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DECOMPOSITION OF p-ADIC MEROMORPHIC FUNCTIONS

J.P. Bézivin and A. Boutabaa

Ann. Math. Blaise Pascal, Vol. 2, N° 1, 1995, pp.51- 60

Abstract. Given a meromorphic function, we are interested in how many ways it can be
expressed as a composite of other meromorphic functions. Is this always possible? And,
when it is the case, what about unicity of such an expression? Etc...

In the case of polynomials, the discussion is relatively easy and has been studied in
details by Ritt [13]. As soon as one passes to rational functions the problem becomes much
more difficult .

Various aspects of the problem concerning the complex meromorphic functions have
been studied by many authors [3], [7], [8], [9], [10], [11], [12] and [14].

In this work, we deal with p-adic meromorphic functions. We will see that one neither
can always use the same methods that those of the complex case nor obtain the same
results. This is due to the fact that the distribution of the singularities is not the same
in the two cases. For instance, in C one can consider entire functions whose all zeros
lie on a single straight line (real numbers for example). Then many results concerning
such functions and based upon a theorem of Edrei [6] are obtained (11J, [12]. This result of
Edrei plays an important role in the complex decomposition theory and there is no possible
p-adic version of it.

1991 Mathematics subject classification: : Primary 12H25; Secondary 46S10.

I. p-adic meromorphic functions

We note A( Cp) the ring of entire functions in Cp and M(Cp) the field of meromorphic
functions in all Cp.

Definition 1.1. Let f ; f l, ... , f n e M(Cp) such that :

f ‘f10~2~...p fn.

We say that this is a decomposition of f and that f i, ... fn are factors of f .
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Given a rationnal function R(,r) = where P x x are polynomials of p[x]

relatively prime, we call degree of R( x) the number

deg R = max(deg P; deg Q).

Definition 1.2. A function f E M(Cp) is said to be indecomposable if, in all decompo-
sition of f, all factors, except at most one, are rational functions of degree one.

Definition 1.3. A function f E M(Cp) is said to be pseudo-indecomposable if in all
decomposition, all factors, except at most one, are rational functions.

Remark 1.4. Let f be an entire function. We have naturally a notion of indecompos-
ability (resp. pseudo-indecomposability) depending on whether we regard f as an element
of A( p ) or of p ). We will see however that ( Corollary 2.4.) f is indecompos-
able (resp. pseudo-indecomposable) in if and only if it is indecomposable (resp.
pseudo-indecomposable) in JI~I{~,). This result is false in the Complex case (Remark 2.5.).

Definition 1.5. Two decompositions of h E h = f1 o ... o fn = gl o ... o gn are
said to be equivalent if there exist rational functions of degree one, L1; L2 ; ... ; Ln-1 such
that :

,fl = 91 0 Lli l f2 = L-11 o g2 0 L2; ... fn-I = L-1n-2 0 gn-1 o Ln-1 ; f n = 

We will now recall some basic definitions and results on p-adic meromorphic functions.

Let f(x) = V anxn be an entire function in ~ p. For all R > 0, we note,

n>o

I f I (R) = maxn~0 | an | Rn, the maximum modulus function of f. . This is extended to

meromorphic functions h == 2014 by h ~ (R) = .

Proposition 1.6. Let f be an entire function in ~ p. Then the function

(R ~ 8 f(log R) = log f ‘ (R)) is a convex polygonal curve. Moreover The number

of zeros of f in the closed (resp. open) disc of radius p and center 0 is given by the

right-derivative 03B8+f (log p) (resp le f t derivative 03B8-f(log 03C1)) of 8 f(u) at the point log p.
For the proof see ~1~ for example : :

Proposition 1.7. Let F, G, H be three meromorphic functions . Suppose that H is not a
rational function and that F = H o G. Then G is entire.
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Proof. We have H( x) = A(x) B(x) where A( x) and B( x) are entire functions without common

zeros. The fact that H ( x) is not rational implies that there exist at most one value 03C90 E p
such that A( x) - is a polynomial. Let w be a value different of this eventual one.
Then the entire function A(x) - 03C9B(x) is transcendental and hence has infinitely many

zeros, which we note Suppose that G(x) has a pole x0. We set G(x) = 
(.r 2014 xo)

where W(x) is an analytic function that has no zeros in an open disc ~ x - xa ( R and f.
an entire number ~ 1. For any k set Tk(x) = W(x) - ck(x - For one of these k let

us choice p ~]0, R[ such that 1 Ck | pl =| W(xo) (. Hence we have :

(W(x4)) [ if0rp
[ if p  r  R.

On the other hand, the fact that W has no zero in |x - xo |  R implies that :

~W ~(r)=~W(xo)~ [ Vr 

Hence we have :

|Tk|(r)={|W(x0)| si 0  r  03C1|ck|rl si 03C1  r  R
Therefore the function Tk(x) has at least one zero xk in the circle

I x - xo 1= p. Thus we have G(Xk) = ck ; and so F(xk) = w. consequentely, since
the xk are infinitely many, the function F(x) - w has infinitely many zeros in the disc
j x - xo ~ R, which is a contradiction. Hence G(x) has no poles and so is entire.

Remark 1.8. The above proposition justifies the fact that, subsequently, in any decom-
position of a meromorphic function f in the forme f = h o g, we suppose h meromorphic
and g entire or h rational and g meromorphic.

The following result will enable us to show the existence of indecomposable or pseudo-
indecomposable transcendent meromorphic functions .

For an entire fonction f and a positive number p, we note m(f, p) the number of zeros of
f in the open disc ~ x ~  p, M( f , p) the number of zeros of f in the closed disc I x ~  p
and A( f, p) the number of zeros of f in the circle ‘ x ~= p; each one of these zeros being
computed with its multiplicity.

Proposition 1.9. Let H and G be two entire and non constant functions. Let pa be a

positive real number such that the function | G (r) is strictly increasing for r > po. Let
us put F = H o G. Then we have for all p > pa :

i) = ( G I (03C1))m(G,03C1)
ii) M(F, p) = M(H, E G ( ( p))M(G, p)
iii) A(F, p) = A(H, I G ( + m(H, I G I (03C1))A(G,03C1)
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Proof. From F = H o G; we deduce that, for all r, we have : ( F (r) = H i (~ G ~ (r)).
Since the function G | (r) is strictly increasing for r > 03C10, we deduce that, for u > log pa,
we have :

(1) 03B8-F(u) ‘ 03B8-H(03B8G(u)).03B8-G(u), and (2) = 03B8+H(03B8G(u)).03B8+G(u).
By proposition 1.6, we have relations i) and ii). Substracting i) from ii), we obtain rela-
tion iii).

Theorem 1.10. Let F E and a a positive entire number. We suppose that
on infinitely many circles of center 0 of Cp, F has a number of zeros included between 1
and a. Then all decomposition of F of the form F = H o G with H, G E A(p) implies
that H or G is a polynomial of degree between 1 and a.

Proof. If any of the functions Hand G is a polynomial of degree between 1 and ~, we
have for p enough large : M(G, p) > ~ + 1 and m(H, ( G ( p)) > a + 1.
On the other hand, the hypothesis of the Theorem and the formula iii) of the proposi-
tion 1.9 show that for an infinity of p’s arbitrarily large, we have A(H, [ G ~ ( p)) # 0
or 0. Then for such a p we have A(F, p) > a + 1. This is a contradiction with
the hypothesis. Hence H or G is necessarily a polynomial of degree between 1 and a.

Corollary 1.11. Let F E and .1 an entire > l. We suppose that on an

infinity of circles of center 0, F has a number of zeros included between 1 and a and that
on an infinity of circles of center 0, F has a number of poles included between 1 and a.
Then any decomposition of F in the form F = H o G with H E and G E A(p)
implies that :

G is a polynomial of degree between 1 and a,
or H is a rational function of degree between 1 and .1.

Corollary 1.12. A function F satis fying the assumptions of theorem l.l 0 (resp . the ones
of corollary 1.11) is :

1. indecomposable in A(Cp) (resp. in if .1=1.
2. Pseudo-indecomposable in A(p) (resp. in M(p)) if 03BB ~ 1.

Proof. Let H( x) - 

H1(x) H2(x) where H1, H2 ~ A(p) have no common zeros. Hence :

F = H1oG H2oG. Then we apply the theorem 1.10 to each of the functions Hl o G and H2 o G.

Proposition 1.13. Let F E M( Cp) possessing the property to have in an infinity of discs
of center 0 and radius arbitrarily large a prime number of zeros and in an infinity of discs
of center 0 a prime number of poles. Then F is indecomposable in M(Cp). In particular,
if P(x) E p[x] and Q(x) E p[x] have degrees which are prime numbers, the rational

function R(x) = P(x) Q(x) is indecomposable.
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Proof. We apply the relation ii) of the proposition 1.9.

Corollary 1.14. Let F E We suppose that in an infinity of discs of center
0 and radius arbitrarily large, F has a number of zeros equal to the product of two prime
numbers (not necessarily distinct). Then, either F is indecomposable, or it is a composite
of two indecomposable factors.

Proof. We use the previous proposition.

Corollary 1.15. Let F E Cp[z] and 03BB ~ IN *. We suppose that in an infinity
of discs of center 0 and radius arbitrarily large, F has a number of zeros equal to the
product of a prime numbers (not necessarily distinct). Then F is a composite of at most
A indecomposable factors.

Proof. We proceed gradually using the corollary 1.14.

Given a meromorphic function, it is not easy to know if it is decomposable or not.
The first of the two next examples shows that a decomposable function may have non
equivalent decompositions. The second example shows that a meromorphic function can
have an infinity of prime factors.

Example 1.16. Let q be a prime number and f a positive entire relatively prime to q.
Let be a sequence of elements of ~P such that :

1 an  | an+1 | and lim | an 1= +00.
n~+~

We consider the following entire functions :

F(x) = xl  (1 - xq an); G(x) = xl 03A0(1 - x an)l;

H(x) = xql 03A0 (1- - and = xq.

n~O 
an

Let rn =1 an [ Vn > 0. In the disc of center 0 and radius Tn, each of the functions

F and G has nq + l zeros. On the other hand the theorem of Dirichlet guarantees that

among the terms of the arithmetic progression (nq + there is an infinity of prime
numbers. Hence the functions F and G verify the conditions of the proposition 1.13,
and so are indecomposable. The function cp is evidently indecomposable and we have

These two decompositions are clearly not equivalent.

Example 1.17. Let (an)n>o be a sequence of elements of *p such that :

t an (  I and lim (_ +00.
n~+~
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Let fn(x) = x(1- an ). We define the sequence (cpn(x)) by :
= x and ~pn o fn(x).

Let R > 0. We will show that the sequence of CPn( x) is of Cauchy in the space of functions
analytic in the closed disc a- j R. We have :

03C6n+1(x) = 03C6n(x - x2 an) = 03A3(-x2 an)k03C6(k)n(x) kl.
On the other hand we have : (R) ~| k! | 03C6n | (R). Let N be the first index
such that n > N implies that I an |> R. Hence we have : 03C6n ‘(R) ~|03C6n (R) a .
Consequently we have, (R) ==) (R) for all n > N. It follows that the sequence
(cpn(x)) is of Cauchy in the space of functions analytic in the closed disc x ( R. Hence
the sequence (03C6n(x)) converges to an entire function 03C6(x).
We can write for all k and n > ~ : :

= f0 p fi o ... p fn 0 Bn(x),

where 8n(x) is a function of the same type as and hence will converge to an entire
function ~(:c). Hence we will have :

~(x) = fo o 

and this relation shows that the f k( x), which are indecomposable are factors of 03C6(x).
Hence has infinitely many indecomposable factors.

II. Comparison with polynomials and complex case.

We know that P(x) being a given polynomial, we have :
(1) P(x) has at least one decomposition in indecomposable factors.
(2) The number of indecomposable factors is finite and, is the same in any decomposition

of P(x).
(3) P(x) has only a finite number of non equivalent decompositions.

Do these properties remain true for entire or meromorphic functions? Example 1.16 shows
that (2) is no longer so. In fact, even if we assume that all decomposition of f has a finite
number of factors, we can not show if this number is bounded and if it is the same in any
decomposition. This is not obvious at all because only for rational functions the following
result stated by Ritt [13] in 1922 has only been proved recently [2].

Proposition 2.1. (Ritt). There exists a rational function which has two decomposi-
tions into indecomposable functions each having a different number of factors.
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On the other hand Ritt [13] had shown that for any decomposition of a polynomial
into rational functions, there exists an equivalent decomposition into polynomials. The
following result shows that this is extended to p-adic entire functions.

Theorem 2.2. Let F A(Cp). Assume that F = G o H with G, H M(Cp). Then there
exist g, h such that F = go h. Moreover, these two decompositions are equivalent.

Proof.

1) If G ~ Cp(a*), we have seen (Remark 1.8) that then JEf must be entire. On the other

hand, we have G(a-) = B , where Gi,G2 are without common zeros
G2(~) 

. 

°

So F = G1(H) G2(H). We can assume that H is not constant. Then G2(x) has no zeros;
because if this is not the case and if zo is a zero of G2(x), there exists .ri Cp such
that = x0. From which = G1(x0) ~ 0 and G2(H(x1)) = G2(x0) = 0
and F would have a pole. Contradiction. Hence G2 has no zeros and is so equal to a

constant a different from zero. Hence G = 2014 A(Cp).

2) If then there exist relatively prime such that

= P(x) Q(x). So F = P(H) Q(H). H being non constant and meromorphic, it reaches all
values of p except at most one. This implies that Q(x) has at most one zero. If Q(x) has

no zero, we have finished. Suppose that Q(.r) has a zero a. Set = H1(x) H2(x), where

H1, H2 6 are without common zeros. Then the function -H’(.r) 2014 a = H1(x) H2(x)- a
has no zero. Hence = 03B2 ~ 0. So we have H1 = and H = LoH2,

where L = 03B1x + 03B2 x. Hence F = To H2, with T = P Q o L. We see that T must be a
polynomial; because if not, F should have a pole. We see also that H2 = L-1 o H,
where L"~ = ~~. .

Corollary 2.3. If an entire function F is indecomposable (resp pseudo-indecomposable)
in then F is indecomposable (resp pseudo-indecomposable) in M(Cp).

This result is false in Indeed, Ozawa [11] has shown that the function

F(z) = (~ - l)e~"~ is indecomposable in ~(C), but that F = fog where f = 
and g = This means that in M(Gj), the function jF is not even pseudo-decomposable.
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III. Common right factors of F and F(n).

Suppose that a p-adic meromorphic function F(z) and its derivative F’(z) have an
entire function g as their common right factor, it is easily shown from F = f o g and
F’ = h o g that g must be a polynomial of degree one. It is no longer a simple problem of
searching the possible forms of any common right factor of F and F~"~. However, we have
the following general result :

Theorem 3.1. Let F E M(Cp) ~ and g E . Suppose that there exist a
positive entire n and two meromorphic functions f and h (which are not rational functions
of degree 1~ such that :

F = f o g and = h o g . Then either f satisfies the following equation :
+ ... + + = 0, where Aa(x) E Cp[x];

or

g’" = Bo + B1g(x) + ... + Bmgm(x), where Bj E Cp and m  n.

We need the following results whose proofs are in [4] and (5J : :

Lemma 3.2. Let ho, ..., hm, Fo, ..., Fm be elements of M(C p) such that 0.

Let g E A( Cp) such that

T(r, ho) + T(r, h1) +... + T(r, hm) = 0(Log | 9 | (r)). .

We suppose that :

+ ... + F,n(9)hm(x) = 0.

Then there exist polynomials Po(x), ..., Pm(x) with P;(x) not all equal to 0 such that :

po(9)ho(x) + ... + Pm(g)hm(x) = 0.

The function T(r, .) above is the Nevanlinna caracteristic function. See [4] and [5].

Lemma 3.3. Let P(x,y,y’, ...,y(n)) be a differential polynomial in y,y’, ...,y(n) with

coefficients ai0 i1 ... in(x) E BCp[x]. Let d = ~ 0.
Suppose that there exists a transcendental meromorphic solution f( x) of the differential
equatio n :

p(x,y,y’, ...,y(n)) = R(x,y) ; where R(x,y) E BCp(x,y).
Then R(x, y) is a polynomial in y of degree  d.

For the proof see [5].

Proof of theorem 3.1. From = h o g, we have :

(i) "~’ + ... + - hog = 0;
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where Dn(g) = g’n; Dn-1(g) = n(n-1) 2g’n-2g"; ...;D1(g) = g(n). In general, D=(9) is a
homogeneous differential polynomial in g of degree i. Hence we apply lemma 3.2. with

Fo = -h, Fl = f’, ..., Fn = and ho = 1, h1 = Ds(g), hn = Dn(g). So there exist

polynomials ..., P n,l (x) which are not all equal to 0 such that :
pn,l(9)Dn(g) + ... + + = 0

Then if 0, we have :

(2) Dn(g) = +... + Rr,l9)D1 (9) + R0,1(g)
where the Rt,l(x) are rational functions. Multiplying (2) by and substructing this
from ( 1 ) gives us :
(3) [f(n-1)(g) + + ... + + R1,1(g)f(n)(g)]D1(g)+

= o

Applying lemma 3.2. once again we get :
(4) Dn-1(g) = Rn-2,2(g)Dn-2(g) + ... + R1,2(g)DICg) + R0,2(g)
If we suppose that lemma 3.2. does not break down, this finally gives :
(5) Dn(g) = (g’)n = R(g); where R(x) is a rational function. In this case, we apply
lemma 3.3 and get : (g’)" = ao + alg + ... + amgm with m  d = 2n;

But I (g’)n| I (r) =| amgm | I (r) ~ |gn|(r) rn; j which implies that m ~ n. If at some stage
lemma 3.2 is not applicable, the procedure breaks down. But this means that one of the
functions occuring in equations similar to (3) vanishes identically. Hence we have :

+... + + = 0 where Ai(x) E Cp[x].
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