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THE WEIERSTRASS-STONE APPROXIMATION THEOREM
FOR p-ADIC C"-FUNCTIONS

J. Araujo and Wim H. Schlkhof

Abstract. ‘ ’
Let K be a non-Archimedean valued field. Then, on oompact subsets of K, every K-
valued C™-function can be approximated in the C™-topology by polynoxma.l functions

(Theorem 1. 4) ‘This result is extended to a Weierstrass-Stone f.ype theorem (Theorem
2.10). . -

INTRODUCTION

The non-archimedean version of the classical Weierstrass Approximation Theorem - the
case n =0 of the Abstract - is well known and named after Kaplansky ([1], 5.28). To
investigate the case n =1 first let us return to the Archimedean case and consider a
real-valued C'-function f on the unit interval.- To find a polynomial function P such
that both |f—P| and |f'—P'| are smaller or equal than a prescribed ¢ > 0 one simply
can apply the standard Weierstrass Theorem to f' obtaining a polynomial function Q
for which |f'~Q| < &. Then z — P(z) := f(0) + J; Q(t)dt solves the problem.

Now let f: X — K bea C !-function where K is a non-archimedean valued field and
XCKis compact

La.ckmg an indefinite integral the above method no longer works. There do exist conti-
nuous lmea.r antiderivations ([3] §64) but they do not map polynomials into polynomials
([3] ‘Ex. 30. C) A further complicating factor is that the natural norm for C*-functions
on X is given by

£ max{|f(s)] : o eX}Vmax{lf( DI oy ex, 40}
rather than the more classical formula ”
f > max{|f(z) : z € X} V max{|f'(z)| :z € X}. .

(Observe that in the real case both formulas lead to the same norm thanks to the Mean
Value Theorem, see (3], §§26,27 for further discussions.)
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Thus, to obtain non-archimedean C™-Weierstrass-Stone Theorems for n € {1,2,.. .} our
methods will necessarily deviate from the ’classical’ ones. .

0. PRELIMINARIES

1. Throughout K is a non-archimedean complete valued field whose valuation | |is
not trivial. For a € K, r > 0 we write B(g,r) := {z € K : |z—a| < r}, the closed’ ball
about a with radius r. 'Clopen’ is an abbreviation for ’closed and open’. The function
z + z (z € K) is denoted X. The K-valued characteristic function of a subset ¥ of
K is written £y. For a set Z, a function f : Z — K and a set W C Z we define
fllw = sup{lf(2)| : z € W} (allowing the value co). The cardinality of a set I'is #T.
No :={0,1,2,...},N:={1,2,3,...}.

We now recall some facts from 2], (3] on C™-theory. y

2. ForasetY C K, n e N we set V*Y := {(y1,¥2,---,¥n) € Y™ : ij = yi#yj}-
For f : Y = K, n € Ny we define its nth difference quotient ®af : vty o K
inductively by ®of := f and the formula

@n—lf(yx,!lz, “eey yn+1) - ‘I’u-—xf(yz, Y3ye-+1Ynt1)
1— Y2

an(yl:---:yn+l) =

f is called a C™-function if ®,f can be extended to a continuous function on Y+,
The set of all C*-functions ¥ — K is denoted C"(Y — K). The function f: Y — K

is a C*°-function if it is in C°°(Y —+ K):= n C™(Y = K). The space C°(Y — K),

consisting of all continuous functxons Y- K is sometxm% written as C(Y — K).

FROM NOW ON IN THIS PAPER X IS A NONEMPTY
COMPACT SUBSET OF K WITHOUT ISOLATED POINTS.

3. Since X has no isolated points we have for an f € C*(X — K) that the continuous
extension of &, f to X™*t! is unique; we denote this extension by ®.f. Also we write

D.f(a) :=®.f(a,a,...,a) (a€X)
The following facts are proved in [2] and [3].

Proposition 0.3.

(i) For eachn € Ng the space C(X — K) is a K-algebra under pointwise operations.
(i) C(X - K)DC(X > K)D...
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(i) If f € CY(X — K) then f is n times dzﬂ'erentwble and j!D;f = 9 for each j €
{0,1,...,n}. More generally, if i,j € {0,1,...,n}, i+j < n then (/)D:D;f =

t+1.f
Gv) Iffe C'"(X — K) then for z,y € X we have Taylor’s formula

f(z)= f(y) + (z—y)D:f () + - + (z=y)" " D1 f(¥) + (z=¥)"p1 f(2,¥),

whcre plf(z’ y) = 6uf(:l’vy, Yoo 1y)-

4. Since X is compact the difference quotients ®;f (0 < i < n) are bounded if f €
C*"(X — K). We set

"-f"n X = ma‘x{"q,if“vn'-nx :0<1 < n}.

Then ||fllo.x = Ifllx. We quote the following from [2] and [3]. Recall that a function
f: X — K is a local polynomial if for every a € X there is a neighbourhood U of a
such that f | X NU is a polynomial function. - ‘ :

Proposition 0.4. Let n € Ny.
(i) The function | ||, x is @ norm on C*(X — K) making it into ¢ K -Banach
algebra.
(ii) The local polynomials form a dense subset of C*(X — K )
(iii) The function

f= 1A, X IIanllx Ve fllxa

(see Propo.ntzon 0 3 (1v)) also is a norm on C"‘(X — K). We have

0<<

Ifllax = max{]lDif":_i’x :0<:1< n} - (feCHX - K)).

Remarks »
1. Proposition 0.4 (ii) will also follow from Proposition 2.8.
2. In general || || ¢ is not equivalent to || ||, x for n > 3 (see (3], Example 83.2).
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1 THE WEIERSTRASS THEOREM FOR Cn-FUNCTIONS
The following brodtct rule for difference quotients is easily proved by induction with
respect to j.

Let f,g: X = K, letj € No Then for all (z,, ::,-.,.1) € Vi+t1X we have

@;(fo)(z1,-. 5 Tj41) = Z ‘I’kf(zl, $k+1)‘1’;-k9($k+1, <3 Tj1)-
k=0

Or, less precise,
Jj
&;(fo)z1seerTitr) = 3 Buf(20)®j-k9(ujmk)
k=0

for certain zx € VF+1X, u;_, € Vi~kF1X,

In the sequel we need an extension of this formula to finite products of functions. The
proof is straightforward by induction with respect to N.

Lemma 1.1. (Product Rule) Let hy,...,hn : X — K, let j € No. Then for all
(z1y--+,Zj41) € VH“‘X‘ we have

N N
([T ha)@1s---rzjmr) = Y [] 2iho(2a0)

s=1 s=1
where the sum is taken over all 0 := (j1,...,JN) € NY for which j1 +-+-+jn =]
and where z,, € V3+1X for each s € {1,...,N}. (In fact 241 = (z;, ey Tjyl )y
Zg2 = (xjx‘i'h teey zj1+j:+l)’ 12, N = (xJH' b INet L xJ‘H) )

The following key lemma grew out of 1], 5.28.

Lemma 1.2. Let0<6§<1,0<e<1,let B=ByUB; U---UBp where By,...,Bnm
are pairwise disjoint ’closed’ balls in K of radius 6. Then, for each n € {0,1,...} there
exists a polynomial function P : K — K such that ||P — €g,||n,B < &-

Proof. We may assume 0 € By. Choose ¢; € By,...,cm € Bn; we may assume that
le1] € le2| € -+ £ |eml- Then § < |c1|. We shall prove the following statement by
induction with respect to n. :

Let k € N be such that (§/]c1|)* < &6, k > n. Let t1,t5,...,tm € N be such that for
allL€{1,...,m}

kty kta

kte—1 te
1) A 4 L (_.6_) < eb”
Ci [+73 Ce-1 lcl l
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(It is easily seen that such k, ¢;,...,tm exist since 6/|c;| < 1.) Then the formula -

m

P =[la- b

=1

defines a polynomial function P : K — K for which

1P = &8olln,B < &

The case n = 0 is proved in 1], 5.28. To prove the step n — 1 — n we first observe that
from the induction hypothesis (with ¢ replaced by &6) it follows that -

(2) NP = €Bolla-r,5 < €6

So it remains to be shown that
(3 1®a(P = €8 )(Z1,- -1 Zna1)] S €

for all (z1,...,Zn4+1) € V1B, Now, if |z; — z;| > 6 for some ¢,j € {1,...,n+ 1} we
have, using (2), '

[@a(P=E€B, ) (214 s T Y| = |Zi=2T;| 7 |®ne1(P~E€B, )(Z15- - - » Tjm1yTjdlyees Tngl)—
Dn1(P = €8, )(T15+ 1 Tic1, Tit1y oo, Tnt1)] S 671 - €6 = £. So this reduces the proof
of (3) to the case where |z; —z;[ < §for all i,j € {1,...,n+1}; in other words we may
assume that z;,...,Z,4; are all in the same B, for some £ € {0,1,...,m}. But then,
after observing that n > 1, we have ®,£p,(z1,...,Zn+1) = 0 so it suffices to prove the
following. '

fée {0,1,...,m} and z;,...,Tn41 € By are pairwise distinct then

@ 80P e, 2ag1)| € €
To prove it we introduce, with ¢ € {1,...,m} fixed, the constants M; (i € {1,...,n})
by
1 ifi>¢
Mi:={6/la] ifi=¢
lee/cilt ifi< e

and use the following three steps.
Step 1. Foreach j € {0,1,...,n},i € {1,...,n} we have

X 1 i£=0,j=0
1251 = ()" < i, fe=0,7>0
G vit+1 B, ! .
67IM; - if€>0.

65
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Proof.
a. The case j = 0. Then for z € B, we have
-if ¢ > £ then |1-—(3-)"|—1
-ifi={then |1 - (£ )"f—ls-'——-alk<‘{—r.<.]—6'[
-1fz<£then|1-( )"|—| I" [& k
and the statement follows
b. The case j > 0. Then $;(1) =0 so that

31-(5)h = (2"

Let (z1,...,2j41) € Vit B, By the Product Rule 1.1, ®;(X*)(zi,...,Zj41) is

a sum of terms of the form H (®;,X)(2s). Such a term is O if one of the j, is

> 1, so we only have to deal thh Js = 0 (then @,,X = X) or j, = 1 (then

®; X = 1). The latter case occurs j times (as 21 Js = j) and it follows that
=

k

I1(®;,X)(z,) is a product of k—j distinct terms taken from {z,,...,z;4+1} (observe
s=1
that, indeed, j < k since j < n < k), so its absolute value is < [co|*~7. It follows

that ||®;(1 ~ (c—":)")ﬂw-n B, < lce}*7 /|ci|* from which we conclude
- &=0¢ e /leil* < 85 /ler]* = 677(8/|eal)t,
S>>0 [eof i |eil* < Jej) < 67 =67 M;
i i =030 e I/l < |7 S lei | = 6 S 5IM;
-if i <z feel I el < lee T |LF < 6T M

and step 1 is proved.

Step 2. Foreach j € {0,1,...,n},7 € {1,...,n} we have

1 ife=0j=0

X e - . :
18;(1 = (=)*)4llviip, < § 67( c61 ¥ ife=0,>0
ci el
: §-IME ife>0

Proof. The case j = 0 follows directly from Step 1, part a, so assume ; > 0. By
the Product Rule 1.1 applied to h, = 1 — (-f;)" for all s € {1,....t;} we have for
(z1,...,Zj41) € VIT1B, that &;(1 — (%)k)“(zl,...,xj.,.l) is a sum of terms of the
form

(8) | Hé,.(l -( ) )(zs)

s=1
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where j; +--- +j, = j. f £ =0 it follows from Step 1 that the absolute value of (5) is
< H&‘j'(ﬁ-;)" where the product is taken over all s in the nonempty set I :=

{s € {1,...,t} : j, > 0}, so the product is < ¢‘5‘j(]-5-[)‘*”5*r < 5"'( SV Fe>0it
follows from Step 1 that the absolute value of (5) is < H I M; =57 M} .

s=1

The statement of Step 2 follows.

Step 3. Proof of (4). Again, the Product Rule 1.1, now applied to A; =
1- (%)")“ for i € {1,...,m} tells us that for (zy,...,Zn+1) € V**! B, the expression
®,P(2,...,Zn+1) is a sum of terms of the form

(6) [Je.0- (YV@)
i=1
where n; + -+ nm =n. If £ =0 we have by Step 2 that the absolute value of (6) is
<IIée™ )" where the product is taken over i in the nonempty set I := {i : n; # 0},
so the product is < & ()M < §"™(1&)F < 67" - €6 = ¢, where we used the
assumption (6/]c1])* < 56" We see that |2, P(z1,...,Zn4+1)| L € if (21,...,2Zn) € Bo.
m

Now let £ > 0. By Step 2 we have that the absolute value of (6) is < [[ § ™ M} =

i=1
§ThMP . M = 6"‘-|fﬂ"‘1 - l“‘( & +7)' which is < 66" by (1). This proves
(4) and the Lemma.

C(..

Corollary 1.3. For every locally constant f : X — K, for everyn € Ng and e > 0
there ezists a polynomial function P: K — K such that ||f — Plja,x <e.

Proof. There exist a § € (0,1), pairwise disjoint ’closed’ balls By, ..., By, of radius §
covering X and A;,...,An € K such that

fz) =) Aéai(z) (z€X)
i=1
By Lemma 1.2 there exist polynomials Py, ..., Pn such that ||€5, — Piljn,x <
€8 = Pillnus: < €(|Ail +1)7! for each i € {1,...,m}. Then P:= Y. AP isa
polynomial function and || f — Pl|n,x < max||A;(€p; = P)|ln.x < max|X;le(JXi]+1)7 £
E.

Theorem 1.4. (C™-Weierstrass Theorem) For each n € Ny, f € C*(X — K) and
€ > 0 there ezists a polynomial function P : K — K such that ||f — Pllax <e.

Proof. There is by Proposztxon 0.4 a local polynomial g : K — K with |f ~ g|la,x < &.
This g has the form g = Z Q:h; where Qq,.. ,Q,,, are pglynomxa.ls and hy,...,Am

67
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are locally constant. By Corollary 1.3 we can find polynomials Py,..., Pn for which

llhi = Pilln,x < €(||Qilln,x + 1)~ for each i. Then P:= Y Q;P; is a polynomial and
i=1

lg = Plla,x < e. It follows that [|f = Pllax < max(|f = gllnx, lg = Pllax) < &.

Remarks.
1. In the case where X = Z,, K D Q, the above Theorem 1.4 is not new: The Mabhler
base eg, e1,... of C(Z, — K) defined by em(z) = () is proved in [3], §54 to be a
Schauder base for C*(Z, — K), for each n.

2. It follows directly from Theorem 1.4 that the polynomial functions X — K form a
dense subset of C®(X — K).

2. A WEIERSTRASS-STONE THEOREM FOR C"-FUNCTIONS

For this Theorem (2.10) we will need the continuity of g — g o f in the C"-topologies
(Proposition 2.5). To prove it we need some technical lemmas that are in the spirit of
[81,877.

Let n € N. For a function k: V*X — K we define Ah: V**' X — K by the formula

h($1,$3,34,-~-73n+1) — h(z2,z3,. .. yTat1)
Ty —Z2

Ah(.’l:l,l‘g,. .. ,J:n_H) =
We have the following product rule.

Lemma 2.1. (Product Rule). Letn € N, let h,t : V*X — K. Then for all
(21,22, -, Tn+1) € VX we have A(ht)(z1,22,...,Zn41) =
h($2,$3, cee :zn+1)At(x1, T2,y :c,,.H) + t($1,$3, ceny (L’n+1)Ah($1, z2,... ,$n+1)-

Proof. Straightforward.

Lemma 2.2. Let f : X - K, n€ No. Let S, be the set of the following functions
defined on V"'f'lX.

(1, s Tng1) = 21 f(2iy, i) (1€i1<i2<n+1)
(11,---,311-{-1) and Q2f(zinziz)mis) (1 S il < i2 < i3 _<. n+1)

(:Dl,... ,:L',;.H) [ g an(xl,...,zn+1).

For k € N, let R% be the additive group generated by Sn,S2,...,S% where, for each
7 € {1,...,k}, S] is the product set {hlhg..‘h_,- : h; € S, for each i € {1,...,j}}.
Then, for allk,n € N, ARX C R . '
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Proof. We use induction with respect to k. For the case k = 1 it suffices to prove
h € S, = Ah € R} ;. Then h has the form

(zly"',xn-i-l)Hij(ziuziza°"7$ij+g)
for some 7 € {2,3,...,n+ 1} and so

h(21,Z3,- .., Tns2) = B(T2,23,. ., Tns2)
Ty — T2

vanishes if i; > 1 (and then Ah is the null function), while if i; =1 it equals

Ah(zl, T2yeeey :L',;;H) =

Jf(zli zer’ :cl,+1+1) (I”f(l‘z,z,,.(-], zl,+x+1) =
1 — 22
= @41 f(21, 22, Tigh1y - -+ 1 Tij 41 41)

and it follows that Ak € Sp4y C RL,;. For the induction step assume AR""'1 C R,,,H,
it suffices to prove that ASk C R,,_,_‘1 So let h € S* and write h = hyH, where h1 € S,
H € Sk-1. By the Product Rule 2.1 we have

Ah(zy,...,Tat2) = h1(T2,23,. .., Tnt2)AH (21,22, .., Tns2)+
+ H(xl)th e ,-'1—',;+2)Ah1(271,-'l'2, v 9zn+2)-
The fact that h; € S, makes
(21,2, Tng2) = h1(21,23,. .., Tnt2)
into an element of Sp4;. Similarly, since H € S5, the function
(xlv 2 PR 7$n+2) hd H(xZ,z:‘h v ’zn+2)

is in 5n+1 By our first induction step, Ak; € RL,, and by the induction hypothesis
AH e Rn+1 Hence,

Ah €Snia Rn+1 + SpiiRnm
CRLLREI+REIR. CRE,,.

Lemma 2.3. Let f,n, Sy, k, RE be as in the previous lemma. Let f(X) CY C K where
Y has no isolated points. Let g : Y — K be a C™-function. Let B, be the set of the
following functions defined on V*+1X.

(31,' ..,$n+1) Hglg(f(xﬁ),f(xiz)) (1 S il < i2 <n+ 1)
(%1, 0y Tnr) = Bog(f(24), f(24,), f(zi3)) (1S <iz<iz<n+1l)

(zlw 'F)xn-i-l) L Eng(f(xl)7f(z2)" o ,.f(zn+1))'
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Let A, be the additive group generated by BoR®. Then

AAn C An+1-

Proof. We prove: h € BoRr = Ah € Apy1. Write h = br where b € By, r € R}. By
the Product Rule 2.1 we have for all (z1,22,...,Zn42) € V*T2X

Ah(z1,22,...,Tn42) = b(Z2,23,...,Tn42)Ar(T1,T2,...,Tnp2)+

+ 7‘(1‘1, T3yeee ,z,,+2)Ab(x1, T2,... ,z,..,.z).

We have:
(1) b€ Bn s0 (21,..,Znt2)  b(z2,23,...,Tp41) is in Bngy.
(ii) r € R} so (Z1,...,Zn42) — r(21,23,...,Tn42) is in R}, (in the previous proof
‘we had r € S¥ = the map (zy,...,Tns2) = r(21,%3,...,Tnt1) is in SX;, and (ii)
follows from this). ‘ ’
(i) 7 € R} so Ar € Ry, ; (Previous Lemma).
(iv) b has the form

(117$27"'$$n+1)Hsjg(f(zl'l)"'wf(zi,‘.‘.;))
for some j € {2,...,n+ 1} and so

b(z1,23,T4,.. ., Tnt2) — b(Z2,Z3,...,Tnt2)
Ty — T2

Ab($1,32,. . ,$n+2) =

vanishes if 7; > 1 (and then Ab is the null function), while if ¢; = 1 it equals

®;9(f(z1), f(@ig1), - - -, F(®i;,041)) = Bjg(F(22), f(Tizt1), - -, F(@i; 11 41))

Iy — T2

=%,119(f(z1), F(22), F(Tig1)s- -, F(Ti; 141)) B2 f (21, 22).

(if f(z1) = f(z2) we have 0 at both sides). So we see that Ab € Bpy1RL,,.
Combining (i) - (iv) we get Ak € Bpg1 Ry + R, Buy1 R,y C BrsaREZ] + Boya -
R} C Anyy.

Corollary 2.4. With the notations as in the previous lemma we have ®,(g o f) € An
(n €N).

Proof. We proceed by induction on n. For the case n = 1 we write, for (z;,z;) € V2X,

®1(g0 f)(z1,22) = (21 —22)~! (y(f(zl ) - g(f(wz))) = ®19(f(21), f(22)) 81 f (21, 22)-
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Hence, ¥;(gof) € B1S1 C BiR} C A;. To prove the step n — n+1 observe that by the
induction hypothesis, ®,(gof) € An. By Lemma 2.3, ®n41(g90f) = A®n(g0f) € An+1.

Remark. From Corollary 2.4 it follows easily that the composition of two C™-functions
is again a C™-function, a result that already was obtained in [3], 77.5.

Proposition 2.5. (Continuity of g — go f) Let n € Ny, let f € C*(X — K) and
let g € C*(Y — K) where Y has no isolated points, Y D f(X). Then |lgo fllnx <

. J
lollnx i IFIF -

Proof. We may assume |jg|l.y < oo. It suffices to prove [|2a(g 0 flllvmsix <

ligla,¥ Il £ i3 x- Now [|2o(g 0 fllvix = maxlg(f(2))I < llglloy = liglo.vlIf Ig,x which

proves the case n = 0. For n > 1 we apply Corollary 2.4 which says that ®,.(g90f) € An
i.e. ®,(go f)is a sum of functions in B,S%. By the definition of B we have

(*) h € B, = ||h||lya+1x £ llglln,y
Similarly
k€ Su= |[kllyntix < max @i fllvivrx < 1 fllnx

so that

(x+) k€ Sy = |lkllonnix < 1 fllax-

Combination of (*) and (*x) yields ||®n(g o f)||wn+1x < ngn,Y"f“z,x-

Proposition 2.5 enables us to prove

Proposition 2.6. Let n € Ng and let A be a closed subalgebra of C*(X — K). Suppose
A separates the points of X and contains the constant functions. Then A contains all
locally constant functions X — K.

Proof. 1. We first prove that f € 4, U C K, U clopen implies {s-1(i) € A. In fact,
f(X) is compact so there exist a § € (0,1) and finitely many disjoint balls By,...,Bm
of radius § covering f(X) where, say, By,... By liein U, and Bg41,. .., Bm are in K\U.
Let € > 0. By the Key Lemma 1.2 there exists, for each i € {1,...,m} a polynomial F;
m g

such that ||€p, — P;||ln,B < €, where B := |J B;. Then P := ) P, is a polynomial and

' i=1 i=1
? 'y
IP = Eulln,B = |P = Epolla,8 = | 1 (Pi = £B:)lln,B < &, where B® := |J B;.
=1

=1

By Proposition 2.5

(P = 0)0 fllnx < IP = ulln.5 max Il x < € a1 x
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and we see that there exists a sequence P, P;,... of polynomials such that
lPc o f = &u o flla,x — 0. Since A is an algebra with an indentity we have P, o f € A
for all k. Then §f-vuy=Cvof= kﬁm P.ofeA.

-0

2. Now consider

B:={V C X, ¢y € A}
It is very easy to see that B is a ring of clopen subsets of X and that B covers X. To
show that B separates the pointsof X let € X,y € X,z # y. Then thereisan f€ A4
for which f(z) # f(y). Set U := {A € K : A= f(2)] < |f(z) = f(¥)|}- Then U is clopen
in K. By the first part of the proof, f~}(U) € B. But z € f~}(U) whereas y & f~}(U).

By (1}, Exercise 2.H B is the ring of all clopens of X. It follows easily that all locally
constant functions are in A.

To arrive at the Weie_;strass—Stone Theorem 2.10 we need a final technical lemma.

Lemma 2.7. Let ay,...,am € X, let 81,...,6, be in (0,1) such that B(ay,é1),...,
B(am,8m) form a disjoint covering of X. Letn € Ny, h € C(X — K) and suppose
Djh(a;) = 0 and [®n-jDjh(21,...,Taju1)| S € for alli € {1,...,m}, z1,...,Zn41 €
B(ai,6:)N X, j € {0,1,...,n}. Then ||hl|n,x <&.

Proof. We first prove that ||hl|; x < € (see Proposition 0.4(iii)). Let i € {1,...,m}.
Set B; = B(a;, ;). By Taylor’s formula (Proposition 0.3(iv)) we have for z € X n B;:
Ih(z)] =

| z (z = a;)’D,h(a;) + (z — a:)"prh(z,4)| = |z — ai|*|®nh(z,ai,ai,...,a;)] < 6Pe.

Smula.rly we have for j € {0,...,n~1} and z € X N B; : |Djh(z)| =
n—l—J

| X (z=ai)'DeDjh(as) + (z — ;)" pr(Djh)(z,a;)|- Now using Proposition 0.3(ii)

t=0
we see that D;D;h(a;) = 0 so that

(*) |Djh(z)| = |z — a;|" ¥ |®n-; D;h(z, a,.. ., a;)] < 67 .

It follows that ||a||x, |D1hllx,...,||Dn-1h||x are all <¢. Now let z,y € X. If z.y are
in the same B; then |p,h(z,y)| = |®.h(2,¥,¥,...,¥)] £ € by assumption. If z € B;,
y € B, and 7 # s then |z ~ y| > 6 := max(é;,6,) and by Taylor’s formula

n—1
h(z) =) (2~ y)'Dih(y) + (z - y)"p1h(3,y)
t=0 .
we obtain, using (*),
Ih(z) - h@W)l |, _1D18@)| |, .., [Pn-ab(y)]
L e I i P

§me  §rle 8,
— 2= =<
S A ST V.-V 5 £



The Weierstrass-Stone Approximation Theorem....

and we have proved |[A||7 x <e.
Now to prove that even ||k||n,x < ¢ observe that by Proposition 0.4(ii)

IBllnx = llAll7,x V ID1hll=1,x V -~ V | Pahllo -

To prove, for example, that ||[D1Al|;_; x < € we observe thaf;, D;h €C}(X = K)and
that fori € {1,...,m}andj € {0,1,...,n—2} wehave D; Dy h(a;) = (j+1)Djt+1h(a;) =
0 and for all z,...,z, € B(a;,6;) and j € {0,1,...,n -2}

[@n-1-iD5(D1h)(z1, - -1 Ta=j)l = (G + DI [Bam1-jDjr1h(21 - Znmj)| S €

by assumption. So the conditions of our Lemma (with Dyh, n — 1 in place of A,n
respectively) are satisfied and by the first part of the proof we may conclude that
|D1hl7-1,x < € In a similar way we prove that ||Dzh||3_; x S 6. s IDnfllox <€
and it follows that ||h||.,x < €.

Proposition 2.8. Let n € Ny and let A be a closed subalgebra of C*(X — K) contai-
ning the locally constant functions. Let g € C™(X — K) and suppose for each a € X
there ezists an f, € A with Dig(a) = Difa(a) fori € {0,1,...,n}. Theng € A.

Proof. Let ¢ > 0. For each a € X choose an f, € A with f,(a) = g(a), D1fs(a) =
Dyg(a),...,Dnfa(a) = Dng(a). By continuity there exists a §a > 0 such that, with
ho := fa=g, [®n-jDjha(Z1,- .., Tnejs1)| S € forallj € {0,1,..., n}and z1,...,Tn-j+1
€ B(a,8,). The B(a,6,) cover X and by compactness there exists a finite disjoint
subcovering B(a1,8,,),...,B(am,8,,,). Set |

m
Fi=) faibBlai buy)nx
=1
Then, by our assumption on A, f € A. By Lemma 2.7, applied to A := f — g and where
61,...,6m are replaced by &, ,. .., 6, respectively, we then have ||f — gll,x < &. We
see that g € A = A.

Remark. It follows directly that the local polynomial functions X — K form a dense
subset of C*(X — K).

Proposition 2.9. Let n € N and let A be a K-subalgebra of C™*(X — K) conlaining
the constant functions. Suppose f'(a) # 0 for some f € A, a € X. Then there is a
g € A with g(a) =0, g'(a) = 1 and Dag(a) = D3g(a) =+ = Dpg(a) =0.

Proof. By considering the function f'(a)™!(f — f(a)) it follows that we may assume
that f(a) =0, f'(a) = 1. Then

) f=(X-a)h
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where h is continuous, h(a) = 1. To obtain the statement by induction with respect to
n we only have to consider the induction step n — 1 — n and, to prove that, we may

assume that D f(a) = - = Dn_1f(a) = 0. From (*) we obtain

fn = (x - a)nhn
and by uniqueness of the Taylor expansion of the C™-function f® we obtain f™(a) =
Dif*a) = -+- = Dp_1f™a) = 0 and D,f*(a) = h™(a) = 1. We see that g :=
f = Dnf(a)f™ is in A and that g(a) =0, ¢'(a) =1, Dag(a) = -+ = Dp_19(a) = 0 and

Dng(a) = Dnf(a) = Duf(a)Dnf™(a) = 0. |

Theorem 2.10. (Weierstrass-Stone Theorem for C™-functions). Letn € Ny and
let A be a closed subalgebra that separates the points of A and that contains the constant
functions. Suppose also that for each a € X there ezists an f € A with f'(a) # 0. Then
A=C"(X - K).

Proof. By Proposition 2.9, for each a € X there exists an f € A with f(a) = 0,
f'(a) =1, Dif(a) = 0 for i € {2,...,n}. The function g := X satisfies g(a) = 0,
g'(a) =1, D;g(a) = 0 for i € {2,...,n} so applying Proposition 2.8 (observe that A
contains the locally constant functions by Proposition 2.6) we obtain that X € A. But
then all polynomials are in A and A = C*(X — K) by the Weierstrass Theorem 1.4.

Remarks.

1. The case n = 0 yields, at least for those X that are embeddable into K, the well
known Kaplansky Theorem proved in (1], 6.15.

2. We leave it to the reader to establish a C*°-version of Theorem 2.10.
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