@article{AIHPC_2008__25_3_567_0, author = {Barles, Guy and Imbert, Cyril}, title = {Second-order elliptic integro-differential equations : viscosity solutions' theory revisited}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {567--585}, publisher = {Elsevier}, volume = {25}, number = {3}, year = {2008}, doi = {10.1016/j.anihpc.2007.02.007}, mrnumber = {2422079}, zbl = {1155.45004}, language = {en}, url = {http://www.numdam.org./articles/10.1016/j.anihpc.2007.02.007/} }
TY - JOUR AU - Barles, Guy AU - Imbert, Cyril TI - Second-order elliptic integro-differential equations : viscosity solutions' theory revisited JO - Annales de l'I.H.P. Analyse non linéaire PY - 2008 SP - 567 EP - 585 VL - 25 IS - 3 PB - Elsevier UR - http://www.numdam.org./articles/10.1016/j.anihpc.2007.02.007/ DO - 10.1016/j.anihpc.2007.02.007 LA - en ID - AIHPC_2008__25_3_567_0 ER -
%0 Journal Article %A Barles, Guy %A Imbert, Cyril %T Second-order elliptic integro-differential equations : viscosity solutions' theory revisited %J Annales de l'I.H.P. Analyse non linéaire %D 2008 %P 567-585 %V 25 %N 3 %I Elsevier %U http://www.numdam.org./articles/10.1016/j.anihpc.2007.02.007/ %R 10.1016/j.anihpc.2007.02.007 %G en %F AIHPC_2008__25_3_567_0
Barles, Guy; Imbert, Cyril. Second-order elliptic integro-differential equations : viscosity solutions' theory revisited. Annales de l'I.H.P. Analyse non linéaire, Tome 25 (2008) no. 3, pp. 567-585. doi : 10.1016/j.anihpc.2007.02.007. http://www.numdam.org./articles/10.1016/j.anihpc.2007.02.007/
[1] N. Alibaud, C. Imbert, A non-local perturbation of first order Hamilton-Jacobi equations with unbounded data, submitted for publication, 2007.
[2] Viscosity solutions of nonlinear integro-differential equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (3) (1996) 293-317. | Numdam | MR | Zbl
, ,[3] A new definition of viscosity solutions for a class of second-order degenerate elliptic integro-differential equations, Ann. Inst. H. Poincaré 23 (5) (2006) 695-711. | Numdam | MR | Zbl
,[4] Corrigendum in the comparison theorems in “a new definition of viscosity solutions for a class of second-order degenerate elliptic integro-differential equations”, Ann. Inst. H. Poincaré 24 (1) (2006) 167-169. | Numdam | MR | Zbl
,[5] Backward stochastic differential equations and integral-partial differential equations, Stochastics Stochastics Rep. 60 (1-2) (1997) 57-83. | MR | Zbl
, , ,[6] Stability results for Hamilton-Jacobi equations with integro-differential terms and discontinuous Hamiltonians, Arch. Math. (Basel) 79 (5) (2002) 392-395. | MR | Zbl
, ,[7] Lévy processes, Cambridge Tracts in Mathematics, vol. 121, Cambridge University Press, Cambridge, 1996. | MR | Zbl
,[8] User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.) 27 (1) (1992) 1-67. | MR | Zbl
, , ,[9] Second Order Elliptic Integro-Differential Problems, Chapman & Hall/CRC Research Notes in Mathematics, vol. 430, Chapman & Hall/CRC, Boca Raton, FL, 2002. | MR | Zbl
, ,[10] A non-local regularization of first order Hamilton-Jacobi equations, J. Differential Equations 211 (1) (2005) 218-246. | MR | Zbl
,[11] C. Imbert, R. Monneau, E. Rouy, Homogenization of first order equations with -periodic Hamiltonians. Part II: application to dislocation dynamics, Commun. Partial Differential Equations, submitted for publication. | MR | Zbl
[12] On uniqueness and existence of viscosity solutions of fully nonlinear second-order elliptic PDEs, Comm. Pure Appl. Math. 42 (1) (1989) 15-45. | MR | Zbl
,[13] A “maximum principle for semicontinuous functions” applicable to integro-partial differential equations, NoDEA Nonlinear Differential Equations Appl. 13 (2) (2006) 137-165. | MR | Zbl
, ,[14] The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations, Arch. Rational Mech. Anal. 101 (1) (1988) 1-27. | MR | Zbl
,[15] Applied Stochastic Control of Jump Diffusions, Universitext, Springer-Verlag, Berlin, 2005. | MR | Zbl
, ,[16] Optimal stopping of controlled jump diffusion processes: a viscosity solution approach, J. Math. Systems Estim. Control 8 (1) (1998), 27 pp. (electronic). | MR | Zbl
,[17] Équations d'Hamilton-Jacobi du premier ordre avec termes intégro-différentiels. I. Unicité des solutions de viscosité. II. Existence de solutions de viscosité, Comm. Partial Differential Equations 16 (6-7) (1991) 1057-1093. | MR | Zbl
,[18] Hölder estimates for solutions of integro-differential equations like the fractional Laplace, Indiana Univ. Math. J. 55 (3) (2006) 1155-1174. | MR | Zbl
,[19] Optimal control with state-space constraint. II, SIAM J. Control Optim. 24 (6) (1986) 1110-1122. | MR | Zbl
,[20] Lévy processes in the physical sciences, in: Lévy processes, Birkhäuser Boston, Boston, MA, 2001, pp. 241-266. | MR | Zbl
,Cité par Sources :