as x E D(%3) we

see thai the set of sentences

where A is the diagram [5, p. ~4] of W ~ is consistent. This implies the consistency of the set

This set, therefore, has a model 6’ = ~C, I T, B1, c03BE~ 03BE~A, where T and Bi are binary and una-
ry relations corresponding to the predicates P and B(x) respectively and the elements ce E C cor-
respond to the constants ~ of L’ . We may identify each cj with the corresponding ~ E A ; thus
A C C and since 6’ I P A we have T) A - R. Let G = (C, T~ , J clearly 6 P S and 91 C (g. From
15 ’ k S8tx) and B1 = ( £ ) 15 ’ p B(~)} it follows that ~1= is a model of S. Now, for

~ E A we have 6’ F B( ~ ) if and only if ~ E (Bl may, however, contain elements which are
not in A). Hence A and But A and $1 are models of S which are
submodels of the model G (of S). Thus i3 is a model of S by the finite i. p. of S. Since $, was an

arbitrary intersection of submodels of It " S has the unrestricted i. p.

In view of Theorem 1 the notions of finite intersection property and intersection property are
equivalent and hence mutually exchangeable throughout the following discussion.

Robinson proved in [ 5, p.117] the following fundamental theorem concerning sets with inter-
section property.

2. If S has i. p. then the union of every system 9(,, i E I , of models of S such that for every
i, j E I, 9t C Mj J or j C 9t, , is a model of S.

The property of S established in the above theorem may be called closure under unions of chains.
Closure under unions of chains implies by a theorem of Chang, Suzko and Los [2, 3] that S = S’
for a set S’ C AE.

COROLLARY. If S has i. p. then S * S’ for a set S’ C AE . The set _S’ can be taken to consist of all

sentences a 6 AE for which S ~- o. 
- 

-

3 - RELATIVE INTERSECTION PROPERTY.

Our next aim is to express the intersection property of an arbitrary set S by properties of
f inite subsets of S. If S has i. p. and a E S then 03C3 need not have the i. p. ; still for every model
of S and every system of submodels, J holds in the intersection of the submodels. We contend that
this behavior of 6 depends just on some finite subset of S. This is made precise by the following
definition and theorem.

DEfINITION 3. The sentence 03C3 is said to have intersection property relative to the sentence i if
=03C4 and W 1;.. i E I, imply 1 Fa.

---------------

(*) If F(x, y) is a formula containing the free variable x and possibly also the free variable y and a is any
sentence, then QF - the result of relativizing the quantifiers of o to F(x, y) considered as a predicate in x, J
is constructed as follows. Change alphabetically all the (bounded) occurrences of y in o . Starting with the
innermost quantifier of Q and proceeding outwards, replace each part /~zB by /§z [F(z, y) -~i B] and each
parVzB bY/z [F(z, y) A B]. Proceed until all the original quantifiers of cr have been dealt with.
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A set S is called (quasi) conjunctive if for every T,,... 1;" E S there exists a i E S such
that T. Examples of conjunctive sets are sets S C AE such that a E AE and S I- a

imply a E S. This follows from the fact that a conjunction of sentences in AE is logically equiva-
lent to a sentence in AE.

THEOREM 3. A conjunctive set S has i. p. if and only if for every a E S there exists a sentence i E S

such that a has i. p. relative to 1.

PROOF. The sufficiency part of the theorem is immediate.

To prove the necessity part assume by way of contradiction that S is conjunctive and has i. p .
and for some a E S, 6 does not have i. p. relative to any 1; E S. Thus for every 1; E S there

exists a model No = (A, R) of i and a system of submodels T) E I, such that
B =~~~I R~, is non-empty and cr . 

°
is non-empty and

We may assume that 0 E I (i, e. Wo is one of the W 77) and that A n I = 0. Construct a new
structure U1 = (A U I, R, I, E) of type (2, 1, 2) where E = ( (£ , TI) I I, E E D(%-,) 1. Add
to L the predicates I(y) and E(x, y) and call the new calculus Ll.

For any sentence X of L and any formula F(x) or F(x, y) of Lj, X will denote the formula
of L. obtained by relativizing the quantifiers of X to F (see Footnote (*), p. 43) where F is considered as
a predicate in x. Note that may contain y as a free variable.

Let A(x) = VyE(x, y) and B(x) =Ay[i(y) 20132013~E(x,y)]. It is clear that ~1 F A(è;) if and only if

~ E A, and if and only if E E D(I~). Furthermore, the construction of ~1 implies that
the sentences

hold in 91.1. These sentences are, therefore, consistent.

We notice now that

Since S is conjunctive, the consistency of (1) for every 1; E S together with (2) imply that the set

is consistent.

Thus (3) has a model K’ = (AI, R’, I’, E’~ . Define A1= ( E I ~, 1= A(~)}, A,~ _ {~I (~ , 11) E E’ }
for 11 E I’, B 1 = ( E ) 1 B(~ ) }. From the fact that is a model of (3) it follows at once that

(Ai, (A,, for 11 E I’ I ; Bi = 2, A.,,; B1 ~ ~ ; (B1, J .

This contradicts the i. p. of S. Thus for some i E has i. p. relative to T.

We can now combine the Corollary of Theorem 2 with Theorem 3 to get the following.

TH,90R.NN 4. S has i. p. if and only if there exists a set Si such that S = S1, S1C AE and for every
J E S there exists a i E S1 such that J has i. p. relative to i. If S1 is finite then S can be taken
to consist of a single sentence.

PROOF. Let S1 be the set of all AE consequences of S. By the Corollary of Theorem 2 S = S1 so
that 81 has i, p. By the remark following Definition 3 S, is conjunctive so that the result follows
from the previous theorem.

In case S is finite S1 == C AE for a suitable c. Since Q has i. p. it trivially has i. p. rela-

tive to itself.
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CHAPTER II

SEQUENCES OF SUCCESSORS, AND

AND SYNTACTICAL CHARACTERIZATION THEOREMS

4 - A SIMPLE CASE.

Having Theorem 4 at our disposal, it is clear that we shall be able to characterize sets
with i. p. if we could find a satisfactory necessary and sufficient condition for a sentence a to have
i, p. relative to a sentence i, where both o’ and T are in AE. Let us consider the simplest case
where 6 =/AxVyA(x, y), i y).

Let ,W = (A, R) p T and ç, EA. We shall call 71 = (111 a sequence of successors (of length
W) 0 f ç, by ’t if no = ~ ), 0 _ i ~ c~ .

The following two statements are easily verifiable. Let 91 -u , .. every E A has at least one

sequence of successors*by T If E E A and n is sequence of successors of ç, by i then the su bs-
stucture W, q 91 

-

is a model of i containing E.

Using the notion of sequence of successors and the above two statements we can easily give
a semantical condition for 6 to have i. p. relative to 1; as follows.

TgBORFX. Let a and i be as above. a has i. p. relative to i if and only if for every element C of
an arbitrary model K of I, every sequence of successors Ti of C by c contains an element 11¡ such

11,) and 11, i is contained in every other sequence n’ of successors of C by 1 .

PROOF. We start by proving necessity of the condition. Let a have i. p. relative to i and assume
that the condition does not hold. Thus for a suitable model of 1;.. some C E D(K), and a sequence

11 of successors of ~.. for every element of 71 such that K Tij ) there would exist a se-
quence .!1 J of successors of C by i not containing nj. 

Let J = {j|j  w. 91 1= A( 1;, }. The substructure R=Rn N n 91 (cf. (4)) of ,91 is an inter-
section of models of T each containing C , and for C E D(~) there is no T) E D(~) such that

iS A(E, n). Thus B = ~ 1B x V yA(x, y) contradicting the assumption that s has i. p. relative

to 1; .

To prove sufficiency, assume the condition to hold. Let W and 91. C 9~ oc E I, be models of

T. we may assume that ~. Let C E The element C has a sequence
q of successors by 2 in 91 and, for each a E I, since C E D(Wa) and Wo. F has a sequence
T) aof successors by 1; in 9~. By assumption, one of the elements 11 ¡ of n satisfies T), )
and appears in every sequence !Jo... a E I. Thus 11, E The sentence CJ = 1B xVyA (x, y) is
therefore true in 21,and Q has i, p. relative to i.

5 - GENERAL SEQUENCES OF SUCCESSORS.

We have seen that relative i. p, for sentences in AE involving two quantifiers can be charac-
terized by a property of sequences of successors. To obtain a general result we have to genera-
lize the concept of a sequence of successors to formulas with more than two variables.

DEFINITION 4, Let n, p, m be positive integers, a system of functions f1,..... fn from non-negative
integers to positive integers will be called a (p, m) selectlon system if i. fj (i) :5 p + mi, 1 5. j s n,
0  i ~ w, ii. (fl (i)..... , fn (i)) , 0 ~ i  w, runs through all n-tuples of positive integers.

In the following we assume that for every n, p, m a fixed (p, m) selection system of n func -
tions I 1  j  n, has been chosen and that this was done in such a way that 
recursive in all variables.

All subsequent definitions and theorems will refer to these fixed selection systems
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We recall some of our notational conventions. 2!. denotes the sequence of n indivi-

dual variables, thus B(x,,, stands for B(xl, ... , x~; yl , · .. , Ym ) ; similarly ~ ~_ , I !In I etc. denote

sequences of n etc. Axn stands for the sequence of universal quan-
tifiers, similarly for V ym . 

~ °°~~ ~ 

DEFINITION 5. Let’r = Xx V Y.). S.,.,p,k (2!~, y~+~~) will abbreviate the formula

if W ~=s~p~ k ( £ , 21f+~) then will be called a sequence of successors by T (of length p+mk) of

~-..~,.
We shall,usually drop the index p and write S.,.,k (!.f’ ~~,k) for the formula (5).

For every 0 ji k clearly

LEMMA. If U = t and E then there exists a sequence of elements of D(it)
such that 

~ ~ ’

If a sequence (11 I }11~ satisfies (7) and if B = {11 ,11 ~ i  w} then the structure (B, B I R) C ~.
is a model ofT containing e1, ...,ep.
PROOF. Define 111 = ~ 1 ....... 11p = ~ p. Assume that we have constructed a sequence 111 ....... 11 p+mr sa-

tisfying (7) for 1 ~ k I r. By i. of Definition 4, p+mr, i  j  n, thus the elements r~~~~~~, ,
1j n,are already defined. Since U =t there exist elements v1,...,vm such that 

-&#x26;1....... -&#x26;111). ....., 11p+mcr+1. = 8m then by (6) ~ t= S.,.,r+1 (~1,.....~p.. 11 1.....’ 1’) p+IIICr+1J
and the sequence 1’) l’ ... satisfies (7) for 1 5. k  r+1. This process can be continued to

construct the infinite 

To prove the second assertion, let be arbitrary elements of B = D(~). By ii.
of Definition 4  j1" ..... jn &#x3E; = f1 (k), ... , fn (k) &#x3E; for some k. It follows from (7) (for k+l) and (6) that

Lemma 5 generalizes to the case of arbitrary formulas T in AE, the two italicized state-
ments of Section 4. From Lemma 5 it is now possible to derive a semantical characterization of
relative i, p. which is completely analogous to the theorem given in Section 4. As the statement of
the corresponding theorem and its proof are almost identical with what was done in Section 4, we
skip the details.

6 - SYNTACTICAL CHARACTERIZATION OF RELATIVE i. p.

The desired syntactical characterization is now an almost direct consequence of Lemma 5 and
the completeness theorem.

THEOREM 6. Let (y Ax pvyq A(xp , lq).. L =V x,, y_m ). 6 has i. p. relative to T if and only
if for some 1  k, ~- T ~ ’tCT,k - where 

- 

--------------- 

(*) For the notations used in this formula see Section 0.
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RGNARK. In semantical terms the above statement reads : Q has i. p. relative to ’c i f and ont y i f for.
some k, in every model ,I: of 1; and for every &#x26;l D(W), every sequence of length p+mk of
successors of § by ~t contains q elements T). T) 17. : , n y ) so that
these q elements appear in every other sequence successors of ~ by 1;. Note that this state-
ment runs completely parallel to the semantical condition given infection 4 and its generalization
which was mentioned at the end of Section 5. The only difference is that here we use sequences of
successors of f ini te length and are therefore able to write a formal sentence (8).

PROOP. Assume ~- i --~ 1;u,k for some 1 ~ k. Let W and i E I, be models of T ; let S = n w,.
If D( 1B) = 9 then there is nothing to prove. Assume therefore that &#x26; 1 J..." ~ are p elements in

Since W F T and -W T, i E I, there is, by Lemma 5, a sequence T)l, .. , of succes -
sors by 1; of in K. and, for i E I, a E D(W ) of successors of

~ 1 ....... in 9ti. 
p 1 

I 
The formula B(xn, is open and hence also is open. Consequently, since

~1 , P+.k are successors of the they are also successors in W .

From the assumptions we have ’9E -C,,, k so that among ’~1,..., there are q elements
which appear in every sequence and furthermore T) ’1.......fJ ’q ) ..

, ... ,n1p).
The sentence lq) is therefore true in the intersection tB so that (J Phas i. p. re-
lative to 1. 

- - ’

To prove necessity of the condition, let Q have i, p. relative to t and assume by way of con-
tradiction that for every 1 ~ knot r- 1; 2013~T~,k .

By our assumption there exists, for every 1 ~ k, a model W of T, a p 
E 

a sequence ’tllt, ... , T) of successors of &#x26; - and, for every t - (i 1, ... , iq) such that |t| ;5. p+mk , ..
a sequence 3. of successors of Lp such that U=~ A(L It V n at g P+* _ p’ _ _ _ _

Thus, putting a
the set of formulas

is consistent.

It can be verified that Yp+mh ) 20132013~ S~,~(xp, le.":!! )

(compare the remark following Definition 5). Furthermore it follows from f- 2013~ 

for h, ath 2013~ at,k Consequently, if k ~ h then Hh I- H~. 
- ~~" *’ 

"~

This implies that the set H = U Hk is a consistent set of formulas and hence has a model

W = (A, R). Let = Ep be the elements of A corresponding to xj , x p ni&#x3E;1iw =

n and for t ~"’~q~ 1 So ij  W, be the sequences of elements of A corres-

ponding to (yt) and respectively. By Lemma 5.. since n and Et are sequences of suc-

cessors of Cp by ’t.. the substructures Wo, 91 t

are models of i containing ip. Let b = W’o E D(,fl3).

By i. p. of J relative to i we must have Assume that for some

, Since ~1= -’~ i~,.. _,~q for 
and- hence for Let k

be such that for 1 eq, thus n1CEtp+mk 
P 

holds.We C Etp+mk
Since A(Ep, nt) is true and hence, lq) being open, is true it follows that

a contradiction with preceding statements.

Thus there is no sequence -&#x26;1.....,.&#x26; q such _~s ), contrary to
~~ 1= CJ. We conclude that for some 1 ~ k, r- i ---~ 1;u, k. 

Note that in the sentence ’tu,k (8) the universal quantifiers can actually be moved into
the prefix so that is (logically equivalent to) a untversal sentence.
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7 - SYNTACTICAL CHARACTERIZATION OF SETS WITH i, p.

We can now turn to the syntactical characterization of sets of sentences with i. p. Even though
the result could be stated in a form which applies both to single sentences with i. p. and to (infinite)
sets with i. p. we prefer to separate these two cases.

THEOREM 7. A sentence 0’1 has i. p. if and only if 61 is logically equivalent to a sentence of the form

a A ao,, where 0’= nxEVyq Xq) is a sentence in AE and alk is of the form (8) (with i being ct)

PROOF. Assume that s1 has i. p. The Corollary to Theorem 2 yields that cr1 * u where 6 is in AE.
The sentence 6 has i. p, relative to 0’ and therefore, by Theorem 6, /J 20132013) for some 1 ~. k.
Thus 6 A 0’ cr, k for this k and s1 is logically equivalent to a sentence in the desired from.

Assume now that for some k, a 1B where o is in AE. We shall prove that a sentence
cr I of the form d A (if consistent) has i. p. Let 91 a I and W ¿ WI t= Q’, i E I be models ofcr’
and Let S = n Since ss,k is universal we have 0 i E I .
This implies(see proof of sufficiency in Theorem 6) . Thus F8 a’.

THEOREM 8. A set Si has i. p. if and only if there exists a set S of sentences such that

a) 81 == S..

b) the sentences in S are either universal or in form AE,

c) for every a E S which is not universal there exists a T E S such that for some 1 K k

also ’too, k E S.
TROOP. Let Si have i. p. By the Corollary of Theorem 2 S, s S’ where S’ is the set of all AE conse-

quences of Si. The set S’ is conjunctive and has i. p. , therefore for every a E S’ there exists a
T E S’ such that 6 has i. p. relative to T. By Theorem 6 f - i for some 1 .s. k. Let

then S m S’ I and satisfies a - c.

The proof that if a set S¡ satisfies a - c then it has i. p. is completely analogous to the cor-
responding proof for Theorem 7.

REXARB. Theorem 7 can actually be subsumed by Theorem 8 by putting S = {cr } . We stated
it separately in order to emphasize the fact that in this case S can be taken to be ftnt te .

8 - A COUNTER-EXAMPLE.

Most of the syntactical characterizations of sets of sentences with a given semantical property
which are found in the literature have the following form : $ has the semantical property P if and

only if S, is logically equivalent to a set of sentences S such that every c E S has a certain fixed
syntactical form. Our Theorem 7 has this form. Theorem 8, however, is a. syntactical characteri-
zation of a new kind. Namely S 1 has the property P (in this case P is the i. p. ) if and only if S
where S as a set of sentences has certain properties (a - c) which are expresse,d by referring both
to the whole set S and to the syntactical form of elements of S.

Is it possible to give a syntactical characterization of sets of sentences with i. p. which is of
the same kind as the usual characterizations mentioned above ? We are able to prove that the answer
is 

Assume that there exists a syntactical characterization of the form given above, for sets 81
with semantical property P. From this we can conclude that a set S1 has property P if and only
if S, is logically equivalent to a set S of sentences such that every 6 E S has property P. We shall
construct an example of an (infinite) set S1 of sentences with i. p. such that S~ J is not logically equi-
valent to any set S such that each sentence in S has i. p.

Let P1 (x, Y1)....... ~ (x, Y1 ....... Yn)" ..... be a sequence of predicate constants.Define for 1~ n w,
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Let U = ( «  , fi[ I 1~ n  and S = U U E.
LEMMA 9. Si has i. p.

PROOF. Let U= Si and Ui=S1, i E I, be a model of Si and a set of submodels, put B = F) W .
The sentences are universal, hence B=U. It remains to prove that B= Yn for 1  n  w.

We may assume that D(23) / 0. Let E E D(B) ; we must show that there exist elements

Y)1"..., T) E such that B=Pn (E, Nn). Now, U=yn+1 and Ui=yn+1, i E I. There exist the-

refore elements ~...,~~D(~;), for i E I, such ( ç, 

~I ~ (~ ~ ~i). · Pn+i ( ~ , &#x3E; (~, &#x3E; ) for i E I. &#x3E; hence

Y)1 = Cil,...,nn-=-Cin. From U=an it follows (ç, Nn+1)-
holds in Wand hence also in Thus 

~ ~ -

LEMMA 10. If U = U U ( y ) then there exists a model B of U U {Y n+1 } and two sub models !i1 J:= U U {y n +1 }
and ~2 t= U U { ’yn+1} such that ~ = iJ 1 n ,!J’2 

~~~ ~ ~ ~

Yn+1 there is nothing to prove. and let

For each ~ E N define two sequences cp(~, n), n), 1 ~~ n  w, of elements which are

pairwise distinct and are assumed not to b,elong to D( ~).

Let now ~= (A, where Rn is the n+I -ary relation corresponding to Pn. 
we can pick for each C E N a fixed sequence TIC ... Tle such that U = P (C, T)").

Define Bi = A U {ç(E, n)|E c N, 1  n  w)}, B, 1  n  w} .. and

B = B, U B2. Furthermore, define, for 1  k  n+1,

and for n+2  k define Rk - Rk .

Let now U =  B, R; &#x3E;1iw, 15  Bj.. R 1, 2. We have B1 F6, B2 C and

w = B1 n t42. It can be verified and B2, are models of U U {y n+1}.
11. There does not exist a set S of sentences such that S1 - S and each a E S has i. p.

PROOF. Assume by way of contradiction that such a set S does exist. We have ~2 and hence

there are a1 ... , ~ m E S such that for a = a1 A... A 6m, 20132013&#x3E; Y2 - On the other hand, S., ,

1 ~ I s m, so that 

It can be shown that U U { ’yn } p y for 1  k:5 nw but not U U for n  k ; the
last statement is proved by constructing an appropriate model. 

"

Thus it is impossible that U ~ (J, for then we would have U f -- ~2 . Let n+1 be the smallest

integer such that and not U U since L o’ --~ ’V we must have 2  n+l.

Let W be an arbitrary model of U U By Lemma 10 there exist models ~, C 

and B2 C B of U U {yn+1} such We cr, j = 1, 2 and since to-

gether with ai E S, 1 _ i _ m, also a has i. p. , we conclude U= o. Thus every model of U U { 
is a model of cr and hence a contradiction. 
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CHAPTER III

GENERATED MODELS AND THEIR AUTOMORPHISMES

9 - MODELS AND GENERATORS.

In this chapter we shall apply the characterization given in Theorem 8 to the study of models
of a set S with i. p, which are generated by a set of elements. In particular, we consider auto-
morphisms of such models and prove a result which is a generalization of a basic fact of Galois
theory for fields, namely that every element of a model 9f generated by a set X has just a finite
number of conjugates under the group of automorphisms of W over X. We shall also obtain infor-
mation on the structure of models generated by a set of elements.

DEFINITION 6. Let S be a set of sentences, 91 be a model of S, and X C a subset of the do-
main of W.. We shall say that ~enerated by X if the only submodel 0 C W such that V is a mo-
del of S and X C is It itself. If W is generated by X C D(W) then we shall also say that N is
a minimal model containing X.

If S is an arbitrary (consistent) set of sentences then a subset X _C D( ).. where !8 is a mo-

del of S, need not generate a submodel 91 of S.

For sets S with i. p. , however, we have the following.
LEMMA 12. Let S be a set of sentences with i. p. If 91 is a model of S and X C D(U) is a subset of the

domain of W then there exist a unique submodel 91 (X) C it which is a model of S generated by X.

U(X) clearly is the intersection of all models U1 of S which satisfy X C The
above observation is taken from Robinson’s [ 5 ].

10 - CLOSURES WITH RESPECT TO RELATIONS AND THEIR AUTOMORPHISMS.

The following concepts and results are motivated by viewing a n-ary relation as a many-valued
function of the first n-1 variables.

If R C 9 is an n-ary relation on a set A then a subset B CA is said to be closed with respect
to R if b1,..... bn-l E B and (b,., ... , bn) E R imply that bn E B. In particular, if n = 1

(i. e. R is a subset of A) then closure of B with respect to R means R C B.

If Q is a set of relations (of arbitrary orders) on A then a subset B C A is said to be

closed uri th respect to S~ if B is closed with respect to every relation R E S~ .

The el osure C(X) of a subset X C A with respect to a set Q of relations is the intersection of

all sets B C A which contain X and are closed with respect to Q.

The closure C(X) is clearly the smallest set B such that X C B C A and B is closed with

respect to Q.

A 1-1 mapping cp of A onto A is called an automorphism of (A, 5~,~ if for all relations R E Q

~c~ (al ), ... , ~ (an )~ E R if and only if ~a 1, ... , a"~ E R. 
’

An automorphism of ~A, S~~ is called an automorphism over X if for ~ E X, (p(~) = ~.

Two elements a, b E A are called conjugate over X if there exists an automorphism cp of (A, Q)
over X such that cp (a) - b.

It can be. verified that automorphisms of (A, S~ ~ over X form a group (under composition of
mappings) and, consequently, the relation of conjugacy over X is an equivalence relation.

A relation R C A" is finite-valued if for every a 1" ... , an-1 there exists just a finite (possibly
zero) number of elements an E A such that  al, ... , E R.

tEgoR3Y 13. Let Q be a set of finite-valued relations over A, X a subset of A and C(X) the closure
of X with respect to Q. Every element of C(X) has just a finite number of conjugates over X.

PROOF. Let Q!C(x) = { R ~C (X) ~ R E Q}, we have to show that every ~ E C(X) is carried in-

to just a finite number of elements by automorphisms of (C (X), C(X)) over X.
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Let B C C(X) be the set of all elements ~ E C(X) with this finiteness property. By definition,
X C B ~ C(X). We contend that B is closed with respect to Q, from this it would follow at once
that B = C(X).

To prove that B is closed, let R E Q be a relation of rank n ; a, E B,... an-1 E B, and

(a , ... , a~-1, ~ E R. From the fact that C(X) is closed with respect to R it follows that C E C(X).
Since each a, , 1 _ i _ n-1 has just a finite number of conjugates over X, there exist automorphisms
cP 1 , .. , ~p of  C (X), 9 1 C (X) &#x3E; over X such that for any automorphism cp over X for some 1 _ i ~ m ..

tcp (a~ ), .. · , c~ (a"-i ) ~ ’ · It follows now from (a1"..." an-l’ C) E R and the
fact that cp is an automorphism of ~C (X), 9 1 C (X)) that (cp (al)"..." cpl (~)&#x3E; E R for the
above i. Since R is finite-valued there exist for each 1  i l m just a finite number of elements
b E A such that (cp, 1 (a1)’ ..... cpi E R, hence there is just a finite number of possible va-
lues The element therefore, belongs to B.

Thus B = C(X). Our definition of B implies now that every element of C(X) has just a finite
number of conjugates over X.

Every automorphism T of (A, Q) over X induces an automorphism TIC(X) of (C(X), 
In general, however, it may happen that the latter system has some automorphisms over X which
are not restrictions of automorphisms of (A, S~ ~ . Note that Theorem 13 was proved for this, pos -
sibly larger, group of automorphisms.

11 - STRUCTURE OF MINIMAL MODELS.

We wish to represent the submodel W(X)C fll generated by a set X C D(X) as a closure of
X with respect to certain finite-valued relations.

Let S have the i. p. We may assume, by Theorem 8, that S has the form given in that theorem.

Define for each i E S which is in form AE, r = /~ _x~ B(_x~, .. y ).. and for every pair
p, k of positive integers a formula Rr,p,k (~.£... y) containing p+1 free variables

(cf. Definition 5). In words, R,,p,k (xp,y) asserts that y is an element of every sequence of suc-

cessors of length p+mk of x p by T. 
1..L.

Let W be a fixed model of S. We shall denote by the p+l-ary relation on defined

by :

LXXXA 14. Iet N be a model of S and i E S be as above. Every relation R "’,p, k is finite-valued.
PROOF. Let ~ 1" ..... ~p be elements of D(W) and let 1’) 1" ... ,1’) +lIIk be some fixed sequence of succes-
sors It follows from the definition of that if ~~1 , ... , ~ P, t~~ E Rr,p,k then

1’) E {1’)1"":... 1’) The relation RT, P, k is thus f inite -valued. 
’

THEOREM 15. Let W = A, R &#x3E; be a model of S, where S has i. p. and is in the form of Theorem 8.
The domain of the submodel K (X) generated by a subset X C D(K) coincides with the closure C(X)
of X with respect of the set S~ of relations 

-

PROOF. We shall first show that D(W(X)) is closed with respect to the relations in S~ and infer that

C(X) 9 

Let i = n x ~~ ) E S. W(X) is a model of S, r. It follows from
Lemma 5 that for every ~1,..., ~P E D(W(X))there exist E D(%(:K)) such that

Assume that for these ~1,.., ~p E r) any element such that ( &#x26;.,, r) E 
The element r1 belongs to every sequence of lenth p+mk of successors of 1.. hence 
Thus D(~(X)) is closed with respect to every RT,p,k E S~ which proves the assertion.
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Next we shall prove that 6 = (C(X), is a model of S and infer that D(W(X)) G C(X) .
Combined with the previous result this will entail D(W)(X» = C(X).

Being a substructure of * the structure 6 satisfies every universal sentence which is an ele-
ment of S. Let o=A A(x~, li.) E S be an arbitrary sentence of S which is in form AE.
The set S contains a sentence T = IB!.!). B(!.!!... ~~) such that for some k also E S (cf. (8)
and Thorem 8). We have to show that D p: (J. Let E1,...,Ep E C(x). Since C(X) is closed with

respect to RI, k it contains all the elements Ti1,....." r which are common to all sequences of length
p+mk of successors of by T. The sentence k asserts that among the elements common to all

sequences of length p+mk of successors of 1f by T there exists a sequence TJ f1 ... 1 ~ r ,
such that A(~ p .. fj ) holds iii it (hence also a and hence, a being arbi-

trary, « P S which completes our proof.

12 - AUTOMORPHISMS OF MODELS GENERATED BY A SET OF ELEMENTS.

16. If the model It = (A, R ~ of the set S with i. p. is generated by a subset X C A then
every element t E A has just a finite number of conjugates under automorphisms of N over X.

PROOF. We again assume that S the form given in Theorem 8, and that R"’,P,k’ Q (11), and C(X) re-
tain their meaning from Theorem 15. 

’ ’

Since N is generated by X we have %= K (X)-the submodel generated by X. By Theorem
15, C(X)-the closure of X with respect to Q.

The finite-valued (Lemma 14) relations R,,,,, are elementartly deftned from R by (10) .
Thus an automorphism of W is also an automorphism with respect to every R.,.,p,kE S~ . The auto-

morphisms of ~ over X are, therefore, also automorphisms of (C(X), Q) (i. e. ~A, Q) ) over X.
But by Theorem 13 (with A = C(X)) every elements E C(X) has just a finite number of conjugates
by automorphisms of ~C (X), S~ ~ over X. Thus every ~ E A certainly has just a finite number of
conjugates by automorphisms of 3t over X.

The conclusion of Theorem 16 applies also to a submodel of a model W of S, ge-
nerated by a subset X C D(W). This is trivial because the model ~(X) (considered by itself) is now
the model generated by X and Theorem 16 applies.

Let K be the class of algebraically closed fields. K has the i. p. and is an elementary
class (in the wider sense). Thus our results apply to K. In particular if F is algebraically closed
and X C F is a subset of F, then there exist a minimal algebraically closed subfield F(X) ~ F
containing X, and every element of F(X) has just a finite number of conjugates by automorphisms
of F (X) over X.

This result can, of course, be obtained also by methods of algebra. It seems interesting,
however, that the result concerning finiteness of number of conjugates is a consequence of just the
intersection property.

13 - CONCLUDING REMARKS.

C. C. Chang proposed in [ 2 ] ] the following characterization of (single) sentences with i. p. A
sentence (J1 has i, p. if and only if °1 is logically equivalent to a sentence

(v: is an abbreviation for : there exists exactly one). Every sentence a of this form clearly has i. p .
There exist, however, sentences a1 with i. p, which are not equivalent to any sentence Q of form (13).

We observe that if W is a model of a generated by a set X C D(~) then there is just one
automorphism of over X (this can be proved by the methods of Section 10).

Let a be the axioms for a field and i the sentence 1B = x ], let r. Thus

every model of ol is a field every element of which has a square root. The class K of all such
fields has i. p.

Let F be the subfield of the field of complex numbers obtained from the rationals by closing
the field of rationals with respect to adjunction of square-roots. Clearly F is a model of a1 and in
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fact a minimal model (i. e. no proper subfield of F is a model of If al were logically equi-
valent to a sentence (13) then F would have no non-trivial automorphism. But the complex conjugation
mapping sending a + ib into a - ib (where i 2 = -1) induces an automorphism of F. Thus 01 is not

equivalent to any sentence of form (13), which disproves Chang’s conjecture.
It can be easily verified that if A(xp, y) is a quantifier-free formula then the sentence a as-

serting that for every x 1, ... J X p there exist exactl y k different elements yl, ... , yk such that

Y 1 ).. I _ i  k, has i. p. This raises the question whether one can give a syntactical charac-
terization of sentences (or sets of sentences) with i. p. by using sentences of a form similar to
that of Qk .

A result along these lines was announced in [4] . A derivation of this result (and some impro-
ved versions) from the characterization given here will be presented in a subsequent paper.
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