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ABSTRACT. – Plasticity, ferromagnetism, ferroelectricity and other phenomena lead to quasi-
linear hyperbolic equations of the form

∂2

∂t2

[
u+F(u)

]+Au= f,
whereF is a (possibly discontinuous) hysteresis operator, andA is a second order elliptic
operator. Existence of a solution is proved for an associated initial- and boundary-value problem
in the framework of Sobolev spaces. The argument is based on the dissipation properties of
hysteresis, and can be applied to a large class of hysteresis operators, including the classic
Preisach model. 2002 Éditions scientifiques et médicales Elsevier SAS

RÉSUMÉ. – Plusieurs phénomènes (plasticité, ferro-magnétisme, ferro-électricité, etc.) condui-
sent à la formulation d’une équation hyperbolique quasilinéaire de la forme

∂2

∂t2

[
u+F(u)

]+Au= f ;
ici F est un opérateur d’hystérésis éventuellement discontinu, etA est un opérateur elliptique du
deuxième ordre. On démontre l’existence d’une solution faible pour un problème aux limites et
aux valeurs initiales associé à cette équation. L’argument est basé sur les propriétés de dissipation
de l’hystérésis, et s’applique à une large classe d’opérateurs, qui inclut le modèle classique de
Preisach. 2002 Éditions scientifiques et médicales Elsevier SAS

Introduction

In the last years the mathematical research on hysteresis models has been progressing,
see, e.g., [1,4,6,10]. In particular results have been obtained for PDEs containing
hysteresis nonlinearities, including quasilinear parabolic and semilinear hyperbolic
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equations. On the other hand, ifF is a scalarhysteresis operatorandA is a second
order elliptic operator, the quasilinear hyperbolic equation

∂2

∂t2

[
u+F(u)

]+Au= f (1)

has still been looking rather challenging, if we exclude the especially easy case in which
F can be represented by one or more variational inequalities, see [10, Chap. VII]. In
a single space dimension, existence of a solution of the initial- and boundary-value
problem associated to (1) was proved by Krejčí [5,6] assuming strict convexity of the
hysteresis loops. Strict convexity is also required by known existence results for the
analogous equation without hysteresis, see, e.g., Di Perna [3].

Although at first sight occurrence of hysteresis may look as an element of difficulty,
its dissipative character suggests that it might allow to prove existence of a solution
under weaker hypotheses than for the problem without hysteresis. This is shown in
the present paper, in which existence of a solution is proved for the multidimensional
problem, for a large class of (possibly discontinuous) nondegenerate scalar hysteresis
operators. Discontinuities in the hysteresis relation account for the occurrence offree
boundaries. Uniqueness of the solution remains an open question.

Equations of the form (1) occur in elastoplasticity, pseudoelasticity, ferromagnetism,
ferrimagnetism, ferroelectricity, and in other physical phenomena; however, due to their
scalar character, applications are essentially restricted to univariate systems. The study of
Maxwell equations in three-dimensional domains requires the use of avectorhysteresis
model. In [12] the hysteresis relation has been represented by a vector model of [2]; a
weak formulation has been provided along the lines of the present paper, and existence
of a solution has been proved for corresponding quasilinear hyperbolic and parabolic
initial- and boundary-value problems, which are respectively obtained by including or
neglecting displacement currents; see [14].

The plan of this paper is as follows. In Section 1 we outline the problem. In Section 2
we shortly illustrate how equations of the form (1) arise in mathematical physics.
In Section 3 we provide a precise definition of therelay and Preisachoperators. In
Sections 4, 5 (6, 7, respectively) we formulate our problem forA := −	, and prove
existence of a solution forF equal to a relay operator (a Preisach operator, resp.). In
Section 8 we discuss a regularity issue, and deal with a modified formulation in which
the variableu is convoluted in space with a regularizing kernel. Finally, in Section 9 we
point out some remarks, draw conclusions and discuss some open questions.

The results of the present paper have been announced in [13].

1. The problem

Hysteresis. A causal operatorF which acts between Banach spaces of time-
dependent functions is called ahysteresis operatorwhenever it israte-independent,that
is, [F(u)](ϕ(t))= [F(u ◦ϕ)](t) for any increasing time-homeomorphismϕ and for any
instant t . We allowF to be multi-valued, and extend it to space- and time-dependent
functions by setting[F(u)](x, t) := [F(u(x, ·))](t); see [10] for details.
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Fig. 1. Relay operator.

A large and important class of hysteresis operators is provided by the classicPreisach
model; loosely speaking, this consists in a linear combination of more elementary
operators, named(delayed) relay operators. Throughout this paper byρ we denote any
pair (ρ1, ρ2) ∈ R2 such thatρ1 < ρ2; the corresponding relay operatorhρ is outlined
in Fig. 1. For instance, letu(0) < ρ1; thenw(0) = −1, andw(t) = −1 as long as
u(t) < ρ2; if at some instantu reachesρ2 thenw jumps up to 1, where it remains as
long asu(t) > ρ1; if later u reachesρ1, thenw jumps down to−1, and so on. Whenever
ρ1< u(0) < ρ2, the initial valuew0(=±1)must be prescribed. The operatorhρ is causal
and rate-independent; it is the most simple model of discontinuous hysteresis.

Let us now consider a finite Borel measureµ (called Preisach measure) on the
half-planeP := {ρ := (ρ1, ρ2) ∈ R2: ρ1 < ρ2} of admissible thresholds, and define the
Preisach operatorHµ := ∫P hρ dµ(ρ). See Fig. 2 for a simple example.

Let � be a bounded domain ofRN (N � 1) of Lipschitz class,T > 0 and set
Q := � × ]0, T [. Let f :Q→ R be a given function,F a (possibly multi-valued)
scalar hysteresis operator, andA a second order elliptic operator; regularity requirements
will be specified afterwards. In this paper we deal with the second order quasilinear
hyperbolic equation

∂2

∂t2

[
u+F(u)

]+Au= f inQ, (1.1)

coupled with the initial and boundary conditions

u+w = u0 +w0,
∂

∂t
(u+w)= u1 +w1 in �× {0}, (1.2)

u= 0 on∂�× ]0, T [; (1.3)
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Fig. 2. Preisach model corresponding to a positive measureµ concentrated at three points ofP .

hereu0,w0, u1,w1 :�→ R are prescribed functions. Integrating (1.1) in time we get

∂

∂t

[
u+F(u)

]+A
t∫

0

u(·, τ )dτ = u1 +w1 +
t∫

0

f (·, τ )dτ =: F inQ. (1.4)

If the operatorA is in divergence form, Eq. (1.1) is also equivalent to a first-order system.

2. Applications

In this section we briefly illustrate how equations like (1.1) arise in continuum me-
chanics and in electromagnetism.

Elastoplasticity and pseudoelasticity. Let � ⊂ R3 represent a continuum body,
and let us denote the displacement vector byu, the (linearized) strain tensor byε, the
stress tensor byσ , and a distributed load byh. Newton’s law and the definition ofε yield

∂2ui

∂t2
=

3∑
�=1

∂σi�

∂x�
+ hi, εij := 1

2

(
∂ui

∂xj
+ ∂uj
∂xi

)
in Q (i, j = 1,2,3), (2.1)

whence

∂2εij

∂t2
= 1

2

3∑
�=1

(
∂2σi�

∂x�∂xj
+ ∂2σj�

∂x�∂xi

)
+ 1

2

(
∂hi

∂xj
+ ∂hj
∂xi

)
inQ (i, j = 1,2,3). (2.2)

In an elastoplastic material the dependence of the stress on the strain exhibits hysteresis.
The same applies to austenitic materials exhibiting so-calledpseudoelasticity, i.e.,shape
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memory. In either case we may assume thatε = aσ +F1(σ ), a being a positive constant
andF1 a tensor hysteresis operator. This yields an equation of the form (1.1) for tensor
variables; for univariate systems, this is reduced to an equation for scalar variables.

Ferromagnetism and ferroelectricity. Let � represent an electromagnetic mater-
ial, and let us denote the electric field by�E, the electric displacement by�D, the electric
current density by�J , the magnetic field by�H , the magnetic induction by�B, the electric
conductivity byσ , the dielectric permittivity byε, the magnetic permeability byµ, the
speed of light in vacuum byc, and an applied electromotive force by�g. For the sake of
simplicity, here we assume that the equations in� can be decoupled from those outside.
However, this outline and the results of this paper can be extended to the case in which
this restriction is dropped.

In Gauss units, the Ampère, Faraday and Ohm laws respectively read

c∇ × �H = 4π �J + ∂ �D
∂t

in Q (∇× := curl), (2.3)

c∇ × �E =−∂ �B
∂t

inQ, (2.4)

�J = σ ( �E + �g) in Q. (2.5)

In a ferromagnetic material we can assume that�D = ε �E. Applying the curl operator
to (2.3), differentiating (2.4) in time, and eliminating�J , �D, �E, we then get

ε
∂2 �B
∂t2

+ 4πσ
∂ �B
∂t

+ c2∇ ×∇ × �H = 4πcσ∇ × �g inQ. (2.6)

This equation applies to both ferromagnetic and ferrimagnetic materials. The former are
all metals, and so for slow processes the displacement termε ∂

2 �B
∂t2

is dominated by the

Ohmic term 4πσ ∂ �B
∂t

. In this case (2.6) is then usually replaced by the so-callededdy-
current equation

4πσ
∂ �B
∂t

+ c2∇ ×∇ × �H = 4πcσ∇ × �g inQ. (2.7)

However, for fast processes (2.6) applies. On the other hand, ferrimagnetic materials
may be insulators; (2.6) withσ = 0 can then be used for either slow or fast processes.

In any of these cases�B = �H + 4π �M , and the magnetization�M depends with
hysteresis on�H . We may then assume that�M =F2( �H), whereF2 is a vector hysteresis
operator.

If instead we deal with a ferroelectric material, we may assume that�B = µ �H ;
Eqs. (2.3), (2.4) and (2.5) then yield

µ
∂2 �D
∂t2

+ 4πµσ
∂ �E
∂t

+ c2∇ ×∇ × �E =−4πµσ
∂ �g
∂t

inQ. (2.8)
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Here �D = �E + 4π �P , and the electric polarization�P depends on�E with hysteresis; we
may then assume that�P =F3( �E), whereF3 is a vector hysteresis operator.

Special geometries. For univariate systems we are reduced to an equation for
scalar variables, withA = − ∂2

∂x2 . Under severe restrictions on the geometry and on
the symmetry of the fields, the above setting can also be reduced to a planar problem
for scalar variables. LetD be a domain ofR2, � := D × R, and assume that, using
orthogonal Cartesian coordinatesx, y, z, �H is parallel to thez-axis and only depends on
the coordinatesx, y, i.e., �H = (0,0,H(x, y)). Then

∇ ×∇ × �H = (0,0,−	x,yH)
(
	x,y := ∂2

∂x2
+ ∂2

∂y2

)
in �.

Dealing with a strongly anysotropic material, we can also assume that�M = (0,0,
M(x, y)). If ∇ × �g := (0,0, r), Eq. (2.6) is then reduced to

ε
∂2

∂t2
(H + 4πM)+ 4πσ

∂

∂t
(H + 4πM)− c2	x,yH = 4πcσr in D. (2.9)

We can then assume thatM = F(H), whereF is a scalar hysteresis operator. A similar
discussion applies to (2.8).

Remark. – We have represented the above phenomena by equations to the form (1.1).
This has required differentiation operations, and indeed (1.1) can be expected to hold
just in the sense of distributions. We might also derive equivalent systems. For instance,
in continuum mechanics one might just couple the system (2.1) with the constitutive law
ε = aσ + F1(σ ). Similarly, in electromagnetism one might couple the Maxwell–Ohm
equations (2.3), (2.4), (2.5) with the appropriate constitutive relations.

3. Hysteresis

In this section we make the definition of the relay and Preisach operators precise, and
specify the functional framework.

Relay operator. Let us fix any pairρ := (ρ1, ρ2) ∈ R2, ρ1 < ρ2. For anyu ∈
C0([0, T ]) and anyξ ∈ {−1,1}, we setXt := {τ ∈ ]0, t]: u(τ) = ρ1 or ρ2} and define
the functionw= hρ(u, ξ) : [0, T ]→ {−1,1} as follows:

w(0) :=


−1 if u(0)� ρ1,

ξ if ρ1< u(0) < ρ2,

1 if u(0)� ρ2,

(3.1)

w(t) :=


w(0) if Xt = ∅,

−1 if Xt �= ∅ andu(maxXt)= ρ1,

1 if Xt �= ∅ andu(maxXt)= ρ2,

∀t ∈ ]0, T ]. (3.2)
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Any functionu ∈ C0([0, T ]) is uniformly continuous, hence it can only oscillate a finite
number of times betweenρ1 andρ2, if any. Thereforew can just have a finite number
of jumps between−1 and 1, if any; hence the total variation ofw in [0, T ] is finite, i.e.,
w ∈ BV(0, T ).

Completion. The relay operator is not closed in natural function spaces, because
of its discontinuity, cf. [10, Chap. VI]. A suitable extension of this operator is then
needed, in view of coupling with PDEs. Following [10], we introduce the (multi-valued)
completed relay operator,kρ . For any u ∈ C0([0, T ]) and anyξ ∈ [−1,1], we set
w ∈ kρ(u, ξ) if and only ifw is measurable in]0, T [,

w(0) :=


−1 if u(0) < ρ1,

ξ if ρ1 � u(0)� ρ2,

1 if u(0) > ρ2,

(3.3)

and, for anyt ∈ ]0, T ],

w(t) ∈


{−1} if u(t) < ρ1,

[−1,1] if ρ1 � u(t)� ρ2,

{1} if u(t) > ρ2,

(3.4)




if u(t) �= ρ1, ρ2, then w is constant in a neighbourhood oft,

if u(t)= ρ1, then w is nonincreasing in a neighbourhood oft,

if u(t)= ρ2, then w is nondecreasing in a neighbourhood oft.

(3.5)

The graph ofkρ in the (u,w)-plane invades the whole rectangle[ρ1, ρ2] × [−1,1], cf.
Fig. 3. Moreover,w ∈ BV(0, T ) for anyu ∈C0([0, T ]), by the argument we used forhρ .

The operatorkρ is the closure ofhρ in certain function spaces which are relevant for
the analysis of PDEs, cf. [10, Chap. VI]. The definition ofkρ can also be justified by
means of the Preisach model; see below at the end of this section.

Reformulation of the relay operator. In view of the analysis of PDEs, it is
convenient to provide an alternative formulation of the completed relay operator. It is
easy to see that (3.4) is equivalent to the system




(w− 1)(u− ρ2)� 0,

(w+ 1)(u− ρ1)� 0, a.e. in]0, T [.
|w| � 1,

(3.6)
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Fig. 3. Completed relay operator. Here the pair(u,w) can also attain any value of the rectangle
[ρ1, ρ2] × [−1,1].

If w ∈W 1,1(0, T ), the dynamics (3.5) is tantamount to

t∫
0

dw

dτ
udτ =

t∫
0

[(
dw

dτ

)+
ρ2 −

(
dw

dτ

)−
ρ1

]
dτ =:1ρ(w, t) ∀t ∈ ]0, T ]. (3.7)

In continuum dynamics and in electromagnetism a quantity like1ρ(w, t) represents the
dissipated energy.

If the pair (u,w) moves along a closed loop in[0, t], then1ρ(w, t) equals the area
of the region bounded by the loop. The condition (3.7) is extended tow ∈ BV(0, T ),
provided that we set

1ρ(w, t) :=
t∫

0

ρ2 dw+ −
t∫

0

ρ1 dw− ∀t ∈ ]0, T ],

and interpret the latter expression as a Stieltjes integral. Notice that

1ρ(w, t)=
t∫

0

ρ2 dw+ −
t∫

0

ρ1 dw− = ρ2 + ρ1

2

t∫
0

dw+ ρ2 − ρ1

2

t∫
0

|dw|

= ρ2 + ρ1

2

[
w(t)−w(0)]+ ρ2 − ρ1

2

t∫
0

|dw| ∀t ∈ ]0, T ], ∀w ∈ BV(0, T ),

(3.8)

and that the total variation,
∫ t

0 |dw|, equals the total mass of the Borel measure dw/dτ in
C0([0, t])′; i.e.,

∫ t
0 |dw| = ‖dw/dτ‖C0([0,t ])′.
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The condition (3.4) entails that
∫ t

0 udw �1ρ(w, t), independently from the dynamics;
(3.7) is then equivalent to the opposite inequality. Therefore the system (3.4) and (3.5)
is equivalent to theconfinement condition(3.6) coupled with thedissipation inequality

t∫
0

udw �1ρ(w, t) ∀t ∈ ]0, T ]. (3.9)

Wheneveru ∈ C0([0, T ])∩BV(0, T ), (3.9) also reads

t∫
0

ud(u+w)− 1

2

[
u(t)2 − u(0)2]�1ρ(w, t) ∀t ∈ ]0, T ]. (3.10)

Notice that (3.9) is also equivalent to the variational inequality

t∫
0

(u− v)dw � 0 ∀v ∈ [ρ1, ρ2], ∀t ∈ ]0, T ]. (3.11)

The above formulation of the relay operator can be extended to space-distributed
systems, just assuming thatu(x, ·) ∈ C0([0, T ]), w(x, ·) ∈ BV(0, T ), and (3.3), (3.6)
and (3.9) hold a.e. in�. Let us setQt :=�× ]0, t[ for any t > 0. In alternative, (3.9)
may also be extended by requiring that

C0(Q̄)

〈
u,
∂w

∂τ

〉
C0(Q̄t )′

� ρ2 + ρ1

2

∫∫
Qt

[
w(x, τ)−w0(x)

]
dx dτ + ρ2 − ρ1

2

∥∥∥∥∂w∂τ
∥∥∥∥
C0(Q̄t )′

=:
∫
�̄

1ρ(w, t) ∀t ∈ ]0, T ]. (3.12)

Here we denote the total mass of the Borel measure1ρ(w, t) in �̄ by
∫
�̄ 1ρ(w, t)

(without the dx), and reserve the notation
∫
�1ρ(w, t)dx (with the dx) for the case in

which1ρ(w(x, ·), t) is Lebesgue integrable.

Preisach integral. Let µ be a finite Borel measure on the half-planeP := {ρ :=
(ρ1, ρ2) ∈ R2: ρ1< ρ2}, and define thecompleted Preisach operatorKµ := ∫P kρ dµ(ρ).

More precisely, for anyu ∈ C0([0, T ]) and any measurable functionξ :P →{−1,1},
we setw̃ ∈ Kµ(u, ξ) iff there exists a measurable functionw :P × ]0, T [ → [−1,1]
such thatwρ ∈ kρ(u, ξρ) a.e. inP × ]0, T [ (w.r.t. the product of the Preisach and
Lebesgue measures), andw̃ = ∫P wρ dµ(ρ) a.e. in]0, T [. For anyρ ∈ P the inclusion
wρ ∈ kρ(u, ξρ) can be represented by (3.3), (3.6) and (3.9).

If the measureµ has no masses concentrated either in points or on lines parallel to
any coordinate axis, thenKµ operates inC0([0, T ]) and is continuous with respect to
the uniform topology. Under further hypotheses onµ, Kµ operates in smaller spaces, or
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is invertible, or fulfils other properties; for instance, ifµ� 0 then any hysteresis branch
is nondecreasing. For these and other properties of the Preisach model see, e.g., [10,
Chap. IV]. Notice thatKµ =Hµ, whenever the measureµ is such thatHµ operates in
C0([0, T ]).

In view of latter application, we notice that, wheneverρ2 + ρ1 is µ-integrable onP ,
by (3.8) we have∫

A

1ρ(wρ, t)dµ(ρ)=
∫
A

ρ2 + ρ1

2

[
wρ(t)−wρ(0)]dµ(ρ)

+
∫
A

ρ2 − ρ1

2

( t∫
0

|dwρ |
)

dµ(ρ)

∀t ∈ ]0, T ], ∀ measurable setA⊂P. (3.13)

Finally, we briefly outline how the definition of the completed relay operator,kρ ,
can be justified by means of the Preisach model. According to this model each
relay hρ corresponds to a Dirac measure,µ, concentrated at the pointρ ∈ P . In
order to approximate the relay, it is then naturalto smear outthat measure by a
sequence of absolutely continuous measures,{µn}, having abell-shapeddensity w.r.t.
to the Lebesgue measure. It is not difficult to show that, asn→ ∞, the Preisach
operators corresponding to the approximating measures converge to the completed relay
operator,kρ , pointwise inC0([0, T ]).

4. Weak formulation of the PDE for the relay operator

We shall deal with Eq. (1.1) forA := −	 (associated with the homogeneous Dirichlet
condition). We assume that

u0,w0 ∈ L2(�), F ∈L2(0, T ;H−1(�)
)
,

|w0|� 1, w0 =−1 if u0< ρ1, w0 = 1 if u0> ρ2 a.e. in�,
(4.1)

and provide a weak formulation of the initial- and boundary-value problem associated
with Eq. (1.4).

We denote the duality pairing betweenH−1(�) andH 1
0 (�) by 〈·, ·〉, and the trace

operator byγ0.

PROBLEM 1. – To find U ∈ H 1(Q) and w ∈ L∞(Q) such thatγ0U = 0 a.e. in
(�× {0})∪ (∂�× ]0, T [), |w|� 1 a.e. inQ, and∂w/∂t ∈C0(Q̄)′. Moreover, we set

u := ∂U
∂t

a.e. inQ, w(·,0) :=w0 a.e. in�, (4.2)

and require that

∫∫
Q

[(
u0 +w0 − u−w)∂η

∂t
+∇U ·∇η

]
dx dt =

T∫
0

〈F,η〉dt
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∀η ∈ C1(Q), η= 0 a.e. in
(
�× {T })∪ (∂�× ]0, T [), (4.3)

(w− 1)(u− ρ2)� 0, (w+ 1)(u− ρ1)� 0 a.e. inQ, (4.4)

1

2

∫
�

[
u(x, t)2 + ∣∣∇U(x, t)∣∣2 − u0(x)2

]
dx +

∫
�̄

1ρ(w, t)�
t∫

0

〈F,u〉dτ

for a.a. t ∈ ]0, T [. (4.5)

See (3.12) for the definition of
∫
�̄ 1ρ(w, t).

The initial condition in (4.2) is meaningful, on account of the regularity ofw.

Interpretation. (4.3) is equivalent to the system

∂

∂t
(u+w)−	U = F in H−1(Q), (4.6)

(u+w)|t=0 = u0 +w0 in H−1(�). (4.7)

Differentiating (4.6) in time, we get

∂2

∂t2
(u+w)−	u= f in D′(Q). (4.8)

A comparison of the terms of (4.6) yields∂
∂t
(u + w) ∈ L2(0, T ;H−1(�)); the initial

condition (4.7) is then meaningful.
For a moment let us assume thatu ∈ L2(0, T ;H 1

0 (�)). Multiplying (4.6) by u and
integrating in time, we get

t∫
0

〈
∂

∂τ
(u+w)− F,u

〉
dτ + 1

2

∫
�

∣∣∇U(x, t)∣∣2 dx = 0 for a.a.t ∈ ]0, T [; (4.9)

(4.5) is then equivalent to
t∫

0

〈
∂

∂τ
(u+w),u

〉
dτ − 1

2

∫
�

[
u(x, t)2 − u0(x)2

]
dx �

∫
�̄

1ρ
(
w(x, ·), t)

for a.a.t ∈ ]0, T [. (4.10)

This inequality can be compared with (3.10), which jointly with (3.6) and with the
second condition of (4.2) represents the hysteresis relation

w ∈ kρ(u,w0) a.e. in�. (4.11)

Therefore we can regard Problem 1 as a weak formulation of an initial- and boundary-
value problem associated to the system (4.6) and (4.11).

Finally, we notice that, on account of the equivalence between (3.9) and (3.11),
in Problem 1 (4.5) might be replaced by the following variational inequality, for any
v ∈H 1(Q) such thatρ1 � v � ρ2 a.e. inQ,
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1

2

∫
�

[
u(x, t)2 + ∣∣∇U(x, t)∣∣2 − u0(x)2

]
dx +

∫
�

[
u(x, t)v(x, t)− u0(x)v(x,0)

]
dx

+
t∫

0

dτ
∫
�

[
u
∂v

∂τ
+∇U · ∇v

]
dx �

t∫
0

〈F,u− v〉dτ for a.a.t ∈ ]0, T [, (4.12)

which is formally equivalent to

t∫
0

dτ
∫
�

[
∂u

∂τ
(u−v)+∇U ·∇(u−v)

]
dx �

t∫
0

〈F,u−v〉dτ for a.a.t ∈ ]0, T [. (4.13)

5. Existence result for the relay operator

At first we recall a result of interpolation of spaces of vector-valued functions.

LEMMA 5.1 (see, e.g., Triebel [9, p. 128]). –Let A0 and A1 be Banach spaces,
subspaces of the same separated topological vector space. Let

1� p0,p1<+∞, 0< θ < 1,
1

p
= θ 1

p0
+ (1− θ) 1

p1
. (5.1)

Denoting by(A0,A1)[θ] the complex interpolation space, we then have

(
Lp0(�;A0),L

p1(�;A1)
)
[θ] = Lp

(
�; (A0,A1)[θ]

)
. (5.2)

This statement allows us to derive the followingcompensated compactnessresult.

LEMMA 5.2. – Let z,w and the sequences{zm}, {wm} be such that

zm→ z weakly inL2(Q)∩H−1(0, T ;H 1(�)
)
,

wm→w weakly star inL∞(Q),
‖wm‖L1(�;BV(0,T )) � Constant. (5.3)

Then ∫∫
Q

wmzm dx dt→
∫∫
Q

wzdx dt. (5.4)

Proof. –Let θ,p, r be such that

0< θ < 1, 2<p <+∞, 0< r < 1
p
, θ

p
+ 1− θ = 1

2.

Obviously these conditions are nonempty. By Sobolev inclusion and by interpolation,
we have

BV(0, T )⊂Hr(0, T ),
(
L2(0, T ),H r(0, T )

)
[θ] =Hr(1−θ)(0, T ).

Lemma 5.1 then yields
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L∞(Q)∩L1(�;BV(0, T )
)⊂L∞(Q)∩L1(�;Hr(0, T )

)
⊂ (Lp(�;L2(0, T )

)
,L1(�;Hr(0, T )

))
[θ]

=L2(�; (L2(0, T ),H r(0, T )
)
[θ]
)= L2(�;Hr(1−θ)(0, T )

)
.

Note that 0< r(1 − θ) < 1
p
< 1

2. Again by interpolation, see, e.g., Lions and
Magenes [7, Chap. IV], we also have

L2(Q)∩H−1(0, T ;H 1(�)
)=L2(�;L2(0, T )

)∩H 1(�;H−1(0, T )
)

⊂L2(�;H−r(1−θ)(0, T )
)= L2(�;Hr(1−θ)(0, T )

)′
with compact injection. Therefore (5.4) holds.

THEOREM 5.3 (Existence). –If (4.1) is fulfilled andF ∈W 1,1(0, T ;H−1(�)), then
there exists a solution(U,w) of Problem1 such that

U ∈W 1,∞(0, T ;L2(�)
)∩L∞(0, T ;H 1

0 (�)
)
. (5.5)

Proof. –(i) Approximation. Let us fix anym ∈ N, setk := T /m, u0
m := u0, w0

m :=w0,
Fn1m := 1

k

∫ nk
(n−1)k F1(·, t)dt a.e. in�, Fn2m := F2(nk), Fnm := Fn1m+Fn2m for n= 1, . . . ,m,

and

Gρ(v, ξ) :=




{−1} if v < ρ1,
[−1, ξ ] if v = ρ1,
{ξ } if ρ1< v < ρ2,
[ξ,1] if v = ρ2,
{1} if v > ρ2,

∀(v, ξ)∈ R × [−1,1], cf. Fig. 4. (5.6)

We are now able to introduce a time-discretization scheme of implicit type for our
problem.

Fig. 4. Graph of the multi-valued functionGρ(·, ξ), for a fixedξ ∈ [−1,1].
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PROBLEM 1m. – To findunm ∈H 1
0 (�) andwnm ∈L∞(�) for n= 1, . . . ,m, such that

wnm ∈Gρ(unm,wn−1
m

)
a.e. in�, for n= 1, . . . ,m, (5.7)

unm − un−1
m

k
+ w

n
m −wn−1

m

k
− k

n∑
j=1

	ujm = Fnm in H−1(�), for n= 1, . . . ,m. (5.8)

For anyn and for a.a.x ∈ �, the maximal monotone functionGρ(·,wn−1
m (x)) is the

subdifferential of a lower semicontinuous and convex function,gρ(·, x), which depends
measurably onx. The functional

J nm :v  →∫
�

[
v2

2
+ gρ(v(x), x)+ k2

2
|∇v|2 + k2

n−1∑
j=1

∇un−1
m · ∇v − (un−1

m +wn−1
m

)
v

]
dx

− k〈Fnm, v〉 (5.9)

is (strictly) convex, lower semicontinuous and coercive onH 1
0 (�). Hence it has a

(unique) minimizerunm, and ∂J nm(u
n
m) ! 0 in H−1(�). This inclusion is equivalent to

the system (5.7) and (5.8).
(ii) A priori estimates.Preliminarly, for any family{vnm}n=1,...,m of functions�→ R

let us denote byvm the time interpolate ofv0
m := v0, v1

m, . . . , v
m
m a.e. in�, and set

v̄m(·, t) := vnm a.e. in�, if (n− 1)k < t � nk, for n= 1, . . . ,m.
Let us multiply Eq. (5.8) bykunm, and sum forn = 0, . . . , �, for any� ∈ {1, . . . ,m}.

By (5.7) we have

�∑
n=1

(
wnm −wn−1

m

)
unm �

�∑
n=1

[(
wnm −wn−1

m

)+
ρ2 − (wnm −wn−1

m

)−
ρ1
]=1ρ(wm, �k)

a.e. in�, for �= 1, . . . ,m. (5.10)

SettingUnm := k∑n
j=1u

j
m a.e. in� for n= 1, . . . ,m, we then get

1

2

∫
�

[
(u�m)

2 + ∣∣∇U�m∣∣2 − (u0)2]dx + ∫
�

1ρ(wm, �k)dx � k
�∑
n=1

〈
Fnm,u

n
m

〉
for �= 1, . . . ,m. (5.11)

A standard calculation then yields

‖Um‖W1,∞(0,T ;L2(�))∩L∞(0,T ;H1
0 (�))

,
∥∥1ρ(wm, ·)∥∥L∞(0,T ;L1(�))

�C1. (5.12)

(Throughout this paper byC1,C2, . . . we denote suitable positive constants independent
of m.) Hence by (3.8) we get

‖wm‖L1(�;BV(0,T )) � C2. (5.13)
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(iii) Limit procedure.By the above estimates, there existU,w such that, asm→∞
along a suitable sequence,

Um→U weakly star inW 1,∞(0, T ;L2(�)
)∩L∞(0, T ;H 1

0 (�)
)
, (5.14)

wm→w weakly star inL∞(Q), (5.15)

∂wm

∂t
→ ∂w

∂t
weakly star inC0(Q̄)′. (5.16)

SettingUm := ∫ t0 ūm(·, τ )dτ a.e. inQ, (5.8) reads

∂

∂t
(um +wm)−	Um = F̄m in H−1(�), a.e. in]0, T [, (5.17)

and passing to the limit we get (4.6), whence (4.3) follows on account of the initial
condition (4.7). (5.7) entails

(w̄m − 1)(ūm − ρ2)� 0, (w̄m + 1)(ūm − ρ1)� 0 a.e. inQ, (5.18)

whence, for any nonnegativeϕ ∈D(Q),∫∫
Q

(w̄m − 1)(ūm − ρ2)ϕ(x, t)dx dt � 0,
∫∫
Q

(w̄m + 1)(ūm − ρ1)ϕ(x, t)dx dt � 0.

(5.19)
Applying Lemma 5.1 to the sequences{zm} := {ūmϕ} and{wm}, we have∫∫

Q

wmūmϕ dx dt→
∫∫
Q

wuϕ dx dt.

Hence ∫∫
Q

w̄mūmϕ dx dt→
∫∫
Q

wuϕ dx dt,

as‖w̄m −wm‖L2(Q)→ 0. Passing to the limit in (5.19) we then get
∫∫
Q

(w− 1)(u− ρ2)ϕ(x, t)dx dt � 0,
∫∫
Q

(w+ 1)(u− ρ1)ϕ(x, t)dx dt � 0,

for any nonnegativeϕ ∈D(Q); this is equivalent to (4.4). (5.11) yields

1

2

∫
�

[
ū2
m + ∣∣∇Ūm∣∣2 − (u0)2

]
dx +

∫
�

1ρ(wm, t)dx �
t∫

0

〈
F̄m, ūm

〉
dτ

for a.a.t ∈ ]0, T [. (5.20)

Integrating in]0, T [ and passing to the inferior limit asm→∞, by lower semicontinuity
we finally get an inequality equivalent to (4.5).
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6. Weak formulation of the PDE for the Preisach operator

We assume that

µ is a finite positive Borel measure onP := {ρ := (ρ1, ρ2) ∈ R2 : ρ1< ρ2
}
, (6.1)

and equip�×P andQ×P with the product of the Lebesgue and Preisach measures,
LN ×µ (L(N+1) ×µ, respectively). We also set∫ ∫

�̄×P
1ρ(wρ, t) :=

∫
P

dµ(ρ)
ρ2 + ρ1

2

∫∫
Qt

[
wρ(x, τ)−w0

ρ(x)
]
dx dτ

+
∥∥∥∥ρ2 − ρ1

2

∂wρ

∂τ

∥∥∥∥
C0(Q̄t×P)′

∀t ∈ ]0, T ], (6.2)

and reserve the notation
∫∫
�×P 1ρ(wρ, t)dx dµ(ρ) for the case in which1ρ(wρ(x, ·), t)

is Lebesgue integrable w.r.t.LN×µ. We assume that

u0 ∈ L2(�), F ∈ L2(0, T ;H−1(�)
)
, w0 ∈L∞(�×P),

|w0
ρ| � 1, w0

ρ =−1 if u0< ρ1, w0
ρ = 1 if u0> ρ2 a.e. in�×P,

(6.3)

and provide a weak formulation of the initial- and boundary-value problem associated
with (1.4), forF equal to the Preisach operator.

PROBLEM 2. – To findU ∈H 1(Q) andw ∈ L∞(Q×P) such thatγ0U = 0 a.e. in
(�×{0})∪ (∂�×]0, T [), |w|� 1 a.e. inQ×P , and∂w/∂τ ∈C0(Q̄×P)′. Moreover,
we set

u := ∂U
∂t

a.e. inQ, w̃0 :=
∫
P

w0
ρ dµ(ρ), w̃ :=

∫
P

wρ dµ(ρ) a.e. inQ, (6.4)

wρ(·,0) :=w0
ρ a.e. in�×P, w̃0 :=

∫
P

w0
ρ dµ(ρ) a.e. in�, (6.5)

and require that

∫∫
Q

[
(u0 + w̃0 − u− w̃)∂η

∂t
+∇U · ∇η

]
dx dt =

T∫
0

〈F,η〉dt

∀η ∈ C1(Q̄), η= 0 a.e. in
(
�× {T })∪ (∂�× ]0, T [), (6.6)

(wρ − 1)(u− ρ2)� 0, (wρ + 1)(u− ρ1)� 0 a.e. inQ×P, (6.7)

1

2

∫
�

[
u(x, t)2 + ∣∣∇U(x, t)∣∣2 − u0(x)2

]
dx +

∫ ∫
�̄×P

1ρ(wρ, t)�
t∫

0

〈F,u〉dτ

for a.a. t ∈ ]0, T [. (6.8)
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Interpretation. (6.6) is equivalent to the system

∂

∂t
(u+ w̃)−	U = F in H−1(Q), (6.9)

(u+ w̃)|t=0 = u0 + w̃0 in H−1(�). (6.10)

Similarly to what we saw in the interpretation of Problem 1, ifu ∈ L2(0, T ;H 1
0 (�))

then (6.6) yields (4.8), here with̃w in place ofw. (6.8) is then equivalent to
t∫

0

〈
∂

∂τ
(u+ w̃), u

〉
dτ � 1

2

∫
�

[
u(x, t)2 − u0(x)2

]
dx +

∫ ∫
�̄×P

1ρ(wρ, t)

for a.a.t ∈ ]0, T [. (6.11)

This can be regarded as a weak formulation of the inequality (3.10) a.e. in�× P ; the
opposite inequality follows from theconfinement condition(3.6). (By displaying the dx
in the integral expression, we still distinguish the Lebesgue integral on� from the total
mass of a Borel measure, cf. Section 3.) (6.7) and (6.8) then account for the hysteresis
relation

w̃ ∈Kµ(u,w0) :=
∫
P

kρ
(
u,w0

ρ

)
dµ(ρ) in ]0, T [, a.e. in�. (6.12)

Therefore Problem 2 can be regarded as a weak formulation of an initial- and
boundary-value problem associated to the system (6.9) and (6.12).

7. Existence result for the Preisach operator

We still assume thatµ is a finite positive Borel measure on the Preisach half-plane
P := {ρ := (ρ1, ρ2) ∈ R2: ρ1 < ρ2}. The following extension of Lemma 5.2 can be
justified by the same argument.

LEMMA 7.1. –. Let A be any measurable subset ofP . Assume thatz,w and the
sequences{zm}, {wm} are such that

zm→ z weakly inL2(Q)∩H−1(0, T ;H 1(�)
)
, uniformly w.r.t.ρ in A,

wm→w weakly star inL∞(Q×A), (7.1)

‖wm‖L1(�×A;BV(0,T )) � Constant.

Then ∫
A

dµ
∫∫
Q

wmzm dx dt→
∫
A

dµ
∫∫
Q

wzdx dt. (7.2)

THEOREM 7.2. – Assume that(6.1) and (6.3) hold, thatF ∈W 1,1(0, T ;H−1(�)),
and that

ρ1 + ρ2 ∈L1(P;µ). (7.3)

Then there exists a solution(U,w) of Problem2 such that

U ∈W 1,∞(0, T ;L2(�)
)∩L∞(0, T ;H 1

0 (�)
)
. (7.4)
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Proof. –This argument is partly similar to that of Theorem 5.3.
(i) Approximation.Let us fix anym ∈ N, and definek, u0

m, w0
m, Fnm, Gρ andgρ as in

Section 5.

PROBLEM 2m. – To findunm ∈ H 1
0 (�) andwnm ∈ L∞(�× P) for n = 1, . . . ,m, such

that, settingw̃nm := ∫P(wnm)ρ dµ(ρ) a.e. in�,

(
wnm
)
ρ
∈Gρ(unm, (wn−1

m

)
ρ

)
a.e. in�×P , for n= 1, . . . ,m, (7.5)

unm − un−1
m

k
+ w̃

n
m − w̃n−1

m

k
− k

n∑
j=1

	ujm = Fnm in H−1(�), for n= 1, . . . ,m. (7.6)

For anyn the functional

Ĵ nm : v  →∫
�

[
v2

2
+
∫
P

gρ(v, x)dµ(ρ)+ k
2

2
|∇v|2 + k2

n−1∑
j=1

∇ujm · ∇v − (un−1
m + w̃n−1

m

)
v

]
dx

− k〈Fnm, v〉 (7.7)

is (strictly) convex, lower semicontinuous and coercive onH 1
0 (�). Hence it has a

(unique) minimizerunm, and ∂Ĵ nm(u
n
m) ! 0 in H−1(�). This inclusion is equivalent to

the system (7.5) and (7.6).
(ii) A priori estimates.We shall denote piecewise-linear and piecewise-constant

interpolate functions as in Section 5. Let us multiply Eq. (7.6) bykunm, and sum for
n= 1, . . . , �, for any� ∈ {1, . . . ,m}. Integrating (5.10) inP , we have

�∑
n=1

(
w̃nm − w̃n−1

m

)
unm =

�∑
n=1

∫
P

[(
wnm
)
ρ
− (wn−1

m

)
ρ

]
unm dµ(ρ)�

∫∫
P

1ρ
(
(wm)ρ, �k

)
dµ(ρ)

a.e. in�, for �= 1, . . . ,m.

We then get

1

2

∫
�

[(
u�m
)2 + ∣∣∇U�m∣∣2 − (u0)2

]
dx +

∫ ∫
�×P

1ρ
(
(wm)ρ, �k

)
dx dµ(ρ)� k

�∑
n=1

〈
Fnm,u

n
m

〉

a.e. in�, for �= 1, . . . ,m. (7.8)

A standard calculation then yields

‖Um‖W1,∞(0,T ;L2(�))∩L∞(0,T ;H1
0 (�))

,
∥∥1ρ((wm)ρ, ·)∥∥L∞(0,T ;L1(�×P)) �C3. (7.9)

(iii) Limit procedure.By the above estimates, there existU,w such that, asm→∞
along a suitable sequence,

Um→U weakly star inW 1,∞(0, T ;L2(�)
)∩L∞(0, T ;H 1

0 (�)
)
, (7.10)

wm→w weakly star inL∞(Q×P). (7.11)
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SettingUm := ∫ t0 ūm(·, τ )dτ a.e. inQ, (7.6) reads

∂

∂t

(
um + w̃m)−	Um = F̄m in H−1(�), a.e. in]0, T [, (7.12)

and passing to the limit we get (6.9), whence (6.6) follows on account of the initial
condition (6.10).

(7.5) entails

[
(w̄m)ρ − 1

]
(ūm − ρ2)� 0,

[
(w̄m)ρ + 1

]
(ūm − ρ1)� 0 a.e. inQ×P, (7.13)

whence, for any nonnegativeϕ ∈D(Q×P),∫
P

dµ(ρ)
∫∫
Q

[
(w̄m)ρ − 1

]
(ūm − ρ2)ϕ dx dt � 0,

∫
P

dµ(ρ)
∫∫
Q

[
(w̄m)ρ + 1

]
(ūm − ρ1)ϕ dx dt � 0.

(7.14)

We claim that (see below for the argument)∫
P

dµ(ρ)
∫∫
Q

(w̄m)ρūmϕ dx dt→
∫
P

dµ(ρ)
∫∫
Q

wρuϕ dx dt. (7.15)

Passing to the limit in (7.14), we then get a system of two inequalities equivalent to (6.7).
(7.8) yields

1

2

∫
�

[
ū2
m + ∣∣∇Ūm∣∣2 − (u0)2

]
dx +

∫ ∫
�×P

1ρ
(
(wm)ρ, t

)
dx dµ(ρ)�

t∫
0

〈
F̄m, ūm

〉
dτ

for a.a.t ∈ ]0, T [. (7.16)

Integrating in]0, T [ and passing to the inferior limit asm→∞, by lower semicontinuity
we get an inequality equivalent to (6.8).

(iv) Proof of (7.15). For anyε > 0, there existsδ > 0 such that, settingPδ := {ρ :=
(ρ1, ρ2) ∈ R2: ρ2 − ρ1 � δ}, we haveµ(P \Pδ)� ε. By (3.13), we have

∫
Pδ

dµ(ρ)
∫∫
Q

∣∣d(wm)ρ∣∣� 2

δ

∫ ∫
�×Pδ

dx dµ(ρ)

T∫
0

ρ2 − ρ1

2

∣∣d(wm(x, ·))ρ∣∣

= 2

δ

∫ ∫
�×Pδ

1ρ
(
(wm)ρ, T

)
dx dµ(ρ)

− 2

δ

∫ ∫
�×Pδ

ρ2 + ρ1

2

[
(wm)ρ(x, T )− (wm)ρ(x,0)]dx dµ(ρ)

� 2

δ

∫ ∫
�×P

1ρ
(
(wm)ρ, T

)
dx dµ(ρ)+ 2

δ

∫ ∫
�×P

|ρ2 + ρ1|dx dµ(ρ). (7.17)
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By (7.9),wm is therefore uniformly bounded inL1(� × Pδ;BV(0, T )). We can then
apply Lemma 7.1 to the sequences{zm} = {ūmϕ} and{w̄m}, which yields

∫
Pδ

dµ(ρ)
∫∫
Q

(w̄m)ρūmϕ dx dt→
∫
Pδ

dµ(ρ)
∫∫
Q

wρuϕ dx dt. (7.18)

Finally, we have∣∣∣∣
∫
P

dµ(ρ)
∫∫
Q

(w̄m)ρūmϕ dx dt −
∫
Pδ

dµ(ρ)
∫∫
Q

(w̄m)ρūmϕ dx dt
∣∣∣∣

�
∣∣∣∣
∫

P\Pδ
dµ(ρ)

∫∫
Q

|ūm|ϕ dx dt
∣∣∣∣� µ(P \Pδ)‖ūm‖L1(Q)max

Q×P
ϕ→ 0 asε→ 0

uniformly inm. Therefore (7.18) yields (7.15).

Remarks. – (i) If F ∈ L1(0, T ;L2(�)) + W 1,1(0, T ;H−1(�)), the formulation of
Problems 1 and 2 and the corresponding existence results are easily extended.

(ii) Theorems 5.3 and 7.2 can be extended if−	 is replaced by any (nondegenerate)
self-adjoint, second order, elliptic operator in divergence form with constant coefficients.
The same applies if terms like∂u

∂t
or ∂w

∂t
are included in the hyperbolic equation.

8. A mean field model

A class of parabolic equations. The representation of the relay operator based on
the confinement condition (3.6) and on the dissipation inequality (3.9) can also be used
to deal with quasilinear parabolic equations with hysteresis of the form

∂

∂t

[
u+Fµ(u)

]+Au= f. (8.1)

The eddy-current Eq. (2.7) is an example of this class. Existence of a solution for
a corresponding initial- and boundary-vale problem can be proved via approximation,
derivation of a priori estimates, passage to the limit. Here the main estimates are derived
multiplying the approximate equation by the approximateu; this applies also ifA is not
self-adjoint. See also Problem 5 below. IfA is self-adjoint, stronger regularity results can
be proved multiplying the approximate equation by the approximate∂u

∂t
; see, e.g., [10,

Chap. IX].

A regularity issue. The formulation of Problem 1 rests on two issues:
(i) the use of the completed relay operators,kρ , in place of the standard relay

operators,hρ ;
(ii) the representation of the condition (3.5) via the inequality (4.5); on account

of Eq. (4.6), this inequality isformally equivalent to (4.10). The latter formula
would be meaningful only if one were able to give a meaning to

∫ t
0 H−1(�)〈∂(u+

w)/∂τ,u〉H1
0 (�)

dτ , or to some other duality product of the same functions
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overQt . Notice that∂w/∂τ is just a Borel measure over̄Q, andu can hardly be
expected to be an element ofL2(0, T ;H 1

0 (�)) or to be continuous in̄Q. Anyway
this shortcoming occurs neither for the ODE

d2

dt2
(u+w)+ au= f, w ∈ kρ(u) in ]0, T [ (a: constant> 0), (8.2)

nor for the parabolic Eq. (8.1) in a single dimension of space, ifA is self-
adjoint. In the latter case indeed, by multiplying the approximate equation by
the approximate∂u/∂t , one can derive a uniform bound for the approximateu in
H 1(0, T ;L2(�))∩L∞(0, T ;H 1

0 (�)), and the latter space is compactly imbedded
in C0(Q̄), for N = 1.

Concerning equations including the Preisach operatorFµ, if this operates inC0([0, T ])
then it is equivalent to deal withkρ or with the originary relays,hρ . In the other cases the
extension (i) is actually needed. Indeed, even for the Cauchy problem for the ODE (8.2)
one can easily construct a functionf for which the only solution is such thatw does
attain values in]−1,1[.

A mean field model. The above regularity problems are removed if Eq. (1.1) is
coupled with a relation of the form

w=Fµ(u ∗ η) ∗ η inQ. (8.3)

Hereη is abell-shapedmollifier, for instance,

η(x) := (πλ)−3/2 exp
(
−|x|2
λ

)
∀x ∈ R3 (λ: constant> 0);

by ∗ we denote the convolution in space,u ∗ η(x) := ∫
R3 u(x − y)η(y)dy for any

x ∈ �. Prior to convolution, hereu has been extended with value 0 outside�. The
transformationu  → u ∗ η may be interpreted as a length-scale transformation from
mesoscopic to macroscopic variables; (8.3) then represents amean fieldhysteresis
relation.

Let us assume that

u0, z0 ∈ L2(�), F ∈L∞(0, T ;H−1(�)
)
,

|z0| � 1, z0 =−1 if u0< ρ1, z0 = 1 if u0> ρ2 a.e. in�,
(8.4)

fix any a > 0, setXt := C0([0, t];H−a(�)) for any t > 0, and define
∫
�̄ 1ρ(·, t) as

in (3.12).
We can now provide a weak formulation of the initial- and boundary-value problem

associated with (1.1) and (8.3). For the sake of simplicity, here we just deal with a single
completed relay, i.e., we assume thatµ is a Dirac mass concentrated at a point of the
Preisach plane.

PROBLEM 3. – To findU ∈W 1,∞(0, T ;L2(�))∩L∞(0, T ;H 1
0 (�)) andz ∈L∞(Q)

such thatγ0U = 0 a.e. in (� × {0}) ∪ (∂� × ]0, T [), |z| � 1 a.e. inQ, and ∂z/∂t ∈
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C0(Q̄)′. Moreover, we set

u := ∂U
∂t
, w := z ∗ η a.e. inQ, z(·,0) := z0, w0 := z0 ∗ η a.e. in�, (8.5)

and require that

∫∫
Q

[(
u0 +w0 − u−w)∂η

∂t
+∇U · ∇η

]
dx dt =

T∫
0

〈F,η〉dt

∀η ∈ C1(Q̄), η= 0 a.e. in
(
�× {T })∪ (∂�× ]0, T [), (8.6)

(z− 1)(u ∗ η− ρ2)� 0, (z+ 1)(u ∗ η− ρ1)� 0 a.e. inQ, (8.7)

X′
t

〈
∂w

∂τ
,u+w

〉
Xt

� 1

2

∫
�

[
w(x, t)2 −w0(x)2

]
dx +

∫
�̄

1ρ(z, t)

for a.a. t ∈ ]0, T [. (8.8)

Interpretation. In Section 4 we saw that (8.6) is equivalent to the system (4.6)
and (4.7). By the regularity we assumed forU andz, we haveu+w ∈L∞(0, T ;L2(�));
moreover a comparison in (4.6) yieldsu+w ∈W 1,∞(0, T ;H−1(�)). Henceu+w ∈Xt
for any t ∈ ]0, T [, by a generalization of the Ascoli theorem. As∂w

∂τ
= ∂z

∂τ
∗ η ∈ X′

t , the
duality pairing that occurs in (8.8) is meaningful. As∫

�

dτ
∫
�

∂z

∂τ
u ∗ ηdx =

∫
�

dτ
∫
�

∂w

∂τ
udx

=
∫
�

dτ
∫
�

∂w

∂τ
(u+w)dx − 1

2

∫
�

[
w(x, t)2 −w0(x)2

]
dx,

by (3.6) and (3.10), (8.7) and (8.8) represent the hysteresis relation

z ∈ kρ(u ∗ η,w0), i.e., w ∈ kρ(u ∗ η,w0) ∗ η a.e. in�. (8.9)

In conclusion, Problem 3 is a weak formulation of an initial- and boundary-value
problem associated to the system (4.6) and (8.9).

THEOREM 8.1. – Under the hypothesis(4.1), Problem3 has a solution.

The argument is similar to that of Theorem 5.3. Problem 3 and the above existence
result can be extended to a general Preisach operator along the lines of Sections 6, 7.

Convergence to an equation without hysteresis. Let us now fix anyr ∈ R, and
deal with the behaviour of the solution of Problem 3 asρ := (ρ1, ρ2)→ (r, r).

PROPOSITION 8.2. – For anyρ ∈ P , there exists a solution(Uρ,wρ) of Problem3
such that, asρ→ (r, r) along a suitable sequence,

Uρ →U weakly star inW 1,∞(0, T ;L2(�)
)∩L∞(0, T ;H 1

0 (�)
)
,

wρ →w weakly star inL∞(Q). (8.10)
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Moreoverw := z ∗ η, where (U, z) is a suitable solution of the following reduced
problem.

PROBLEM 4. – To findU ∈W 1,∞(0, T ;L2(�))∩L∞(0, T ;H 1
0 (�)) andz ∈L∞(Q)

such thatγ0U = 0 a.e. in(�× {0})∪ (∂�× ]0, T [), and such that, setting

u := ∂U
∂t
, w := z ∗ η a.e. inQ, w0 := z0 ∗ η a.e. in�, (8.11)

∫∫
Q

[
(u0 +w0 − u−w)∂η

∂t
+∇U · ∇η

]
dx dt =

T∫
0

〈F,η〉dt

∀η ∈ C1(Q̄), η= 0 a.e. in
(
�× {T })∪ (∂�× ]0, T [), (8.12)

z ∈ sign(u ∗ η) a.e. inQ. (8.13)

The argument is fairly standard. In particular, notice that in the limit we get

(z− 1)(u ∗ η− r)� 0, (z+ 1)(u ∗ η− r)� 0 a.e. inQ,

which is tantamount to (8.13). Therefore Problem 4 is an initial- and boundary-value
problem for the inclusion

∂

∂t

[
∂U

∂t
+ sign

(
∂U

∂t
∗ η
)
∗ η
]
−	U = F inQ. (8.14)

The latter result can also be extended to a general Preisach model; in this case in the
limit one getsz ∈ α(u ∗ η), α being a bounded maximal monotone graph.

9. Remarks and conclusions

About the Preisach model. The Preisach half-planeP is open, i.e., it does not
contain any point of the main diagonal{ρ ∈ R2: ρ1 = ρ2}. Therefore the two curves
that bound the major hysteresis loop can only merge along horizontal branches. For
instance, the hysteresis relations outlined in Fig. 2 and in Fig. 5(a) can be represented in
the formw = Fµ(u), Fµ being a Preisach operator. This does not apply to Fig. 5(b),
which can only represent a relation of the formw = Fµ(u) + ϕ(u), for a suitable
nonvanishing real functionf . (Of course, the latter relation might also be represented
by a Preisach operator if we allowed the support ofµ to intersect the main diagonal. But
other drawbacks would then arise.)

If the w vs. u relation is of the form represented in Fig. 5(b), Theorem 7.2 does not
apply. However, DiPerna [3] proved existence of a solution for the equation

∂2

∂t2

[
u+ ϕ(u)]−	u= f,
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(a) (b)

Fig. 5. Examples of hysteresis loops. Only the first one can be represented in the form
w=Fµ(u), for a Preisach operatorFµ.

for any monotone and strictly convex functionϕ. One might then try to prove existence
of a solution for the equation

∂2

∂t2

[
u+Fµ(u)+ ϕ(u)]−	u= f in Q, (9.1)

by combining the above technique with that of DiPerna.

Other equations. (i) The existence results of Sections 5, 7 can easily be extended
to degenerate hyperbolic equations of the form

∂2

∂t2
Fµ(u)+ ∂u

∂t
+Au= f inQ, (9.2)

whereFµ represents a Preisach operator. As it is easy to see, here one gets the regularity
U ∈H 1(0, T ;L2(�)) in place ofU ∈W 1,∞(0, T ;L2(�)). If in Eq. (9.2) the term∂u

∂t
is

dropped, existence of a solution is an open question.
(ii) As a further example, let us couple the degenerate quasilinear parabolic equation

∂

∂t
Fµ(u)+Au= f in Q (9.3)

with an initial condition forw :=Fµ(u) and with the homogeneous Dirichlet condition
for u. For anyf ∈ L2(0, T ;H−1(�)), we can formulate this problem as follows.

PROBLEM 5. – To findu ∈ L2(0, T ;H 1
0 (�)) andw ∈L∞(Q×P) such that|w| � 1

a.e. inQ×P , ∂w
∂t

∈ C0(Q̄×P)′, and such that, settingw(·,0) :=w0 a.e. in�×P ,



A. VISINTIN / Ann. I. H. Poincaré – AN 19 (2002) 451–476 475

∫∫
Q

[
(w0 −w)∂η

∂t
+∇u · ∇η

]
dx dt =

T∫
0

〈f,η〉dt

∀η ∈ C1(Q̄), η= 0 a.e. in
(
�× {T })∪ (∂�× ]0, T [), (9.4)

(wρ − 1)(u− ρ2)� 0, (wρ + 1)(u− ρ1)� 0 a.e. inQ×P, (9.5)

t∫
0

dτ
∫
�

∣∣∇u(x, τ)∣∣2 dx +
∫ ∫
�̄×P

1ρ(wρ, t)�
t∫

0

〈f,u〉dτ for a.a. t ∈ ]0, T [. (9.6)

Existence of a solution can be proved by a technique similar to that of Section 5. This
formulation and the existence result can easily be extended to the Preisach model.

10. Conclusions

Several phenomena yield second order quasilinear hyperbolic equations with hystere-
sis of the form (1.1) for vector variables; in one-dimensional domains, the latter are
reduced to scalars. However our analysis technique applies to scalar equations in do-
mains of any dimension. It also allows fordiscontinuoushysteresis relations, thus for
the occurrence offree boundaries.

We provided a weak formulation of an initial- and boundary-value problem for (1.1)
in the framework of Sobolev spaces, at first forF equal to arelay operator,then for the
Preisach model. For these problems we proved existence of a solution via approximation,
derivation of a priori estimates, passage to the limit. The dissipative character of
hysteresis provided a uniform estimate for∂wm/∂t in L1(Q); this allowed us to pass
to the limit in the hysteresis relation, via a compensated compactness argument.

We took profit of occurrence of hysteresis to prove stronger results than are known
for the corresponding problem without hysteresis. The equation with hysteresis can
then be used to approximate that without hysteresis; however, if one lets the hysteresis
effect vanish (and thus lets the hysteresis loop degenerate into a curve), then the typical
difficulties of quasilinear hyperbolic equations are retrieved.

The analysis of tensor models of elastoplasticity and of vector models of ferromag-
netism are major issues. For the relevant class of Prandtl–Ishlinskiı̆ models of elasto-
plasticity,F can be represented by a system of variational inequalities. In this case the
analysis of our problem is fairly well understood, see [10, Chaps. III, VII]. (However, an
extension of the Preisach model to rank-two tensors is not a priori excluded.)

The study of vector ferromagnetism looks more challenging; here even the formula-
tion of the vector hysteresis relation is not completely clear. In [12] the Maxwell equa-
tions have been coupled with a vector hysteresis model of [2], distinguishing the cases in
which displacement currents are either included or neglected; existence of a solution has
been proved for the respective hyperbolic and parabolic problems, by using techniques
of the present paper.

The existence results we proved in this article are based on approximation by implicit
time-discretization. This requires the minimization of a (finite) family of functionals;
therefore this approximation procedure is also convenient for numeric implementation.
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For quasilinear parabolic problems with Preisach hysteresis, it is known that the
solution is unique and depends continuously on the data. On the other hand, for
hyperbolic problems the uniqueness of the solution is largely an open question. However,
for one-dimensional systems, Krejčí proved uniqueness in a more restricted class than
that in which we have existence of a solution, see, [6, Section III.2]. Open questions
also include the existence of periodic solutions, and the large-time behaviour of the
solution(s), too.
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