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THE CONSTRUCTION OF NORMAL BASES FOR THE SPACE OF

CONTINUOUS FUNCTIONS ON Vq, WITH THE AID OF OPERATORS

Ann Verdoodt

Ann. Math. Blaise Pascal, Vol. 2, N° 1, 1995, pp.299-305

Abstract. Let a and q be two units of Zp, q not a root of unity, and let Vg be the closure
of the set {aqn | n = o,1, 2, ...}. K is a non-archimedean valued field, K contains Qp, and
K is complete for the valuation ) . ) , which extends the p-adic valuation. C(Vq --~ K) is the
Banach space of continuous functions from Vq to K equipped with the supremum norm.
Let E and Dq be the operators on C(Vq --> K) defined by = f(qx)
and (Dqf)(x) = (f(qx) - f (x))/(x(q-1 )). We will find all linear and continuous operators
that commute with S (resp. with Dq), and we use these operators to find normal bases

for --> K). If f is an element of C(Vq --. K), then there exist elements an
o

of K such that f(x) = 03A3 03B1nrn(x) where the series on the right-hand-side is uniformly
n=o

convergent. In some cases it is possible to give an expression for the coefficients .

1991 Mathematic3 subject classification : 46S10

1. Introduction

Let p be a prime, Zp the ring of the p-adic integers, Qp the field of the p-adic numbers.
K is a non-archimedean valued field, Qp, and we suppose that K is complete for the
valuation ) . ), which extends the p-adic valuation. Let a and q be two units of Zp (i.e.
|a| = == 1), q not a root of unity. Let Vq be the closure of the set = 0,1, 2, ...}.
We denote by C(Vq --~ K) (resp. C(Zp -- K) the set of all continuous functions
f : Vq --> K (resp. f Zp --~ K) equipped with the supremum norm. If f is an element of

C(Vq -~ K) then we define the operators E and Dq as follows :
(£f )(x) = f(qx)
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We remark that the operator £ does not commute with Dq. . Furthermore, the operator
Dq lowers the degree of a polynomial with one, whereas the operator E does not.

If ,C is a non-archimedean Banach space over a non-archimedean valued field L, and
ei , e2,... is a finite or infinite sequence of elements of ~C, then we say that this sequence
is orthogonal if ~~1e1 + ... + ~kek~ = max{~~iei~: 2 = 1,... ,&} for all k in N ( or for all k
that do not exceed the length of the sequence ) and for all Ei, ... , fk in L. An orthogonal
sequence el, e2, ... is called orthonormal if ~ei~ =1 for all i . A family (e=) of elements of
,C forms a(n) (ortho)normal basis of ,C if the family (e~) is orthonormal and also a basis .
We will call a sequence of polynomials (pn(x)) a polynomial sequence if pn is exactly of
degree n for all natural numbers n .

The aim here is to find normal bases for C(Vq ~ K), which consist of polynomial
sequences. Therefore we will use linear , continuous operators which commute with Dq or
with E. If is such a polynomial sequence , and if f is an element of C(Vq ~ K),

there exist coefficients an in K such that f(x) = 03A3 03B1nrn(x) where the series on the right-
n=0

hand-side is uniformly convergent. In some cases it is possible to give an expression for
the coefficients an.

We remark that all the results (with proofs ) in this paper can be found in [5] , except
for theorem 5 .

2. Notations.

Let Vq, K and C(Vq -~ K) be as in the introduction . The supremum norm on

C(Vq - ~i’) will be denoted by ) ) . ) ) . We introduce the following :
Ao(x) = 1, An(x) = (x - (n > 1),
Bn(x) = = anqn(n-1)/2(q - 1)nBn(x)

It is clear that , (Bn(x)) and are polynomial sequences. The sequence
(Cn(x)) forms a basis for C(Vq --~ K) and the sequence (Bn(x)) forms a normal basis for
C(Vq ~ K). From this it follows that ~Bn~ = 1 and Let ~ and Dq be
as in the introduction . Then we introduce the following :
Definition. Let f be a function from Vq to K. We define the following operators :

(DQ f )(x) _ 
(~nf)(x) = f(qnx)

= = = ~(E -1).~)~x)
D~n~.~(x) = ((~ " ~),.(~ ~. ~ D~~~.~(x) = f(x) 

The operator Dq does not commute with D. The following properties are easily
verified :

DjqCk(x) = Ck-j(x) i f k > j , DjqCk(x) = 0 if j > k. So Djq lowers the degree of a
polynomial with j
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D(j)Bk(x) = (x/a)jqj(j-k)Bk-j(x) if j ~ k , D(j)Bk(x) = 0 if j > k
If p(x) is a polynomial of degree n , then (Dt~) p)(x) is a polynomial of degree n if n is at
least j , and (D(j)p)(x) is the zero-polynomial if n is strictly smaller than j .
If f is an element of C(Vq --> h’), then we also have

i) = 

ii) 0 uniformly

iii) f (x) -~ 0 uniformly 
’

( i) can be found in [1] , p. 60 , ii) can be found in [3] , p. 124-125 , iii) follows from i)
and ii) ).

3. Linear Continuous Operators which Commute with £ or with Dq
Let us start this section with the following known result :

If f is an element of C(Zp --; K), then the translation operator E on C(Zp --~ K) is the
operator defined by Ef(x) = f ( x + 1) . .
If we put Gn(x) = ( n~ ( the binomial polynomials ), then L. Van Hamme ( (4~ ) proved the
following theorem :
A linear, continuous operator Q on C(Zp -~ K) commutes with the translation operator
E if and only if the sequence (gn) is bounded, where gn = QGn(O) .

Such an operator Q can be written in the following way : : Q = 03A3gi0394i , where A is the
t==0

operator defined as follows : (0394f)(x) = f(x + 1 ) - f ( x )
We can prove analogous theorems for the operators £ and Dq on C(Vq --~ :

Theorem 1 An operator Q on C(Vq - K) is continuous, , linear and commutes with £

if and only if the sequence (bn) is bounded, where bn = (QBn)(a) .

00

From the proof of the theorem it follows that Q can be written in the form Q = L biD(i).
t=EO

00

If f is an element of C(Vq - K), then (Q f )(x) = 03A3 bi(D(i) f )(x) and the series on the
!==0

right-hand-side is uniformly convergent ( since f(x) ~ 0 uniformly ) . Clearly we have
0o n

bn = (QBn)(a) , since (QBn)(a) = ( ( = bn.
i=0 i=0

Furthermore, Qxn is a K-multiple of xn .
If bo = ... = b N-1 = 0, bN ~ 0 , and if p(x) is a polynomial , then divides (Qp)(a:) . .

Some examples
1) For the operator £ we have : (~Bn)(x) = Bn(qx) , so (~B0)(a) =1, (EBl)(a) = l, and

= 0 if n > 2 . . This gives us ~ = D~°) + .
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2) The operator £ o D = £D clearly commutes with E. We have ((£D)Bo)(a) = 0 , ,
and since (n > 1) {(£D)Bn)(x) = (£ = qx a q1-nBn-1(qx) , we find
((£D)BI)(a) = q , ((£D)BZ)(a) = 1 and ((£D)Bn)(a) = o ~f n > 3 . ° t~e conclude that

ED = + D~2~ .

Analogous to theorem 1 we have :

Theorem 2 An Q on C(Vq - K) is continuous , linear and commutes with Dq
if and J the sequence (cn/(q -1)") is bounded, where cn = (QCn)(a) .

Such an operator Q can be written in the form Q = 03A3 ciDiq, and if f is an element of

C(Vq ~ K) it follows that (Qf)(x) = 03A3 ci(Diqf)(x) , where the series on the right-hand-

side converges uniformly ( since -~ 0 uniformly ) . Furthermore , we have
cn = (QCn )(a) since

o n

(QCn)(a) = (03A3 ciDiqCn)(a) = CiGn-i(a) = cn.
. i=0 t==0

Remarks

1) Let R and Q be linear , continuous pperators on C(Vq --~ ~h’) , with R of the form
00 00

R = E biD(i) (i.e. R commutes with £, bo = 0), and Q of the form Q = (i.e.Q

commutes with Dq, cn - ). The main difference between the operators Q and R is that
Q lowers the degrce of each polynomial with at least one , where R does not necessarily
lowers the degree of a polynomial.

21 If Q1 and Q2 both commute with Dq and if Q1 = 03A3 c1;iDiq,
, 

q, ’

Q2 = 03A3c2;iDip, then (Q1oQ2)(f) - (Q2oQ1)(f) = 03A3Dkqf (03A3c1;jc2;k-1).

If we take two formal power series ql(t) = ~ ’ q2(t) = ~ then
~=o i=o 

.

0o / ~ B . 

’

~ q2(~) = ~ tk so the composition of two operators which commute

with Dq, corresponds with multiplication of power series .
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This is not the case if we take two operators which commute with £ : Take e.g.
S = D(0) + D(1) and D(1), then £ ~D(1) = qD(1) + D(2), whereas for power series
this gives = 1 + t ~(~) = t and ~(~ = t + ~ . .

4. Normal bases for 2014~ K)
We use the operators of theorems 1 and 2 to make polynomials sequences (pn(x))

which form normal bases for 2014~ K). If Q is an operator as found in theorem 1 , with
bo equal to zero, we associate a ( unique ) polynomial sequence with Q. We remark

00

that the operator R = ~ does not necessarily lowers the degree of a polynomial.
=o

00

Proposition 1 Let Q = 03A3biD(i) (N > 1) with |bN| > |bn| if n > N. There exists a
=N

unique polynomial sequence (pn(x)) such that (Qpn)(x) = if n ~ N, 
0 

In the same way as in proposition 1 we have.
00

Proposition 2 Let Q = ciDiq (N ~ 1), 0 (cn/(q - 1)") bounded.
=N

Then there exists a unique polynomial sequence (pn(x)) such that = 

n ~ N , pn(aqi) = 0 if n ~ N 0  K Nand = if n  N.

We use the operators of theorems 1 and 2 to make polynomials sequences which

form normal bases for C(Vq 2014~ J~). If f is an element of C( Vq 2014~ A~), there exist coefficients
00

On such that /(.c) = ~~ where the series on the right-hand-side is uniformly
n=o

convergent. In some cases, it is also possible to give an expression for the coefficients o~. .

00

Theorem 3 Let Q = 03A3biD(i) (N ~ 1) with |bn|  |bN| = 1 if n > N
==N

1) There exists a unique polynomial sequence (pn(x)) such that = if
n ~ N, = 0 if n ~ N, 0 ~ z  Nand = if n  N. This sequence

forms a normal basis for ~ K) and the norm of Q equals one. .
2) If f is an element of ~ K), then f can be written as a uniformly convergent

00

series f(x) = /?n = if n = z + kN (0 ~ i  TV), with
n=0

~f~ = where M a linear continuous operator
with norm equal to one. .
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And analogous to theorem 3 we have
00

Theorem 4 Let Q = ~ ciDiq (N > 1) with |cN| = |cn|  |(q-1)n| if n > N.
i=N 

I) There exists a unique polynomial sequence (pn(x)) such that = pn-N(x)
if n > N , pn(aqi) = 0 if n > N, 0 _ i  N and pn(x) = Bn(x) if n  N . This 3equence
forms a normal basis for C(Vq ~ K) and the norm of Q equals one.
2) I f f is an element o f C(Vq -~ K) , there exists a unique uni f ormly convergent expansion

00

of the f orm f(x) = ~ 03B3npn(x), where yn = f )(a) if n = i + kN
n=0

(0  i  N) , with = max f )(a)I } .

0~k;0~iN

Remark. Here we have |cn|  in contrast with theorem 3, where we need |bn|  |bN|
(n > N).

An example
Let us consider the following operator Q = (q-1)Dq. . Then c1 = (q -1 ) and ck = 0 if k ~ 1. .
The polynomials pk(x) are given by pk(x) = and they form a normal basis

for C(Vq ~ K). The expansion f(x) = ~ ((q = (DQ f )(a)Ck(x) is
k~0 k=0

known as Jackson’s interpolation formula ( ~2~, ~3~ ) .

If ~~ is an operator as found in theorem 4 , with N equal to one, then we can prove a
theorem analogous to theorem 2 :

Theorem 5 Let Q be an operator such that Q = ~ ciDiq, with |c1 ( = - 1)|,
i=1 

|cn| ~ |(q - 1)n| if n > 1, , and let pn(x) be the polynomial sequence as found in theorem 4.
An operator T on C(Vq - K) is continuous , linear and commutes with Dq if and only

ilT is of the form T = ~diQi , where the sequence (dn) is bounded, where dn = (Tpn)( a).
i=o

Remark. In theorem 2 the sequence {cn~{q -1)") must be bounded, whereas here the
sequence (dn) must be bounded. This follows from the fact that the norm of the operator
Dq equals q -1 (’ 1 , whereas the norm of the operator Q equals 1 . ..

5. More Normal Bases

We want to make more normal bases, using the ones we found in theorems 3 and 4 .
For operators which commute with E we can prove the following theorem :
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Theorem 6 Let be a polynomial s equence which forms a normal basis for C(Vq - k’),

and let Q = ~biD(i) (N > 0) with 1= |bN| > |bk| if k > N. If Qpn(x) = xNrn-N(x)
i=N

(n > N), then the polynomial sequence (rk(x)) forms a normal basis for C(Vq - K) .

And analogous for operators which commute with the operator Dq we have :

T heore m 7 Let {pn(x)) be a polynomial s equence which forms a normal basis for C(Vq ~ K),
00

and let Q = ~ ciDiq (N > 0) with |cN| = I(q , l if n > N.
i~N

If = rn..N(x) (n > N), then the polynomial sequence (rk(x)) forms a normal
basis for C(Vq - K) .

We remark that analogous results can be found on the space C(Zp - K) for linear
continuous operators which commute with the translation operator E. The result analo-
gous to theorems 3 and 4 for the case N equal to one, was found by L. Van Hamme (see
(4~), and the extensive version of theorems 3 and 4, and the analogons of theorems 5, 6
and 7 can be found with proofs similar to the proofs of the theorems in this paper.
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