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Abstract

Let K be a local field, let NI be a regular compact in K with diameter 1 and let
C(M ~ K) be the Banach space of continuous functions from M to K. Our aim is

to find orthonormal bases for C(M --~ K) by taking powers, products and infinite linear
combinations of functions in C(M 2014~ K). To construct the orthonormal bases, we use very
well distributed sequences in M.

1. Introduction

In this paper we construct orthonormal bases for non-Archimedean Banach spaces of con-

tinuous functions. The method used here generalises the results from reference [9]. For the
convenience of the reader, we start by recalling some definitions and some previous results.
All these results can be found in [I], chapter 1, sections 1 and 2, and chapter 2, sections 5
and 6. For additional information we refer the reader to [1]. We remark that the notations
used in this section are sometimes different from the notations used in [1]. The notations
used in this section can also be found in [3j. Throughout this paper, IN denotes the set of
natural numbers, and IN0 is the set of natural numbers without zero.

Definition 1.1 A countable projective system of finite sets consists of

1) a sequence (NIn) of finite sets

2) mappings of Mn in Mk defined for k  n and such that for k  n  m we have

03C6k,m = 03C6k,n o 03C6n,m

and pn,n is the identity mapping on AIn .

We denote by M = lim Mk the projective limit of this system. M is compact and ul-

trametric, since it is the projective limit of the sequence of sets Mn equipped with the
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discrete topology. M = {(xi) ~ 03A0 i~IN Mi|i _ j E N : xi = On M x M we

define the function v(x, y) as follows : v(x, y) = sup{i E IN|xk = yk k  i} if x ~ y;
v(x, x) = +~. v satisfies the ultrametric inequality v(x, z) > inf{v(x, y), v(y, z)} and this
for all x, y, z E The function d(x, y) = 03B1v(x,y) (a E (0, 1), 03B1 fixed) is an ultrametric on
M, which induces the projective limit topology.

Definition 1.2

A countable projective system of finite sets (Mi, 03C6i,j)i~j~IN is called a regular projective
system if it satisfies

1) #M0 = 1,
2) for all i  j E IN : 03C6i,j is surjective,
3) there exist ql, q2, ... E N 1 {o,1} such that for all n E No, for all 03C9 E Mn-1 :

7‘r’~~Pn ~ 1,~,C~~~ = qn.

In this case we put No = #M0 = l, , Nn = #Mn = q1q2 ... qn.

From 3), definition 1.2, it immediately follows that, for M = lim Mk,
-

Each closed ball in M with radius 03B1n is the finite disjoint union of qn+1 closed

balls with radius c~’~+ 1, ( * )

Let us now look at something more general.

Let NI be a set with an integer valved function v defined on M x M which satisfies for all
x, y, z E ~l

v(x, y) = v(y, x)

z) ~ in f{v(x, y), v(y, z)}.

We say that M is valued by v. The function d(x, y) = 03B1v(x,y) (a E (o,1), a fixed) is an
ultrametric on M. If M is compact, then each closed ball with radius an is a finite disjoint
union of balls with radius 03B1n+1. M is then called a valued compact.

Let M be a valued compact such that the closed balls satisfy (*). Let Bb(r) denote the
’closed’ ball with center band radius r. We introduce

- the equivalence redation 03C0k on M, defined for k > 0 by

x03C0ky ~ B2:(ak) _ By(03B1k)
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- the quotient Mk of by 03C0k, and the canonical projection prk of M on Mk,

- the mapping 03C6k,n of Mn on Mk defined for k  n by

= for W ~ Mn

and pn,n is the identity mapping on Mn.

The system (Mi, 03C6i,j)i~j~IN is then a regular projective system, and its projective limit is
isomorphic to M. If the closed balls of a valued compact M satisfy condition (*), then we
call M a regular valued compact. Let us consider the following examples :

Example 1.1 Let A1, ... , An, ... be non-empty finite sets and let qn > 2 be the the cardi-
nality of An. . The products Mn = A1 x ... x An, (M0 consisting of one element), equipped
with the canonical projections from Mn on Mk defined by (x1, ..., xn) ~ (x1, ..., xk), k ~

n, a;t E Ai, form a regular projective system.
Conversely, every regular projective system is isomorphic to such a system.

Example 1.2 Let p be a prime number. ZZp = lim is a regular valued compact,
with qn = p, Nn = pn .

Example 1.3 Let p be an odd prime number. The unit circle {x E ZZp~x| = 1}, where
~ . ~ denotes the p-adic valuation, is also a regular valued compact, with ql = p 2014 1, qn = p
if n > 2. To see this put in example 1.1 ~4i = {1, 2, ... ,p 2014 1}, An = {0, l, ... , p --1~ if
n>2.

Now we give the definition of very well distributed sequences. Therefore, let A be a finite
set, ~4 = N, and l~l = lim AIk a regular valued compact.

Definition 1.3

A sequence u : : IN ~ A is well distributed if for all n E IN0, for all a E A : #{i  nN|ui =
a~ = n.
A sequence u : : I1~I --~ A~f is called very well distributed if for all n E :IN : ~p~ o u : IN --~ ~Tn
is well distributed, where 03C6n : NI ~ Mn is the canonical projection.

A very well distributed sequence u in NI is always injective, and lays dense in Vl.

Example 1.4 If p is a prime number, then ZZp = lim ZZ/pn ZZ is a regular valued compact

(example 1.2). The sequence (ui), ui = i for all i, is a very well distributed sequence in

zp.

For more details concerning regular valued compacts and very well distributed sequences,
we refer the reader to [1].

Let K be a local field (i.e. a locally compact, non-trivially, non-Archimedian valued field)
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with valuation |.| and logarithmic valuation v and let k be the finite residue class field of
K. We have |x| = where a = |03C0|, |03C0| the generator of the value group of K. K is
an ultrametric space by putting y) = v(x - y), d(x, y) = . The closed unit ball
of K is a regular valued compact.

Definition 1.4

A compact part M of the closed unit ball satisfying (*) is called a regular compact of K.

--~ K) denotes the non-Archimedean Banach space of continuous functions from M
to I~, equipped with the supremum norm ] ] . ~oo : : f ( f ~ ~~ = ! x EM}. An
orthonormal basis for C(M ~ K) is defined as follows :

Definition 1.5

A sequence eo, el, e2,... of elements of C(M --~ K) is called an orthonormal basis for
+00

K) if every element f of C(M -3 K) has a unique representation f = 03A3xiei
. a=0

where xi E K and |xi ( -a 0 if i ~ ~, and = 

The aim of this paper is to construct orthonormal bases for C(M --~ K), by taking powers,
products and infinite linear combinations of functions in C(M -~ K). To construct the
orthonormal bases, we use very well distributed sequences in M. In section 2 we prove
some preliminary lemmas, and in section 3 we prove the main theorem of this paper. We
also give some examples and in particular we obtain some well-known orthonormal bases.

2. Preliminary Lemmas

Let K be a local field with valuation [.[ and finite residue class field k and let M be a
regular compact in K. We will assume that the diameter of M equals 1. We put a = |03C0|,
~r the generator of the value group of K. Throughout sections 2 and 3, (un) denotes an
arbitrary but fixed very well distributed sequence in First we introduce some functions
on M which are going to play an important role in this paper.

We define sequences (qn) and (~n) on VI as follows :
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The functions qn and ~n are clearly continuous. The functions qn where introduced by
Amice (see [I], sections 2.4 and 6). The sequence (qn) forms an orthonormal basis for

K) ((l~, section 6.2). It is clear that = 1 for all n. Since (qn) forms an
orthonormal basis we have that |qn~~ =1 for all n. It is easy to see that for all n

qn(un) = 03C6n(un) = 1,

= = 0 if j  n.

We only have to prove n. To see this, suppose that n  Ni+1. Then

~~ is the characteristic function of the ball Bun (Tn) where rn = There are dis-

joint balls with radius namely the balls with centers uo , ui , .. , ... , un, ..., 

So un| > and we conclude that = 0 if j  n.

For the functions qn and ~~ we can prove the following (see [9], lemmas 1 and 2)

Lemma 2.1

1) If x, y E M, |x - y| ~ at then qn(y)|  a if 0  n  Nt.

2) If x, y E y~  at then ~n(x) = ~n(y) if 0  n  Nt.

Proof

1) This can be found in [1] (p. 135, lemma 4).
2) Let x,y E M such that |x - y|  at and let 0  n  Nt. Then y|  at  rn. So
the elements x and y either belong both to Bun(rn) and then 03C6n(x) = 03C6n(y) =1, or none
of them is in Bun (rn) and then 03C6n(x) = 03C6n(y) = 0. ©

Let (03C8i) be a sequence of functions where 03C8i can be equal to the function qi or to the func-
tion 03C6i (this can be different for every index i). For instance, (q0, 03C61, q2, 03C63, ... , 03C62i+1, ...)
and q1, 03C62, ..., q3i, q3i+1, 03C63i+2, ...) are sequences of this type. We then have, for all n,

~03C8n~~ = 1, 03C8n(un) = 1, 03C8n(uk) = 0 if k  n.

Let us consider functions of the following form :

oc

ai ~ K for all i, |ai| ~ 0 i f i ~ ~.
i=0

It is clear that these functions are continuous since ai03C8i tends to zero uniformly.
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For functions of this type we can prove the following lemmas :

Lemma 2.2

Let no be a natural number and let f be the function

cx~

f = a~ E K for all i; -> 0 if i ~ oo,
~=o

where the coefficients ai satisfy

|an0| = 1 and |ak|  1 for 

Then we have that | = 1 and |  1 if 0  k  n0. Furthermore, ~f~~ = 1.

Proof

We clearly have |ai03C8i(un0)|  1 if i ~ no, |an003C8n0(un0)| = 1 and so we have 
= max{|ai03C8i(un0)|} = 1. In an analogous way we have, for k  no, |ai03C8i(uk)|  1 if

i~0

i ~ n0, |an003C8n0(uk)| = 0 and so |f(uk)| ~ max{|ai03C8i(uk)|}  1. Since ~03C8i~~ = 1 for all i

it now immediately follows that ~f~~ = 1. []

Lemma 2.3

Let the function f be as defined in lemma 2.2.

Let x, y E M such that  at. . Assume 0  no  lVt. . Then for every j E IN, we have

~ ~ a.

Proof

For j=1 we have |f(x) - f(y)| ~ maxi~0{|ai~03C8i(x) - 03C8i(y)|} ~ 03B1 by lemma 2.1 and the
fact that |ai|  03B1 for i ~ n0. The case j = 0 is trivial and for j > 1 we find

j-1

|f(x)j - f(y)j| = |f(x) - f(y)|.| 03A3f(x)s f(y)j-1-s| ~ 03B1.

s=o

a

In lemmas 2.4 and 2.5, we introduce a function g which is an infinite linear combination
of powers of functions of the previous type.



93

Lemma 2.4

Let ( fn ) be a sequence of continuous functions, where for every n, f ~ is of the f orm

oc

fn = 03A3 an,i03C8i, an,i ~ K, |an,i | ~ 0 if i ~ ~,
i=0

with J =1 and J  1 if i ~ n.

Let no be a natural number and let g be a continuous function of the form

oc

, CiEK, 2 f 
t==0

with |cn0| = 1, |ci|  1 if i ~ n0 and mi ~ IN0 for all i.

Then = 1,  1 if 0  j  no. Furthermore, ~g~~ = l.

Proof

We remark that g is continuous. From lemma 2.2 it follows that, for all n, |fn(un) | =
1, 1 and since |ci| J  a for i ~ no we have, for i ~ no; , 
|cn0fn0(un0)mn0 | = I SO |g(un0)| = max{|cifi(un0)mi|} = l.
Further, if j  n0, |g(uj)| ~ max{|cifi(uj)mi|}  1 since |ci | ~ a for i ~ n0 and ( 
1 (lemma 2.2). It now follows immediately that ~g~~ = 1, since = 1 for all j. a

Lemma 2.5

Let the function g be as defined in lemma ~.1.

Let x, y E NI such that |x - y| ~ 03B1t. Assume 0  no  Nt. . Then for every j G N, we have

|g(x)j - g(y)j | ~ 03B1.

Proof

Since |ci| ~ a for i ~ no, we have ~ maxi>0{|ci~fi(x)mi - fi(y)mi|} ~ 03B1 by
lemma 2.3. If j > 1 then

j-i

= a

S=o

since ~g~~ = 1 (lemma 2.4). So |g(x)j - g(y)j|  a for all j E IN (the case j = 0 is trivial).
a
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3. Orthonormal bases for C(M ~ K)

We are going to use the lemmas in section 2 to construct orthonormal bases for C(M ~ K)
with the aid of the following result. Let 1~ be the finite residue class field of K.

If f is an element of C(M -~ K) with ( ~ f ~ ~~  1, let f denote the canonical projection of
f on C(M - k). Then we have the following (~fi], lemme 1)

A sequence (ei) of elements of C(M ~ K) forms an orthonormal basis for C(M - K) if
and only if

1)  I for all i

2) (’ez) forms an algebraic basis for the k-vectorspace k).

This allows us to prove the main result of this paper. Let and (~2,i) be sequences
of functions where (L =1 or 2) is equal to the function qi or to the function ~i.

Remark that this can be different for every index i, just as in section 2. As an example
of such a sequence we have (03C60, 03C61 , q2, 03C63 , 03C64, q5, ..., 03C63i, 03C63i+1, q3i+2, ...)

Theorem

Let ( f l,~ ), ( f 2,n ), (91,n ) and (g2,n) be sequences of continuous functions of the following
f orm :

for t =1 or 1 = 2, for every n > 0, is of the f orm

cn

fl,n = 03A3 al,n,i03C8l,i, > al,n,i ~ K, |al,n,i| ~ 0 if i ~ ~,
i=0

with =1 and  1 2 f 2 ~ n,

and for l =1 or 1 = 2, for every n > 0, gl,n is of the f orm

cn

gl,n - 03A3cl,n,i(fl,i)ml,n,i , cl,n,i ~ K, |cl,n,i | ~ 0 if i ~ ~,
i=0

with
|cl,n,n| = 1, |cl,n,i |  1 if i ~ n,

and
ml,n,i ~ IN0 for all i.

If (kn) is a sequence in IN and if ( jn) is a sequence in No, then the sequence ((g~,n)~n 
forms an orthonormal basis for C(M ~ K) .
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Proof

The functions f2,n, g1,n and g2,n are clearly continuous. We remark that, by lemma
2.4, |g1,n(un)| = |g2,n(un)| = 1, |g1,n(ui) |  1 and |g2,n(ui)|  1 for all n in IN and for

all i, z  n, and (92,n)~n ~~~ =1. By the remark above, it suffices to prove that
forms an algebraic basis for C(M - k). Let Ct be the subspace of

C(M --~ k) of the functions constant on closed balls with radius at. Since C(M --~ k) =

~t>0Ct it suffices to prove that  Nt) forms a basis for Ct. . M is the
union of Nt disjoint balls with centers ~n, 0  n  Nt, radius at. Let X2 denote the

characteristic function of the ball with center ~ci.

For x, y E M satisfying at, for 0  n  Nt we have

|g1,n(x)kng2,n(x)jn - g1,n(y)kn g2,n(y)jn| ~ 03B1.

This can be seen as follows :

(
 

 - 92,n(y)’" It  a by lemma
2.5.

It now follows that

Nt-1

(91,n(~))~n(g2,n(x))~" " ~ 
2=~

Nt-1
- £ 

i=n

since [  1 if i  n (lemma 2.4) and hence the transition matrix

from (~n|n  Nt) to  Nt) is triangular. Since =

1 (lemma 2.4), n  Nt) forms a basis for Ct. a

In the next corollary is, as before, a sequence of functions where y~i is equal to the
function qi or to the function ~2 (this can be different for every index i).

Corollary

Let ( f n ) and (gn) be sequences of functions defined as follows: fOT all v,

m

fn = 03A3an,i03C8i, an,i ~ K, |an,i| ~ 0 if i ~ ~,
i=0
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with |an,n| =1 and |an,i |  1 if i ~ n.

cn

gn = 03A3 cn,i(fi)mn,e , cn,i ~ K, |cn,i| ~ 0 if i ~ ~,
i=0

with |cn,n| =1, |cn,i|  1 if i ~ n and mn,i ~ IN0 for all i.

If (jn) is a sequence in No, then

1) the sequence forms an orthonormal basis f or C(M ~ K),

2) the sequence forms an orthonormal basis for -~ K) . 
,

In particular, the sequences (gn) and (fn) form orthonormal bases for C(M ~ K).

Proof

1) Apply the theorem above with kn = 0 for all n.
2) Put in I ) for all n = cn,n =1 and cn,i = 0 if i ~ n.
If we put jn = 1 for all n, it follows that and ( f n) form orthonormal bases for
C(M - K). o

Remark 3.1 If we look at the proof of the theorem and at the proofs of the lemmas in
section 2, it is not difficult to extend the theorem and to find more orthonormal bases for

C(M --~ K). However, the notations get more and more complicated.

Remark 3.2 If we put in the theorem a2,o,o = 1, a2,o,i = 0 for i ~ 0, then f2,0 = 1 so
for = 0, n = 0, 1, ... the theorem also holds. If we then put c2,0,0 = 1, = 0

for i ~ 0, then g2,0 =1 and so the theorem holds for jo = 0. In analogous way we see that
the corollary is also valid for mn,o = 0, n = 0, l, ... and jo = 0.

Let us now look at some examples. Examples 3.1, 3.2 and 3.3 can also be found with the
results of (9~ .

Example 3.1 The sequence ((pn)?n) (jn E No) forms an orthonormal basis for -~ K),
n

where for all n, pn is a function defined as follows : pn = 03A3 an,i03C6i, with = 1 and
~i=0

n

|an,i |  1 if 0  i  n, an E K. To see this, apply the corollary above for f n = 03A3 an,i03C8i~ ~ 

~=o

with 03C8i = 03C6i. In particular, the sequence (03C6n) forms an orthonormal basis.

n

Example 3.2 Let for all n, p,~ be a polynomial of degree n defined as follows : pn = ~ an.iqi
i=0
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with |an,n| = 1 and with  1 if 0  i  n (an,i E K). If we apply the corollary
n

above for fn = 03A3 an,i03C8i with 03C8i = qi for all i, then the sequence ( jn ~ No)
i=0

forms an orthonormal basis for K). In particular, the sequence forms

an orthonormal basis. If we put jn = 1 for all n then the sequence (qn) also forms an
orthonormal basis. (qn) is known as Amice’s basis (see also [1], p. 143, theorem 1).

Example 3.3 Put K = the field of the p-adic numbers and NI = 2Zp, the ring of
the p-adic integers, and let ( ~ ~ [ be the p-adic valuation on From examples 1.2 and
1.4 we know that ?L~ is a regular compact and that (un ), Un = n for all n , is a very well
distibuted sequence in ZZp.

From example 3.1 it follows that the sequence (~n ) defined on l~~ by

=1 for all x in 1Vl

= 1 if and only if x E B~n (rn) (n > 1), where r~, = if p~  n  pi+1

forms an orthonormal basis for Then, (~~) is known as van der Put’s basis
([4] , example 7.2). 

’

Define the sequence of polynomials ((xk)) by (x0) = 1, (xk) = x(x-1)...(x-k+1) k!
if k ~ 1. From example 3.2 it follows that the sequences ((xk )) ( Mahler’s basis, [5]),

and ((xk) s) (Caenepeel, [2] ) form orthonormal bases for C(ZZp ~ Qp) (s ~ IN0).

Example 3.4 Put K = Qp, M = ZZp and let ) . be the p-adic valuation on Qp. Vq is the
closure of the set {aqn|n = 0,1, 2, ...} where a and q are two units of q not a root of

unity.

Let m be the smallest integer such that qm ~ 1 (mod p) (1  m ~ p -1 ). There exists a
ko such that 1 (mod qm ~ 1 (mod If (p, ko) = (2,1), i.e. q = 3 (mod 4),
then there exists a natural number N such that q = 1 + 2 + 22~, e = eo + ~12 + ~222 ~ ...,
~a == c’i ==...== = 1, c~~v = 0. Then we have ([7], lemmas 4 and 5)

1) Let qm = 1 (mod (mod with (p, k0) ~ (2.1).
Then Vq = ~0rm-1 tx E ZZp~x - aqr| ~ p-k0}.

2) Let q z 3 (mod 4), q = 1 + 2 + 22~, E = ~o + E12 + ~222 +...,
~o=~~=...=~N_~=l,~lv=0.
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Then Vq = (z e %2 ) [z - 2-(N+3)} U(z G %2 ) [z - aq)  2-(N+3)}.

The method used in this paper can be applied to construct orthonormal bases for the
Banach space C(I§ - of continuous functions from Vq to A theorem concerning
this item can be found in [8] .

Example 3.5 Put K = Qp, PI = ZZp and let |.| be the p-adic valuation on With the

theorem and the corollary above it is not so difficult to find orthonormal bases for C(%p -

Qp). Let (xn) denote Nahler’s basis (example 3.3). Put fn = 03A3pi(xi+n) = 03A3pk-n(xk).i=0 k=n

Then the sequences (fn), ((fn)n) and (f0, f1 , (f2)2, ..., (fn)n, ...) form orthonormal bases

for C(ZZp ~ Qp). Put gn = 03A3pi(xi+n)

n 

= 03A3pk-n(xk) n. Then (gn), ((gn)n) and

(g0, g1, (g2)2, ... , (gn)n, ... ) are orthonormal bases for C(%p - Qp). Let (03C6n) be van der

Put’s basis for C(%p - (example 3.3). Put fn = $n + £ then (fn) and
i~0, i~n

((fn)2n) are orthonormal bases for C(ZZp - Qp).

Another orthonormal basis for C(%p - Qp) forms the sequence ( fn) , where fn = $n +

£ With W~ (z ) = 4~ (z) , = ( ~j % ~ ) for all n , I e IN.I>0

I#n
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