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ABSTRACT. — We study weakly convergent sequences of suitable weak solutions of heat flows
of harmonic maps or approximated harmonic maps. We prove a dimensional stratification fol
the space-time concentration measure and verify that the concentration measure, viewed as
generalized varifold, moves according to the generalized varifold flow rule which reduces to
the Brakke's flow of varifold provided that the limiting harmonic map flow is suitable. We
also establish an energy quantization for the density of the limiting varifo2002 Editions
scientifiques et médicales Elsevier SAS
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RESUME. — Nous étudions des séquences faiblement convergentes de solutions faibles d
flot de chaleur d’applications harmoniques (éventuellement approximées). Nous prouvons un
stratification dimensionnelle pour la mesure de concentration de I'espace-temps et vérifions g
la mesure de concentration, vue comme une varifold generalisée, est sujette a la régle du fl
généralisé des varifolds qui se réduit a la régle du flot de Brakke pour autant que I'applicatior
harmonique soit adéquate. Nous établissons aussi une quantification de I'énergie pour la dens
de de la varifold limite de la séquence2002 Editions scientifiques et médicales Elsevier SAS

1. Introduction

This is the third part of our project initiated in Lin and Wang [31] on the study of the
weakly convergent sequence of smooth (or certain classes of weak) solutions to the he
equation of harmonic maps or approximated harmonic maps (i.e. the negative gradier
flow of the generalized Ginzburg—Landau functionals). The general situation for the
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heat flow of harmonic maps is as follows. Lef(x,¢): M x R, — N be a sequence
of smooth solutions to the heat flow of harmonic maps from-dimensional compact
smooth Riemannian manifolt (with possibly nonempty smooth bounday/) into a
compact smooth Riemannian manifaddc R* without boundary, namely,

du, — Au, = A(u,)(Du,, Du,), N M x R, (2.0

where A(-)(-, -) denotes the second fundamental formAofin R*, such thatu, (x, 1)
weakly converges to(x, 1) in Hl.(M x R, R¥). By the Fatou’s lemma, we may assume
that

1 1
E|Dun|2(x,r)dxdt—> E|Du|2(x,t)dxdz+v (1.1)

and
18,1, |2(x, 1) dx df — |8,u|?(x, t) dx dr + 1 (1.2)

as convergence of Radon measuredbi R, for some nonnegative Randon measures
v, n supported on the so-called energy concentration3set M x R, (see [31]). It

is easy to check that = v, dr for some nonnegative Radon measurgs € R, (see,
Lemma 2.5 below). The main result of [31] is (see Lin [23] for the static cass) to
characterize the necessary and sufficient conditions, under whichv lapith; vanish, in
terms of the existence (or non-existence) of harmonic and quasi-harmonic spheres ini
N. In other words, the necessary and sufficient conditions for such weakly convergen
sequences to be strongly convergent. As a consequence of such a characterization i
new proof of the classical theorem by Eells and Sampson [15] (without the nonpositive
curvature condition onV) under a new set of necessary and sufficient conditions
(cf. [31]). In general, we showed in [31] that, without any extra assumptiorivpn
both v and n are supported on the energy concentration Setvhich is closed and

has locally finitem-dimensional Hausdorff measurg)”, with respect to the parabolic
metric onM x R, , and forP™ almost all such points in the energy concentration set
3, one has the:-dimensional density of (with respect to the parabolic metric) strictly
positive and finite. Moreover, fak! a.e.r € R, v, has the(m — 2)-dimensional density
(with respect to the Euclidean metric @) positive and finite forH” 2 a.e.x € M.

In fact, it was shown by Cheng [9] that for alle R, , the support ofv; has locally
finite (m — 2)-dimensional Hausdorff measure. It is not very hard to generalize the
argument of Lin [23] to show that for.! a.e.r € R,, ¥, = ¥ N {t} and the support

of v, are (m — 2)-rectifiable. Here we shall adopt a different and conceptually much
easier approach in Section 4, namely the generalized varifold approach which is a natur:
extension of the classical varifold concept of Aimgren [3,4] and Allard [6]. Roughly, we
associate each, with a (m — 2)-generalized varifoldV,, on M x R, and show that

V., converges to &n — 2)-generalized varifold/ = V, dr, V, has its generalized mean
curvatureH, € L%, (M, R™) for L* a.e.t € R,, and then the extension of Allard's
rectifiablity result from classical varifolds to generalized varifolds yields that{{x

M: @"2(||V,|l,x) > 0}) is (m — 2)-rectifiable. This rectifiablity result of, was also
proved in a recent paper of Li and Tian [29] for so-called strongly stationary weakly
heat flow of harmonic maps which are weak solutions of the heat flow (1.0) with energy
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monotonicity, energy inequality, and the small energy regularity properties, where they
verified the condition of Preiss’s rectifiablity theorem. As pointed out in [31], although
all the analysis in the present article and in [31,32] are for smooth solutions of the hea
eqguation of harmonic maps (or solutions to the gradient flow of the Ginzburg—Landau
functionals), the facts that we need are exactly these three properties stated above (s
also Section 7 below), therefore all the results of the present article and [31,32] remail
to be true for the class of weak solutions to the heat flow of harmonic maps satisfying
these three properties. For simplicity of descriptions, we will work for solutions to heat
flows of the Ginzburg—Landau functionals only and state some analogous conclusions i
Section 7 for this class of weak solutions of heat flows for harmonic maps.

One of the main results of the present paper is to show the(pairy dr) satisfies
the so-called generalized varifold flow (see Definition 5.5 of Section 5 below for the
definition), as in the recent very interesting work by Ambrosio and Soner [1]. Moreover,
in the case that is a suitable weak solution (e.g. is smooth), i.e. satisfying the
standard energy equality in both local and global forms, theh>o is a Brakke
flow of (rectifiable) varifolds, i.e. flow by the mean curvature in the varifold sense
defined by Brakke [8]. We point out that a weaker version of this fact was also shown
by [29] where a factor% is putted in front of the mean curvature square term of
the energy inequality (5.7). To improve the fac@rto 1 and to establish that the
flow is actually the Brakke flow is one of the most difficult analytical points in all
such related analysis (see also discussions in [1], in particular 86 of [1]). To achieve
such a goal, one method is to establish the local almost conformal property of the
solution map restricted to the 2-dimensional plane orthogonal to the tangent plane ©
the energy concentration sBt(see Section 5 below). We also establish in Theorem 6.7
the energy quantization result in dimension large than two, which extends the mair
result of our part 1l [32]. Note that, in the cagé = S*~1, Theorem 6.7 can be used
to give an alternative proof of the improvement %Jito 1. However, the argument of
Section 5 is independent @¥. The energy quantization in dimension at least 3 was
first established by Lin and Rivieré [27] for stationary harmonic maps into spheres, by
Lin and Wang [28] for approximated harmonic maps, and by Lin and Rivieré [28] for
Ginzburg—Landau vortices iR3. Our result here can be viewed as parabolic version
of [27,32].

Since we can treat smooth solutions to the heat flow of harmonic maps in almost the
same way as that of the heat equation of the generalized Ginzburg—Landau functiona
For simplicity, we will present our result in the context of solutions to the heat flow of
generalized Ginzburg—Landau functional and make remarks concerning the heat flow c
harmonic maps in Section 7. Now let us describe precisely the results and the structur
of the present article.

Fore > 0, we consider the (generalized) Ginzburg—Landau functional

1 1
1. (1) :/<§|Du|2—|— ?F(u)> dx
M



212 F. LIN, C. WANG / Ann. I. H. Poincaré — AN 19 (2002) 209—-259

whereF e C®(R*, R) satisfies:

_[d*(p.N), ifd(p,N)<s,
Fipy= {452, if d(p, N) > 25.

Hered denotes the Euclidean distance®h andd(-, N) = inf{d(-, p): p € N}. Note
thats > 0 is chosen to be so small th&d(p, N) is smooth forp € Nos = {p: d(p, N) <
28}. Letu, € C*®°(M x R,, R*) be solutions to the heat equation

1
Oue — Aue = — fus) (x,1) €M X Ry (2.3)
)

uy(x,0) =uglx), xeM, (1.4)

where f (u,) = —(DF)(u,) andug € C3(M, N) is a given map. We assume throughout
this paper that itV = $*~* then F(p) = (1 — | p|?)? so thatf (p) = p(1 — | p|?) and
(1.4) becomes

1
Oy — Aup = gus(l— |u8|2). (1.5)

It is easy to see thai, satisfies the following energy equality (see also Lemma 2.1

It follows from (1.6) that for anys | O there exists a subsequem:e—> 0 such that
u, = u,, — u weakly in H.(M x R, R*). Moreover, it was shown by Chen and
Struwe [13] (fora M = @) and Chen and Lin [11] (fob M # () that there exists a closed
subsetz = {(X;,t): t > 0} C M x R, (see the definition ok in Section 2 below) such
thatu,, — uin HX.NCL.(M x R, \ =, R¥). In particularu € C*(M x R, \ =, N) is

a smooth solution to the harmonic map flow equation (1.0). Let

1 ) 1
e, (uy)(x, 1) = §|Dun| (x,1) + EF(un)(x, t).

n

We will simply write e(u,) for e, (u,) through this paper as long as there is no
ambiguity. We can assume that

1
e(u,)(x,t)dx dr — E|Du|2(x, t)dx df + v

and
10,1, |2 (x, 1) dx df — |8,u|?(x, t)dx dr + 1

as convergence of Radon measures for two nonnegative Radon measurég on
M x R,.

The stratification for the singular set of area minimizing currents was studied
by Federer [16], who introduced a powerful scheme called the Federer's dimensior
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reduction argument (see also Almgren [3] and the appendix of [33]). White [37]
provided an abstract approach to obtain the stratification for a large class of variationa
problems varying from minimizing currents, energy minimizing harmonic maps, and
mean curvature flows (see also [34] for the stratification for minimizing harmonic maps).
Motivated by these stratification results, we carry out the stratification for the parabolic
concentration sek in Section 3. The stratification Theorem 3.6 roughly says that the
subsetX;, consisting ofzg € ¥ such that theP, -invariant subspace of any tangent
measureu® of u at zo has its dimension of vector space at mésthas Hausdorff
dimension measured in the parabolic metric at nio$dr 0 < k < m.

In Section 4, we adopt the generalizéd — 2)-varifold concept, which is a natural
and very useful extension of the classical varifold concept studied by Almgren [3,4] and
Allard [6], to study the convergence problem in our case through a varifold approach.
Once we associate a sequence of generalized 2)-varifolds, V,,, for u,’s, we can
consider the limiting generalize@n — 2)-varifold V = V, dr of V,,. In Section 4, we
show that forL! a.e.r > 0, the first variation ofV,, 8V,, is a Radon measure which is
absolutely continuous with respect|t¥; || and its generalized measure curvature

8Vf 2 m
H=—— ELHV,H(M’R )
Vel

Therefore ®”~2(||V;|, -) exists forH” 2 a.e. inM. We then show in Theorem 4.9 that
V,L{x € M: 0 < ©"2(|V,||, x) < oo} is a(m — 2)-rectifiable varifold. This, combined
with the observation that foH” 2 a.e.x € X, "~ 2(||V,||, x) is positive and finite,
shows tha®, is (m — 2)-rectifiable.

In Section 5, we continue our discussion from Section 4 and show, in Theorem 5.6
that the pair(u, v, dt) satisfies a generalized varifold flow defined as in Definition 5.5
of Section 5. As a consequence of this generalized varifold flow, we show that if the
limiting map « is a suitable weak solution defined by Definition 5.9, which requires
thatu satisfies the energy equality (both locally and globally), then the defect measure
{vi}>0isin fact a Brakke flow, i.e.,

ﬁ[v[((b) =lim SUDM < -

s—>t s —1

/ (S1H, > — (TS D, H,)) dv,

M

for anys > 0 and¢ € C3(M, R.). One way to obtain the generalized varifold flow is

to apply the energy quantization Theorem 6.1, which however is only proved for sphere
targets at this stage. In Lemma 5.8 of Section 5, we provide another approach to improv
the so-called facto} to 1.

In Section 6, we consider the density functi@”2(||V;|,-). Under the extra
assumption thatv = S~ ¢ R*, we show a quantization result f@”—2(||V,||,-) in
Theorem 6.1 and Theorem 6.7, which roughly says that for almogg all(xo, 1p) € X,
O"=2(||V,oll, x0) is the sum of energies of finitely many harmorsi¢'s. This type of
result is obtained by estimating the normfi, in the Lorentz spaces?! and L%,
which is a highly nontrivial observation in dimension large than two and largely owns
its origin from Lin and Rivieré [27].
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Section 2 of the paper is devoted to the collection of some necessary facts neede
later, and in Section 7 we make a few remarks concerning either smooth solutions to th
heat flow of harmonic maps or the weak solutions satisfying energy inequality, energy
monotonicity inequality, and they-regularity.

2. Basic estimates

This section is devoted to establishing some necessary facts needed for later sectior
First let us recall some useful notations from [11,13,35]. &atenote the parabolic
metric onM x R, defined by

8§((x,0), (y,8)) =max{|x —yl, /It —s|}, V(x,1),(y.s) €M x R,.

For 0< I < m, let’ P! denote thé-dimensional Hausdorff measure #hx R, (or R™ x
R.) with respect to the parabolic metdgand H' denotes thé-dimensional Hausdorff
measure ord/ (or R™) with the Euclidean metric. Falp = (xo, o) € R™ x Ry, let G,
denote the backward heat kernel:

|x — xo|?

Go(x,t) = (4 (to — t))_% exp(—m

), xe€R™ O0<t <t

Leti(M) > 0 denote the injectivity radius dff. For O< R < {@, (M)}, let

Sg(z0) = M x {t =t — R?},

Tr(zo) =M x {t € Ry to—AR* <t <to— R?},
and
Pr(z0) = Br(xo) x [to — R% to+ R?,

whereBg(xg) C M denotes the geodesic ball with centgrand radiusk.
For solutionsu, € C*(M x R., R*) to (1.3)—(1.4). Define two normalized energy
guantities as follows.

W, 20, R) = / n2(0)e(us) (x, )Gy (x, 1) dr o,

Tr(z0)

® (s, 20, R) = R? / 2(0)e(ue) (6, 1)G oy (x. 1) dh,

Sr(z0)

for 0 < R < min{*2,i(M)}, heren € C4(M) satisfies that) = 1 on B,,(xp), n = 0
outsideBa,,(xo), and|Dy| < %

Now we recall the energy inequality, energy monotonicity inequality, and small energy
regularity from [13].
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LEMMA 2.1 (Energy equality). etu, € C®(M x R,, R*) solve(1.3)—(1.4) Then
we have, for any € C3(M, R,) and0 < #; < 1 < o0,

/ o) (x, 1) () dx — / e(us) (x, 12) (x) dx

M M

5] 2
=//¢(x)|8,ug|2(x,t)dxdt+//Dqﬁ(x)Dug-B,ugdxdt. (2.1)
n M nm
In particular,

e(uy)(x, 1) dx — [ e(uy)(x, ) dx = 10,1, |%(x, 1) dx dr. (2.2)
LR —

M 1 M

LEMMA 2.2 (Energy monotonicity inequality). ket u, € C*(M x R, R¥) solve
(1.3)—(1.4) Then

Ry
X — xg) - Du, + 2(t — t9)d,u,|? F(u,
\I’(ME»ZOaRl)'i'C/r_l / <772|( 0 ( )| +772 ( ))Gzo

|to — 1] &?
Ry Ty (z0)
< &R ROY (y,, 70, Ry) + CEg(R2 — Ry), (2.3)
® (u,, z0, R1) <R RV D (u,, 70, Ry) + CEo(R2 — Ry), (2.4)

for zoe M x R.,, 0 < Ry < Ry < min{@,i(M)}. Here ¢, C > 0 depend only on
M,m,N,andEq=1 [, |Du.|?(x,0).

LEMMA 2.3 (go-regularity). —There existeq, 89, Co > 0 such that if, for somé® <
R < min{2, i (M)}, ¥ (u,. zo. R) < £2, then

sup  e(ue)(2) < Co(8oR) ™% (2.5)

2€PsyRr (20)

Fore, | 0, we assume that, = u., — u weakly in H..(M x R, R¥). Then there
exist two nonnegative Radon measureg on M x R, such that

1
e(uy,)(x, 1) dx dr — 5|Du|2(x, Hdxdr +v=pu,

18,1, |%(x, 1) dx df — |3,u|?(x, 1) dx dt + 7,

as convergence of Radon measuredbr R, . Moreover, if we define the concentration
set

> = U {z EM x R,: nli_)moo / n?(x)e(u,)G, > 8(2)},

O<R<rg Tr(2)

whereg is given by Lemma 2.3. Then the following facts are known:
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FACT 2.4 ([13]). —X is closed andP™ (X N Px(0)) < Cr < oo, for any R < oo.
FACT 2.5 ([13]). —u, — u strongly inHL. N CL.(M x Ry \ T, RY).

FACT 2.6 ([13]). —u € C*°(M x R, \ X, N) is a weak solution of the heat flow of
harmonic mapg1.0).

FACT 2.7 ([9]). —For anyt > 0, let X, = £ N {¢t}. ThenH"2(X, N K) < Cx < 00,
for any compack c M.

FACT 2.8 ([31]). — singu) U spt(v) = X, sptyp C X.

FACT 2.9 ([31]). -For anyz € M x R, fTR(Z) n%(x)G.(x,t)du(x, t) is monotoni-
cally nondecreasing with respect fa Hence

0" (1, 2) =lim / 2(0)G. (x, 1) du(x, 1)

Tr(2)

exists for allx e M x R, and is upper-semicontinuous functionzoin particular,
Y={zeMx R,: e5<0O"(1,z) <0}

FacT 2.10 ([31]). —For P" a.e.z € %,

@m(u,z)zllirﬂ)R_m / |Dul?(x,t)dxdr =0, and ©"(v,z)=0O"(u,z).

Pg(z)

FACT 2.11 ([31]). —u, doesn't converge ta strongly in Hl.(M x R, R) if and
only if P (X) > 0 and there exists at least one harmostcin N.

Now, we add two more lemmas needed later.

LEMMA 2.12.-Under the same notations as above, we have

1
lim ?F(un)(x,t)dxdt:O, VO<r<T <oo. (2.6)

n—oo

Mx[,T] "

Proof. —It follows from the Fact 2.5 that for ang > 0, we have

1
lim / = F(u)(x, ) dv o =0
n—00 &z

Mx[t,TIN(ED) g

wheres! =, (%, x {sh) and(X])s ={ze M x [t, T]: 8(z, ) < B}. It suffices to
show that
1
lim = F(u,)(x, 1) dx df = O(B). (2.7)
8”

n—oo
=g
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On the other hand, for any € =/, (2.3) gives

B
B . _ 1
\/ (M, 20, E) + nll_)moo Fl / ?F(MH)GZO <ePW(u, zo, B) (2.8)
B TGo "

for sufficiently smallg > 0. Moreover, since lim,o W (i, zo, B) exists, we may assume
that

“I’(V«, 20, B) — W (M 20, g) ‘ =0(p), VBKL1

Therefore we have

15 1
r~1lim / ?F(un)Gm:O(ﬂ).

n—oQ P
T, (z0)

[N \K:u

This, combined with the Fubini’s theorem, implies

n—0o0
T5(z0)

im [ 5Fw.)G.,=0ep)
8”

for someg € (4, B). In particular, we have

. 1
imo [ SFw) =0

Bg(xo)x[ro—ﬁz,ro—%
This, combined with a simple covering argument, implies (2.7).
LEMMA 2.13. —There exists a subsequence:0f> oo such that
e(un/)(xat)dx_)l’(/la Vt>09

as convergences of Radon measures, for a family of nonnegative Radon méagyres
on M. In particular, s, = 3| Du|?(x, t) dx + v,, . = p, dt, andv = v, dt.

Proof. —The idea here is similar to that of Brakke [8] (see also llmanen [20]). For
completeness, we outline it here. Ilget C3(M, R.). Then (2.1) implies

% [ deten == [ ¢l ~ [ D#Duu,
M M M

<C(9) /d)(X)IDunlz(x, 1) dx < C(¢) Eo,
M
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where C(¢) = sup¢>0% < sup¢>0|D2¢| > 0 and Eqg = E(u,(-,0)) denotes the
energy of the initial data. Hence

/ $eu,) — C(@)Eot

M

is monotonically nonincreasing with respectte 0. Let B C R, be a countable dense
subset. By the weak compactness of Radon measures with locally bounded masses, &
a diagonal process, we can assume that

e(u,)(x,t)dx — u,, VteB.

Now, let {¢;};>1 be a countable dense subsetdp(M, R.). By the monotonicity of

Sy de(u,) —C(¢)Eot, there exists a co-countable set- R, such that for any € C and

i > 1, uy(¢;) is continuous at as a function of € B. For any fixedt € C, there exists a
further subsequenoe; — oo and a limitu, such thatu,; — u,. Hence{,(¢:)}sepup)

is continuous at, for all i > 1. Hencep, is uniquely determined by for s € B.
Thereforeu, — u,. Note thatR, \ C is countable, we can do another diagonal process
to show the result oR, . O

3. Dimension reduction and stratification of the concentration set

In this section, we will establish the stratification result for the energy concentration
set X. To do it, we consider the spac#,u, of all tangent measures qf at each
z € . We show that for eac® e T, u°LR”*! is invariant under the parabolic
dilation P, for all » > 0. For eachu® e T, we then associate a nonnegative integer
d which is the dimension of the large®, -invariant subspace insid& (0" (u°)) =
{ze R™L 0" (10, 2) = @ (1P, 0)}. Using this integer, we can stratify accordingly.
The proof of the stratification is based on an extension of the well-known Federer’s
dimension reduction argument [16,3], and [33]. We would also like to remark that a
similar scheme has been carried out by White [37] in an abstract way, with applications
to mean curvature flows.

For simplicity, we assum&f = R™ in this section. Note that the norm of the parabolic
metric in R+ is

1Ge, )1 = max{|x|, /] }.

Define the parabolic dilation by

X—Xg —1p
Paatrn) = (5720150
for zo = (xo, 1) € R"** andx > 0. Define the Euclidean dilation by

X — X
Dy (x) = AO, x € R"
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for xo € R™ and > 0. DenoteR” ! = R™ x R, andR™ ™ = R™ x R_. The Hausdorff
dimension of a subsete R”*! is the Hausdorff dimension with respect to the parabolic
metric §. We write & = {(X,,7): 0 <t < o0}, herex, = £ N {t}. Foreg, > 0, let
u,: R" — R¥ solve (1.3)—(1.4), withe = ¢,. Recall that (2.4) implies that for @

Ry< Ry < Y2,

CD(an 20, Rl) - q)(l/ln, 20, R2)

Ry
N 1// 12(tg — )0,u,, — (x — x0) Du, |2
2

G,d 3.1
P 20 3.1

Ry R™

where® (u,, zo, R) = R? Ji—io—r2 €n)(x, )G, (x, 1) dx. By (1.6) and Lemma 2.5, we
can assume that

e(u,)(x,t)dxdr - pu=pu, de

as convergence of Radon measuresRLfT*l, for some nonnegative Radon measures
{m:}:~0 ON R™. From (1.6) and (3.1), we have

sup r" (P (x, 1)) < o0 (3.2)

(x,t,r)ERM™X Ry xR
and

0" (20 =M R [ Gy

t=tg—R?

exists for allzo € R Moreover, the Fact 2.9 implies that
T ={ze R <O (1,2) < 00}.

Forzo € ¥ anda; | 0, we define the parabolic rescalings,afP, ,-1(u), by

P st (A) =2"u(P, ,-1(A)), VBorelAc R™™.

Then it follows from (3.2) that we can find a subsequehgeof A; and a nonnegative
Radon measurg® on R™*! such that

0
PZOY)L[—/l — U

as convergence of Radon measuresRar™.

DEFINITION 3.1. —For any zo € X, the tangent measure cone pfat zo, 7.,(1),
consists of all nonnegative Radon measuren! obtained by

T, (1) = {n% there exists a&; |, 0 such thatP, ,-1(u) — 1o}
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Note that for any;o € £ and u° € T,,(n), we haveu® = 2ds and for any(x, ) €
Rm+1

O" (10, (x, 1), r) =2 / G ey (v, $) du(y)

s=t—r2

is monotonically nondecreasing with respect t¢lence

0" (u°, (x,1)) = lim ©" (1°, (x,1),7)

exists for any(x, 1) € R™** and is upper semicontinuous.
LEMMA 3.2.—For anyzo € ¥ and u° € T,,(). Thenu®LR™*1 is invariant under
all parabolic dilationsP;, i.e.,
Py (uPLR™ ) = uOL R, (3.3)
Proof. —It follows from Lemma 2.5 that® = .2dt. Therefore,
Po (LR =Po ({(1f. 1) 1 < O})
— (D (1), 22): 1 <O}
= {D((1%,).1): 1 <0},
Here D, (u®)(A) = A2 u2(1A) for any borel setA C R™. Hence, it suffices to show
that
Di(n) =n, V<O, (3.4)
A

Sincei > 0 is arbitrary, it suffices to prove (3.4) fo= —1, which is equivalent to

pm=2 / ()G Ox, —1) A0, o(x) = / NG, —Ddu®, (), (3.5)
R™ R™

for any¢ € C3(R™) andG = G g0 On the other hand, we know that there exists, 0
such thatv, (x, 1) = u, (xg + A,x, fg + kﬁt) satisfies (1.3), witlz, replaced by, = i—
and

e(uy)(x, 1) dx = ez, (v,)(x, 1) dx — u°, VreR
as convergence of Radon measuresR@n Then, for anyR > 0,
R? / Gdul = lim R? / e(v,)(x, )G (x, 1) dx
1=—R2 t=—R?

H 2
= lim®1)? [ Gende
1=19—R?).2

= 0" (1, 20).
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This, combined with (3.1), implies that, for any<0r; < r, < 00,

t=—r3

lim / /\xDvn+2za,vn\G 0. (3.6)

n—oQ
1=—s2 R"

Therefore, in oder to prove (3.5), it suffices to show

lim i ()Lm 2 / d(Ax)G(Ax, —De(v,)(x, —k_z) dX> =0. (3.7)

n—oo d\
t=—1

Note that

ddx (k’” -2 / d(AxX)G(h, x, —De(v,)(x, —A‘2)>
t=—1

:%(/ qb(x)G(x,t)e(v;\)(x,t)dx)

/GD¢D — —/qs(a*—}D )i G
v, @ v, 1 U, 2x v, @ v,

t=—

- _Z / lyDv, + 218,v,>Gé (%) - / qu(%) G Dv,(yDvy + 2t9,v,).
t=—22 t=—22
Here v*(x, ) = v,(Ax,A%) and e(v})(x,t) = ez (v})(x,1). Hence, integrating the
A
identity from 1 toA and using (3.6), we see that (3.5) holds:

From Lemma 3.2, we see that for anye ¥ andu® € T, u,
R? / Gdul=0" (pco, 0) =0"(u,z0), YR=>0 (3.8)
t=—R?

and, for anyz € R”*1 andi > 0,

0" (u° ) = O™ (1o, Po(2)). (3.9)

In general, we have

LEMMA 3.3.-For zo € ¥ andu° € T,,(u), we have
(1) ©"(u°,z2) <O (1’ 0),Vz € R™.
(2) If z € R™*! satisfies®™ (u°, z) = ©"(u°, 0), then

0" (1% z+v)=0"(u% z+Pv), VaA>0,veR" (3.10)

Proof. —(1) For u° € T, (1), there exists; | O such thatP,,,.(n) — u°. For any
r > 0andz = (x, 1) € R"*1, we have
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0" (1u°,z) <O (1 z,7)
- I,i% O™ (Peo (), 2,7)

=lim ©" (w, z0 + (rix, r2t), rlr)
r1¢0

< O™ (1, z0) = 0" (u°,0).

Here we have used the upper semicontinuitydf(u, -, -) in its last two variables.

(2) From the proof of (1), we see that@” (1°, z) = @ (u°, 0) then the inequalities
are all equalities. In particula®™ (11°, z, r) is constant with respect to> 0. Applying
the argument of Lemma 3.2, we see th#t(u°, z + v) = @ (u°, z + P, (v)) for any
ve R"landr>0. O

For anyzo € ¥ andu® € T,, (1), denote

M(@"(u° ) ={ze R" 0" (1% z) = 0™ (u° 0)},

V(O (1) = M (0" (u°,)) N{r =0},
and

w(em (MO, ))={xeR": " (MO, (y,5)) =0" (pco, (x+y,5)),VY(y,s) € R’f“}.

Then we have

PROPOSITION 3.4. —For zo € ¥ and u® € T, (n), we have V(@™ (u°, ) =
W (@™ (10, -)). In particular, both V(©™ (12, -)) and W(®™"(u°, -)) are subspaces of
R™. Moreover, M(®™ (u°,-)) is V(©™(u° ) or V(©™(u° ) x (—o0, a] for some
0<a<ooand®™(u? ) is time-independent up to=a.

Proof. —It is clear thatW (0" (1°, -)) c V(@™ (u°, -)), V(©™(u°, ) is closed under
scalar multiplication, anad W (@™ (u°, -)) ¢ W (@™ (u°, -)) for any integer. For any
(x,0) # (0,0) € V(®™(u0, ), v e R™1, andi > 0, we have

O™ (1°, (x,0) +v) = O™ (u°, (x,0) + Pv)
= 0" (u% Py-1((x,0) + Pyv))
= 0" (u°, Pi-1(x,0) +v)
so that
0" (1, (x,0) +v) = @™ (1u°, Py1(x, 0) +v). (3.11)
Note thatv — P,-1(x, 0) € R"*1. Hence, replacing by v — P,-1(x, 0) gives

" (1% (x,0) + v — Py-1(x,0)) = O™ (1u°, v). (3.12)

Taking A into zero and using the upper semicontinuity@f (.°, -), we obtain, from
(3.11) and (3.12),

O™ (1l v) =0 (1% (x,0) +v), VveR™
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This implies thatV (@ (u°, -)) ¢ W(@™(u0, -)). HenceV (@™ (u°, -)) = W(@™ (i, )
and is a subspace &".

Suppose thak = (x,1) € M(©™(u°, -)), with r < 0. Then, for any¥ = (y, s) with
s <t andx > 0, we have

O" (1, P, a(Y)) = 0" (10, ¥Y) = 0" (u°, X + P, 1(Y — X)).
Note thatsi =2 < s < ¢, for A < 1. Hence replacing’ by P, (Y), we get
O"(ul,Y)=0"(u°, X +Y — P, 1(X)).

Taking A into zero, we have®” (1Y) < ®"(u°, X + Y). By substitutingY by
Y 4+ P,-1(X), we also get

" (ul, Y + P (X)) =0 (u%, X +Y)
this implies®™ (u°, Y) > @ (u°, X + Y). Therefore, we have
Q" (1% Y)=0" (1, X +Y), VX=(x,1),Y=(,s),s<t<O0. (3.13)

This implies, by choosing = (n — 1) X,
Ok (;LO, 0)=0" (MO, (nx,nt)) = O™ (MO, P (nx,nt))

=" (MO, <x, %)) <O"(u° (x,0)).

Therefore(x, 0) € V(@™ (u°, ) = W (@™ (u°, -)) and(0, r) € M(©™(u°, -)). In partic-
ular, " (0, -) is time-independent up to time= 0.

If X =(x,1) e V(©" (0, ), witht > 0, then we can prove similarly thét” (.9, -) is
time-independent up to timeLets = a > 0 be the maximal number such tiext (.°, -)
is time-independent up to = a. Then one getsV(®™(u°,-)) = V(@™ (u°, ) x
(—o0,al. O

DEFINITION 3.5.—For zo€ ¥ and u® € T, (%), define dint@™ (1%, -)) by

di " (ud, - 2, it M(O" (0, )=V (O"(u°,- R
dim(er (42, ) = | AV (O (W2 )42, i M(O" (1, ) =V (0" (4°.))
dim(v (0™ (u°,-))), otherwise.
Now we are ready to prove the main theorem of this section.
THEOREM 3.6. —For 0< k < m, let

¥ ={z0€ = dim(@™ (1, ) <k, VYule T, (w)}.

Thendim(X,) < k for 0 < k < m, and X is discrete. In particularz = o U (21 \
o) U---U(Z, \ Tno1), and forP” a.e.z € X, there exists at least ong® e T.(1)
such that

n®=0"(u, z) (H"2LT,_2) x (L'LR).
HereT,,_» C R™is a (m — 2)-plane.
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Proof of Theorem 3.6. Fhis is essentially an extension of the Federer's dimension
reduction argument. It suffices to show thatiif (%;) > 0 thend < k. Thus we only
consider such d. First, denoteA, , = P, .(A) for A ¢ R, z € R™*1, andA > 0. Let

C={V xR, orV: V C R" asubspace of dit¥) <k — 2}
U{V x R_: V C R" asubspace of diti¥) <k}.
Then we have
CLAIM 3.7.-For anyzg € ¥, andr > 0 there exists) = n(z, €) > 0 such that for
anyp e (0, ¢)
({w € P,(2): ©" (1, w) > O™ (1, 2) —n}), , C e-neighborhood of, (3.14)

for someC € C. Heree-neighborhood is measured with respect to the parabolic métric
For, otherwise, there exisp > 0, zg € Xy, andp;, n; | 0 such that
Bi={z€ P1(0): O"(Py (1), 2) = O™ (1, 20) — ni }
¢ eo-neighborhood of ang € C.

On the other hand, we may assume ti#g} , (u) — ul e T.,(w) and B; - B C
M@©"(u°, ) ={z e R™% 0" (u° z) = ®" (i, z0)}. By Lemma 3.4, we know that,
among the four possibilities af7 (@ (u°, -)), only M(©™(u°, ) = V(O™ (u°, ) x
(—00, a] for somea > 0 is not inC. However, even for such a possibility, we can find
r; 1 0 such thatP,, (u°) — !, and by the uppersemicontinuity

0" (ut,w)=0"(uh0)=0"(1°0), VYweV(®"(K’)) xR

this implies thatM (@™ (u°, -)) ¢ M(©®™(u?,-)) € C. Therefore we get the desired
contradiction.

Now we proceed as follows. Let | 0 and decomposE = U; ,>1 Zk.i.q, hereXy ;4
denotes points wher®™"(u, -) € ((g — 1e;, ge;) and Claim 3.7 holds witle = &;.
Therefore, for each, there existg; > 1 such thatP? (%, ,,) > 0. By the lower bound
for the upper density (cf. [16]), we know that there exist X ; ,, andr; | O such that

,deoo((zksi,qi)znri) > lo_d~ (315)

HereP4> denotes thel-dimensional Hausdorff measure with size. Moreover, for
eachz € (ki q,)z.r, there existeC, e C such that

(i), ,, — 2 C &i-neighborhood of..
We may assume thaky ; ,,).,.» — X:°. Then we have
X —zCC.,, VzeX® and P ®(zX) >10". (3.16)

ForanyC € C, let = - ={z € 1 §(C,, C) < j~1}. Then for eacty there exist<; €
Csuchthatt?’, = 5p° - has positiveP‘-measure. Therefore, there existe £° and
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p; { 0 such that
PE((B8),y.0,) 2 107 (3.17)

Assume thaC; — C € C and(E%).;.,; = =®. Thenz™ C Co, P*(£®) > 0, and
2® — 7z C Co Wheneverz € X°. In particular, we havee® C Co, N (—Cy). But we
note that ifC,, = V5 x R_ for some vector subspadé, C R™ thenCy N (—Cy) =
Vs. HenceP?(Vy,) > 0 implies thatH¢(V,,) > 0 so thatd < k. For Co, = V,, OrF
Ve X R, We Se6Cq N (—Co) = Cop SO thatP?(=>) > 0 implies thatP?(Cy) > 0 so
thatd < k again. O

4. Generalized varifolds and rectifiablity of the concentration set

In this section, we first recall some of the classical theory of varifolds, which was
studied by Almgren [3,4] and Allard [6] (see also Simon [33] for details), and at the
same time we also recall the notion of generalized varifolds, which was remarked by
Almgren [4] and recently adopted by Ambrosio and Soner [1] in their study of the
dynamics of Ginzburg—Landau equations with complex values, and Lin [24] in the study
of mapping problems.

For simplicity, we assume, throughout this section, tfat R™. For 1< 1 < m, let
G;(m) denote the standard Grassmann manifold-dimensional unoriented planes in
R™. For a bounded domaift ¢ R™, recall al-varifold in  is just a Radon measure
in Q x G,(m), and letV,(2) denote all-varifolds in 2. The weight||V || of V € V()
is t(V), wheremr (x, A) =x: Q2 x G;(m) — Q. AsetE C R™ is called/-rectifiable if
except a zerdd! measure subsef can be covered by countably mahgimensional
C! submanifolds ofR™. A V e V() is said to bd-rectifiable varifold if there exist a
[-rectifiable setE C Q and a locallyH' integrable and a positive functighsuch that
V =8, :0H'LE for H' a.e. inQ, hereT, E denotes the tangent plane Bfat x and
51, denotes the Dirac massAtE. Let RV;(2) denote all-rectifiable varifolds.

Now, we recall the definition of generalized varifolds from [1].

DEFINITION 4.1.—A [-dimensional generalized varifoltl is a nonnegative Radon
measure o2 x A, ,,, where

Ay ={A€R™"™: Aissymmetric, tracel) =1, -1, < A< 1,},

wherel,, denotes the identity matrix of order. The class of all generalizdevarifolds is
denoted by/,*(€2). Again, let|| V|| denote the weight af € V;*(2). SinceG,(m) C A; ,
we know that;(22) C V*(Q2).

DEFINITION 4.2. —For any givenV € V*(Q2), the first variation ofV, sV, is a
distribution onC3(Q2, R™) defined by

SV (X)=— / DX(x): AdV(x, A), VX eCL(Q, R™). (4.1)
QXA m

HereA: B =3, A;;B;; for A, B € R™*™. Vis called stationary iV =0.
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Note that if6 V is a Radon measure, that is, if
I8VI(G) =sup{[8V (X)|: X € C5(2, R™), || X |z~ < 1, sptX) C G}
<C(G) <00, VG EQ. (4.2)

Then the Riesz Representation Theorem implies that

(SV(X):/X(x),B(x)d||5V||(x), VX € C}(Q, R™) (4.3)
Q

herep is a||§V ||-measurables”*-valued function. IfjsV || < ||V, then we have

sV(X) = /(H(x), X@)d|V(x), VXe Cé(Q, R™), (4.4)
Q

whereH : Q2 — R™ is a||V||-measurable function, which we call the generalized mean
curvature ofV.

Note also that the convergence Wfe V,*(2) is understood as weak convergence of
Radon measures @ x A, ,,. Moreover, ifV,, — V, then§V, — §V as distributions. In
particular, if sup |6V, [|(A) < oo, then

18V I(A) < liminf |8V, (4) <o, for A C Q. (4.5)

To motivate the application of generalized varifolds to our problem, we give two
examples.

Example4.3. — Foru € HX(Q2, R%), we defineV, (x) = 38,0 Dul?(x) dx, where

I, — 22u@Du ) if |Du|(x) #0,

|Du|?

I, o, if |Dul|(x)=0.

Au)(x) = { (4.6)

Then it is clear thatA (1) (x) € A,,—2.». HenceV, € V*_,(2). In fact, for any Borel set
B CQx Am—2,m1

VM(B):% / | Du|?(x) dx

7(B)

whererr (B) = {x € Q: (x, A,(x)) € B}. ltis clear thatsV, is given by

sV, (X) = —/DX(x) :AdV,(x, A)
Q

:_%Q/DX(x):A(u)(x)|DM|2(x)dx

=3 [ (IDulP0)div(X) — 2DuD;uX]) dr.
Q
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In particular, ifu € H(Q, N) is a stationary harmonic map (see, Bethuel [7] and [23] for
the definition and discussion), then we h&¥g = 0 so thatV, is a stationary generalized
(m — 2)-varifold in Q.

Example4.4. — Fore, | 0, letu,, € HX(Q, R¥) be critical points off,, (-), namely,u,
satisfies

1
Aup + — fu,) =0, inQ. 4.7)
€

n

Then it follows from [31] that

Vi, (X) = —/divX . VX eCy(Q, R™). (4.8)
Q

F(uy)
&
In particular, if sup/, (u,) < co, then we may assume tha, — » weakly in

HY(, R¥ and

e(u,)(x) dx — %IDulz(x) dx 4+ v

as convergence of Radon measurefifor some nonnegative Radon measuren €2,
andV,, weakly convergesto o € V,:_,(2). Moreover, it follows from Lemma 2.4 that

im [ £ o (4.9)

n—00 g’%

HencesV,, (X) — 0 for any X € C3(Q2, R™) so thatsV =0 andV is stationary. In
Corollary 4.10 below, we show thatis a (m — 2)-rectifiable Radon measure ahd=
V. + Vr, WhereVy is the (m — 2)-rectifiable varifold, given bWy = 87,50 H"?LX,
hereX is a closedm — 2)-rectifiable set, and =0 H"°LX.

Now we start to discuss the generalized varifold flow, associated with solutions to
(1.3)—(1.4). For any,, | 0, letu, € C*(Q x R,, R*) solve (1.3) and satisfy (see also
(1.6) and Lemma 2.1):

n O<t<oo

sup sup ( 10;un)® + [ e(un)(x, 1) dx) < C < o0. (4.10)
[ e+

For any such a;,, we define a generalizedn — 2)-varifold V, e V* (2 x R;) as
follows

V.(x,t,A) = (SA(MH)(X’;)(A)M,;Z dt, V(x,t,A) € QX R+ X Am_z’m,
where A(u,) is defined by (4.6), ang) (x) = e(u,)(x,t)dx. Let m Q2 x Ry x

An_2.m — 2 x R, be the projection map atr, ). Then we know that the weight
IVall = me,nu(Vi) = u} de. In particular, sup||V,|[(G) < oo for any compact subset
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G C Q x R,. Therefore, we may assume that there exists a generdglized)-varifold
Ve Vi _»(2 x R;) such that

Vo=V, |Val=pidt = V] (4.11)
as convergence of Radon measures. Moreover, by Lemma 2.5, we knoyj#that
wu, dr. We can also represemt =V, ,||V| = V,,u, dr, where for eachix, ) € Q@ x Ry
V... is a probability measure oA,,_, ,,. Note that for any compact subsgte 2 x R,
L* norm of —Du,,d,u,, on G is uniformly bounded. Hence we may assume that

—Du, 0,u, dxdr — o

as convergence of Radon measure$2on R, for some (signed) Radon measusesn
Q x R,. Since—Du,0;u, dx dr < e(u,)(x, t) dx d¢, we have

o< de =V (4.12)

By the Riesz Representation Theorem, we know that there exigigxa LM(QX,
R™) such that

o(x,t) = H,(x)u,(x)dr. (4.13)

Moreover, by the lower semicontinuity, we have

//mﬂﬂmwﬁ)hmm//VZiW

<2qumf//|8,un|2(x,t) dedr <oco.  (4.14)
0

e(u,) dx dr

Here we have used the Schwartz inequality in the last step.

LEMMA 45 —For L' ae.t e R,, V, = V,,ju; € Vv _,(2) has its first variation
8V, < py, andsV, = H,u, with H, € L% (2, R™).

Proof. —ForY ¢ Cé(Q, R™),y € Co(R4, R). DenoteV" = Vi, .ol € Vi ().
Then

/)/(t)SVt”(Y)dt:—/y(t)/DY(x):Ath"(x,A)
R
:—%/y(t)/DY(x) : (|Dun|21m —2Du, ® Du,)(x, 1) dx

/ y(@)DY (x): A(u,)(x, t) F(un)(x Hdxdr=1+1l.

QXR+

For I, multiplying (1.3) byY (x) Du,, and integrating it by parts, we have
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R{y(t) dtQ/Y(x)Dunatun

= [y [(au+ 2 rw))re0Du
Ry Q En

= [vd [suyeonu+ [y [ (252 )re
R, Q R Q

n

| Du, |2
= /y(t) dt/(Mn’jMn’lYl)j — YD( > — M”’jM”JY]l-

Ry
:/y(t) dt/(:—2L|Dun|2div(Y) —u,,,jun,lyj’) —i—/y(t) dt/ F((;")div(Y).
Ry Q Ry Q "
Therefore,

RZY(I)!(WIH(Y) dt=—[£y(t)!YDunalun

_ /)/(t) Mn,iun,jYi] F(uy,)

|Du,|?> &2
Ry {xeQ: |Duy|(x,t)#0}
By Lemma 2.4, we know that
. F(u,
lim / ly (OIIDY ()] (Z ) (x,)dx d =0,
n— 00 fo)

QxRy n

Therefore, by taking into infinity, we have

/y(t)cSV,(Y) dt:nlLrTgo/y(t) dt/Y(x)(—Dunatun)dxdt
Ry Ry Q

= [y [tH, v ) du d

sothat forL a.e.t € R,,8V, = Hyuy. O
ForV e V' ,(Q2) andx € 2, we define

m—2 T ”V”(Br(x))
V0 =lim T

4

Provided that the limit exists ang(m — 2) = |B}'2|.

229

15)
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Now we state the monotonicity formula for generalizeghrifolds V € V*(Q2), whose
first variation is a Radon measure. Note that the same formula was shown by Allarc
(Theorem 5.1 of [6]) for classicdtvarifolds V € V;(2).

LEMMA 4.6. —Suppose thaV € V,*(©2) and ||§V || is a Radon measure a@. Then,
foranya € spt(||V|)) and0 < r < dist(a, 92),

d
S IVIB @) =712 / SL2dV(x, S)

9By (a)
— r—’—lli% 8V (0.(1xDx), (4.16)
&

whered, (|x|) € Cé(B, (a)) converges to the characteristic function®f(a) ase | 0and
1SH(0) 12 = |x[2 =[S ()]

Proof. —The proof is exactly as same as that by Allard [5] for classiearifolds.
For6,(]x]) given by the lemma, one has

1S
|x|

~svien = [ o (1-

By (a)xAlm

) AV (x, $) + VI (0, (xD).

This can easily seen to imply (4.16)0

As a consequence, we obtain the existenc®6f2(||V,|,-) for L' a.e.t € R, as
follows.

COROLLARY 4.7.-Suppose that{V;},-o is the family of generalizedm — 2)
varifolds obtained vig4.10)—(4.14) Then, forL' a.e.t € R., there exists a sef, C €,
with H"~2(E,) = 0, such that®”—2(||V,||, x) exists for anyx € Q \ E,. Moreover,
O"=2(||V,|I, ) is upper semicontinuous fare Q \ E,.

Proof. —It follows from Lemma 4.5 that forL! a.e.r € R,, H, € L7, (2, R™),
8V, = H,|V;|l, and lim,_, » [q [9,u,?(x, 1) < co. In particular,

18Vl (B, (@) < fim_ [ 104 Dus|
By (a)
. ;
<2(||%||<Br<a>>)?nlignw( / |a,un|2) : (4.17)

By (a)

Hence Lemma 4.6 implies,

d%(rz—’"nv,u(Br(a))) > 2 / |S1 ()12 dVi(x, S)

3B (a)
1

=2 VB, @) (Jim 2 [ o)

By (a)
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> 2 / |SE()12dVi(x, S) — ¥ ||V, || (B, (@)
9By (a)

— % lim /|alun|2.
n—oo
By (a)
This implies that
d —m —m—
3 @IV (B @) =7 / ISP dVi(x, S)
9By (a)
— 2 lim / 10,10, 2. (4.18)
By (a)
If we let
E,:{aeQ: lim 725~ lim / |8,un|221}.
r—0 n—oo

By (a)

Then, for anyu € Q \ E,, there existsy = ro(a) > 0 such that for any & r < rg

Therefore, if we integrate (4.18) betweer:G4 < r, < rg, then we get
(€25 " IVill(Br,(@) 4+ /r2) = (€4 "IVl (Bry (@) + v/T1)

r2
> /r_’”_z / IST(x0)|2dV,(x, S). (4.19)
r B, (a)
This implies that®”=2(||V,||,a) exists for alla € Q \ E,. Moreover it is upper
semicontinuous for € 2 \ E;,. Now we want to estimate the size @&f as follows.

In fact, a simple Vitali’s covering argument implies that'—2°(E,) < oo. In particular,
H™2(E,) = 0. This completes the proof.O

Note that, by (2.7) and (2.10},, has locally finite(m — 2)-dimensional Hausdorff
measure for any > 0. Now we have

LEMMA 4.8.—For L' a.e.t € R, there exists a subsé&t C X,, with H"2(F,) =0,
2
such that®”=2(|| V,||, x) > %0 forall x € &, \ F;. Heregg is given by Lemma.3.
Proof. —Define

G= {ze ¥: lim lim #2™ / |alun|2>gg}.

r{0n—oo
Pr(2)

HereX is the concentration set defined in Section 2 anid given by Lemma 2.3. Then,
by the Vitali's covering lemma, we havB”?(G) < oo. In particular, P (G) = 0.
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Therefore, forL! a.e.t € Ry, H"%(G,) =0, hereG, =G N {t} C %,. Let F, =
G, U (E;N%,), hereE, is given by Lemma 4.7. Then it is easy to sB&~2(F,) = 0.
Now we want to show that for anye =, \ F;, ©"~2(| V||, a) is positive. In fact, there
existsr, > 0 such that

lim r2" / 10,1, |2 < 8(5), YO<r<r,. (4.20)

n—oo
Py (a)

Sincea € %;, it follows from [9] or [31] that for any- € (0, %]

82

ILmoorz_m / e(uy)(x, 1 — r2) > EO.
By (a)

On the other hand, Lemma 2.1 implies

[ ez [ ewrtnr—r)= [ o

By (a) Bo,(a) Py (a)
1 1
-2 2 2 2 2
e /|Dun| /|a,un|
Py, (a) Py (a)

> / e(uy)(x, 1 — r2) — C8§'5rm_2 > %Sr’"_z.
Ba (@)
Here we have used the fact that” [, ,, |Du,|> < C. This implies that, for all 6< r <
s Mg P20 [ o) (x, 1) > 2. Thus@"2(| V]|, @) > 2. O

THEOREM 4.9. —Under the same notations as above. Fdra.e.t € R, V,L(Z, x
An_2.m) IS @ (m — 2)-rectifiable varifold. In particular, X, is a (m — 2)-rectifiable set
in Q.

Proof. —One can follow the proof of Theorem 5.5 of Allard [6]. Here we sketch
a slightly different proof. First, it follows from Lemma 4.8 that fér' a.e.r € R,
there existsG, C ¥, with H"?(G,) = 0, such that®”—2(||V,||, x) is positive and
finite for anyx € =, \ G,. We can also assume th&” (%, \ G,) > 0 (otherwise,
we have nothing to prove). Moreover, sin@&=2(||V;||, -) is upper semicontinuous on
%\ G, ©"2(|| V||, x) is H™2-approximately continuous fad#”~2 a.e. inX, \ G,. If
we represenV, = V. ,||V;||, with V, , a probability measure oA,,_»,, thenV, , is a
H™~2-measurable function with valued in the space of probability measurgs,os,,.
It is well-known thatV, , is H™~2-approximately continuous foH” 2 a.e.x € %,.
Therefore, forH” 2 a.e.xo € X, the following four properties hold:

®*,m—2(zt’ x0) = lim Soupl"z_mHm_2(2t N Br(XO)) > 2_”1—2’ (421)
rl

O"2(||V;|I, -) is H™? approximately continous at,
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V... is H"~2 approximately continuous ab,

g 1H IV
rl0 pm—2

Based on these and the Geometric Lemma 2.4 of [23], we can assure that for dhy
there exists a subsequenge| 0 such that

= |H,(x0)|©" (| Vi, x0) < o0. (4.22)

Daory (Vat) = Vg  H" 2LT (4.23)

for some(m — 2)-planeT c R™, Now we want to show thal is independent of the
choice of{i’}. In fact, by (4.22), we have

1im [|8(Dry.r, (Vi) || = liMm 3" (Dyy.r )4ll8 Vi sl = 0.
1"—> 00 r'—00

Therefore
8(Vip H"LT) =0

so that the constancy theorem for varifolds (see, Simon [33]) impliesthat= 67, i.e.
the Dirac mass &f'. In particular,T is unique. This proves thatL(%, x A,,—2.,) IS a
(m — 2)-rectifiable varifold. In particulary, = spt(||V;|)) is a H™?-rectifiable set. O

Finally, we derive some consequences of the Theorem 4.9. Let us first consider th
critical points of the Ginzburg—Landau functional.

COROLLARY 4.10 (Continuation of Example 4.4).Under the same assumptions
as in Example4.4. There exist a closedn — 2)-rectifiable set ¢ Q and a H" -
measurable function3 < 6 < oo on €2 such that

(1) v(x) =0(x)H™2LY for H"? a.e.x € ¥, and

Vo = V=V, +V(Z,0) (4.24)
as convergences of generalized — 2)-varifolds ong2, here

V(Z,0) =87, s0H"°LY.

Moreover,V is stationary, i.e., for any € C3(Q2, R™),

1 .
/—|Du|2div(Y) - Y wuyY! +/div2(Y)9 dH™2=0. (4.25)
o 2 1<ij<m 5

(2) If, in addition, N = $*~1. Then

I
0(x) = Z E(¢;,S?), forH™ ?aexeXx. (4.26)
i=1

Herel< I, < oo andg; : S — S¥~1 are nontrivial harmonic maps fat < j </,.
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(3) If, in addition, N = 52 Thend(x) = 4 n, for some positive integer,, for H" 2
aexeXx.In partlcular, ~V(X,0) is an integral(m — 2)-varifold.

Proof. —It follows from the static versions of Lemmas 2.1-2.3 for that the
concentration set is given by

T={xeQ <O 2|V, x) <o} ={xeQ: @ (|V],x) >0}
Moreover, as in Example 4.4V = 0. Therefore, Theorem 4.9 implies
VL{(x, A): " 2(|IV],x)>0,A € Ap_om} = 8;¥E®""2(||V||,x)H’”‘ZLE

is a(m — 2)-rectifiable varifold. In particulary is a (m — 2)-rectifiable set. Moreover,
sinceu, — u in CE.(Q2\ X, R¥), we have

1
~8 0| Dul?(x) dx.

VL(Q \ E) X Am—Z,m = 2

Therefore, we obtain (4.24) and (4.25). This proves (1).

The conclusion of (2) comes from the Theorem B of [32] (one can also see Section ¢
below). Part (3) follows from (2) and the fact that any nontrivial harmonic map §ém
to S? has energy equal tawh for some positive integer. O

Recall that a stationary harmonic maps H(Q2, N) is a weakly harmonic map,
which satisfies

/|Du|2d|v(X) 2 S wu;Xi=0, VXeCk, R"). (4.27)

1<ij<m

By quoting the result by Lin and Riviere [27], we can obtain

COROLLARY 4.11.-Let {u,} c HX(Q, N) be stationary harmonic maps. Assume
that u, — u weakly in HX(Q, N), 3|Du,|?(x)dx — 3|Dul?(x)dx + v for some
nonnegative Radon measureon €2, and V,, — V as convergence of generalized
(m — 2)-varifolds. Then

(1) There exist am — 2)-rectifiable close seE c Q and aH"~2 measurable function
g5 <6 < oo on such thatv(x) =0 (x) H" 2L (x) for H" 2 a.e.x € .

(2 V=V,+ V(Z,0) and is stationary, i.e., for any € C3(Q, R™),

/—|Du|2d|vY— S v/ +/d|vz YOdH" 2 =0, (4.28)

Q 1<ij<m

(3) If, in addition, N = $*~1. Thend (x) = /1, E(¢;, §?) for H" 2 a.e.x € , here
1<, <oo and¢;: 5% — St is a nontrivial harmonic map. Furthermore, if= 3,
then 6(x) = 4nn, for some positive integet,, for H"~2 a.e.x € X. In particular,
= V(Z,0) is an integralm — 2)-varifold.
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5. Generalized varifold flows and the Brakke flow

In this section, we will prove that the limiting pain, v, dr) satisfies the generalized
varifold flow, which will be defined below. The generalized varifold flow implies that
{v:}:>0 is a Brakke flow of(m — 2)-rectifiable varifolds, under the extra assumption that
u is in the class of “suitably weak solutions” to the heat flow of harmonic maps, which
requires that the energy equality (2.1) holds. Similar notion of suitably weak solutions
to the Navie—Stokes equations was introduced by Cafferalli, Nirenberg and Kohn [12].
A stronger class of weak solutions behaving like parabolic stationary harmonic map:s
was introduced by Chen, Li and Lin [10] and Feldman [17].

We will use the same notations in Section 4 throughout this section. We first apply
Theorem 4.9 to express the varifolti for L a.e.r > 0.

LEMMA 5.1.—For L a.e.r > 0, we have

1
Ve = S8autn| DulP(r. 0y dr + V (5, " (Vi1 )). (5.1)

Proof. —It follows from Lemmas 4.5-4.8 that fot.! a.e.r > 0, 8V, = H,||V,],
H, € LG, (R, R™), e§ <O"2(|V;||,x) < oo for H" 2 a.e.x € £, hereX, = £ N {1}
and X is defined by Section 2. Therefore, Theorem 4.9 implies Yhatx, x A,,—2.,)
is a(m — 2)-varifold and

VILE, =87,5,0" 2|V, x) H" LS, = V(. " 2(|V{I. ).

Since, on2 \ ,, we haveu,, — u in Ci_ so thatV,, ., — V... onQ\ Z,. Therefore,

1
V,L(Q\ Z) = ESA(M(.J))|DM|2()C, 7) dx.

Combining these two facts, we obtain (5.1
The next Lemma shows that generically(x) € (T, Z,)*.

LEMMA 5.2.—For Lt a.e.r > 0, we have
H/(x) LT.%,, forH" ?aexecy,. (5.2)

Proof. —This can be proved by the Young measure method Mt denote the set of
m x k matrices and consider Radon measuigon Q x R, x M™ by

W,(x,1,A) =8

Dun (x’t)(A)e(un)(x, t)dx dr.

D
Defineg: M™ — A,,_5,, by ¢(A) = I,, — 2A’ A. Then we see thatx(W,) =V, , here
V., is the generalizedn — 2)-varifold onQ2 x R, x A,,_2,, defined in Section 4. Since

we can assume thdt,, — V =V, ,u, dt andW, — W = W, ,u, dt for some probability
measurey/, , on A,,_2,,, and W, , on M"* we then haveV, , = ¢x(W, ). Since, for
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L'a.e.r > 0,Lemma 5.1 holds. Therefore, fat a.e.t > 0, V,, =875, for x € ¥;. In
particular, forH" 2 a.e.x € %,

/ (I, —2A"A) dW, ,(A) = / AdV,,(A) =T, %,.

Mmk Am—2.m

For any unit vectoe € T, X, we then have
1=(T % (e),e)

_ <e, [ (i —244) dWx,,(A)(e)>
Mmk
=1-2 [ |A(e)|>dW,,(A).
/

Hence, forH™ 2 a.e.x € &, |A(e)| =0 for W, , a.e.A € M™*. This implies that for
H"? a.e.x € ¥,, the support ofW, , is contained iNE(A) = {A = (Aq,..., AY)':
spanAs,..., Ay} C (T, Z,)*}. Note also that if we defing, = S%BZMnDundxdt,

thenZ, <« W,. Therefore, if we assume thdt, - Z onQ x R, x M"* thenZ « W
and there exists a vector valued function, on M"* such thatZ = Z, ; W, ;. dt. Since
(y.1)#Z, = d;u, Du, dx dt - —H,(x)u, dt, we have

—H(x)= | Z:,(A)dW, ,(A).
Mmk

We now claim that forH”~2 a.e.x € %;, Z,,(A) € sp{(W, ), which clearly implies

H,(x) € (T, Z,)". In fact, sincedu, Du, € E (), we have

dz
dist(A,—")d Z,|I(A) =0
/ Gt ) AZil)

Mmk
takingn into infinity and by the lower semicontinuity, this gives
: dz
/ dISt(A, —) d|Z| =0.
diz||
Mmk

This also implies that foW, , a.e.A € M, Z, ,(A) e spiW,,). O

Now we prove an energy inequality for the limiting Radon measures Assume
that

1
e(u,)(x,t)dx — §|Du|2(x, t)dx 4+ v,

18,1, |2 (x, 1) dx df — |8,u|?(x, t) dx dr + 1
for some Radon measurgs},.oon Q2 andn on Q2 x R,. Then
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PrRoOPOSITION 5.3 (Energy inequality). Ynder the same notations as above. We
have, for anyd < 1, <, < oo and¢ € C3(2, R,),

1 1
/ SOIDU (. 12) + v, (6) — Q/ SO0 IDU(x, 1) = v, (@)
Q

< [ (ouPe+DyduDu)
Qx[t1,12]
— [(@dn—(1:(20) Do, H) I Vil (5.3)

2
E’l

Herev,(¢) = [, ¢ (x) dv,(x), fo =YX NR" x [t1, t2], and (T, =,)* denotes the normal
space ofx, at x.

Proof. —By takingn into infinity in the equality (2.1), we have

/3¢<x)|1)u|2<x 1) + v <¢)_/3¢<x)|1)u|2<x 1) — vy ()
> > 2 to 2 » 41 11
Q Q

—— / ¢|atu|2—/¢dn+ / (D, H,) d|[V, | . (5.4)

Qx[r1,12] > Qx[t1,12]

n

Sine d,u, Du, — duDu strongly in L2.(Q x Ry \ ), H,du, = —d,uDudx on
Q x R, \ . Therefore, by Lemma 5.2, we have

/ (Do, H)d|V, || dr = — / Dd,uDu + / (Do, H,) du,

Qx[r1,12] Qx[r1,12] E;f

= / D¢a,uDu+/<(Tx2,)LD¢,H,>dM,.

Qx[t1,12] 2;2
1

This gives (5.3). O

COROLLARY 5.4. —Under the same notations as above. We have, forGaay; <
tp <ooand¢ € CA(Q, R,),

/ %¢<x>|Du|2<x, 12) + Vi, () — / %¢<x>|Du|2<x, 1) — vy ()
Q

Q
<= [ (0uPe+DyduDu)
Qx|[r1,12]

- / (%|Hz|2¢ — ((T.(£)) " Do, Hz>) d|[V; | dr. (5:5)

2
E’l



238 F. LIN, C. WANG / Ann. I. H. Poincaré — AN 19 (2002) 209—-259

Proof. —It suffices to prove

/d)dn \H, 26 dv, dr. (5.6)
'1
To see it, we note that, fdP™ a.e.zo = (xo, fo) € ¥, by the Schwartz inequality, we have

| fp,(ZO) atMnDMn|)2
fPr(ZO) e(un)

|0y14,, |2
< 2lim lim M
ri0nloo [, (z0) €(tn)

2 . .
<
o) <l i

Hence

| Hy (x0) 2 dit (z0) < 21im lim / |0yt 2
r{0 n—o0

Py (z0)

=2r|m< / |9,ul? + U(Pr(ZO)))
Pr(20)
< 2dn(z0)-
This gives (5.6). O
Now we give the definition of generalized varifold flow for a péit », dr).

DEFINITION 5.5.—Letv € HE.(2 x Ry, N) N L®(R., HY(Q, N)) and {n,},>0 be
nonnegative Radon measures @n We say that the paifv, , dt) is a generalized
varifold flow, if the following holds

(1) v is a weak solution to the heat equation of harmonic maps, i.e. sat{gf@sin
the sense of distribution.

(2)For L*a.e.t € R, nz = || V;|| for some(m — 2)-rectifiable varifoldV, € V,,_»(),
8V, =H,||V;||, andH, € LWH(Q R™).

(3)Forany0< s <t <ooande € C3(Q, R,), we have

/§|Dv|2<x,z>¢<x>+n,<¢> —/§|Dv|2<x,s>¢(x> (@)

Q Q
—//(|a,v|2¢+D¢a,va)
s Q
- / / (S H ()2 — (T, A D, Hy(x))) iy, dr. (5.7)

s A;
Here A, = spt(n,).
One of the main theorem of this section is to show that the limiting @aip, dr)

obtained from the limiting process of sequences of solutions to the heat flow of the
Ginzburg—Landau functional, i.e. solutions to (1.3)—(1.4), is a generalized varifold flow.
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THEOREM 5.6. —Under the same notations as above. The limiting gajr, dr) is a
generalized varifold flow.

Proof. —By comparing (5.5) and (5.7), we know that in order to show the(pair, dr)
is a generalized varifold flow, it suffices to improve t%e‘actor in front of the term

ff Iz, 9 (O H; (x)|? of (5.5) to 1. In other word, we need to prove

LEMMA 5.7.-Under the same notations as above.

/¢(x)|Ht<x>|2dvt(x>dr < /¢(x)dn(x, 0 (5.8)
b s

forany0 <t <s <ooand¢ € C3(Q, R.).

Before we prove Lemma 5.7, we would like to remark that (5.8) also follows from the
energy quantization Theorem 6.1 of Section 6 below, which is only proved at presen
under the assumption that = S¥~* however. Here we present a different proof of it,
which is valid for all manifoldN .

LEMMA 5.8. —For P" a.e.z = (x,t) € X, we have

im lim 7~ /(leunlz—lDyunlz)dxdt:O, (5.9)
Pr(Z)
im lim 7~ / Dty Dyt dlx df = 0. (5.10)

Pr(2)
Here (x, y) is the coordinate function aff, X,)*.

Proof. —First note from the proof of Theorem 6.1 of Section 6 below that#tra.e.
z0 = (xo, tp) € T, the following properties hold:

im fim = [ () = " 21V, . +0) (5.11)
Py (z0)
im 2" / 10,14, ]2 = O, (5.12)
Pr(z0)
|i5r8(r2—m / |0,u? 4+ r " / |Du|2>:O, (5.13)
Py (z0) Py (z0)

. . —m 2_

I;!?SnILmoor / |D,u,|=0, (5.14)

Py (z0)

wherez is any vector in thém — 2)-planeT,,%,, C R™.
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For any suchzg = (xo, 7o), we identify T,,%,, = {(0,0)} x R™~2? and write the
coordinate ofR™ asR™ = {(x, y,z): (x,y) € R,z € R"7?}.

Forr, | 0, letv,(x, ) = u,(xo + r.x, to + r2t) : P2(0) — RX. Then we know that,
solves (1.3), witte, replaced by, = j— — 0, and

vn(x,y,2,t) — constant inC_(R™ ™\ R™ ™2 x R, RY),

e(v,)(x, y,z,t) dx dy dz dr — @™ 2(|| V||, x0) (H™2LR™ %) x (L'LR), (5.15)
(1D, v,)? = |Dyva|?) (x, v, z, 1) dx dydz df — ae(z, t) H" 2LR™ 2 x L'LR, (5.16)

D,v, Dyv,(x,y,z,t)dxdydz dt — B(z,t) H" 2LR™? x L'LR (5.17)

as convergences of Radon measuresPg(i®), for some measurable functions 8 on
R™=2 x R. Observe that (5.9) and (5.10) are equivalent to

/ a(z, 1) dodr = / B(z,1)dzdr =O. (5.18)

B 2x(-1,1) B 2x(-1,1)
In order to prove (5.18), we need the Pohozaev identityvfors follows. ForX e
Ci(By, R™), multiplying the equations af, by X (x, y, z) Dv,(x, y, z), we get
/ 0,v,Dv, X = / e(vn)diV(X)—Zvn,,-vn,jX,j. (5.19)
P5(0) P5(0) i

Note that (5.12) implies

lim [ d,v,Dv,X=0

n—oo
P

and Lemma 2.4 implies

/e(vn)div(X)z / %|Dvn|2div(X)+O(n_l).
P2(0) P2(0)

Hence, forx = (X1, X2,..., X™) € C}(B%, R™), we have

1 2 i 1 2 1 2 - 1 2vJ
/§|Dvn| div(X) = / E|Dvn| (Xs+X0)+>. / E|Dvn| X!

P2(0) P2(0) 7=3p,(0)
j 1 2
- Z / vn,ivn,in] - Z / vn,i(vn,xX,' +vn,yX[)
37 Smpy(0) 3<ismp,0)

_ Z /vn’j(vn’xX)’C—i—vn,yX{,)
3SISmpo(0)
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[ QP2 4 00y 2X2) vy (X2 + X2) £ O(n 7Y
P2(0)
=h+L+ I+ 14+ Is+Ig+0(n™).
It follows from (5.14) that
L+ 14+ 1s=0(n1).
Hence

1
/ E|Dvn|2div(X)

P2(0)
_ / Lo, 2 (x4 x?) +Z/—|Dv 2x]
2 n 3 n
P2(0) J=2p,(0)
_ /(|Un’x|2Xi—|—|vn’y|2X§)—I—vn’xvn,y(Xf—I—X_%)ﬁ—O(n_l). (5.20)
P2(0)

By choosingX = (0,0, X3, ..., X™), we then get

/—|Dvn|2d|V(X) Z / Z|Dv,[’X] +0(n™Y) (5.21)

P2(0) 7=3p,0)
this, combined with (5.19) and (5.20), implies
1
| 500 4 10,2 (x4 X2
P2(0)

— / (lon | 2X 5 4 100y [PX2) 4 Upcvny (X2 + X5) +O(n 7). (5.22)
P2(0)
In particular, one has

/ (IDyval?® = |Dyval?) (X3 — X7) — 2 / D,v, Dyv, (X2 + X}) =0(n7).
P,(0) P,(0)
Therefore, we get
[ G@n(x?-x1) - 260 (X2 + X} =0 (5.23)
B 2x(~4,4)
for any X!, X? € C}(B%). Now choosingX(x, y,z) = x¢(x, y,z) and X?> =0 for

suitable cut-off functionp Cé(BQ"), one can see

/ a(z,t)dzdr =0.

BI'2x(-1,1)
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Similarly, by choosingX?(x, v, z) = y¢(x, v, z) and X! =0, we obtain
/ B(z,1)dzdr = 0.
Bl 2x(-1,1)

This completes the proof of Lemma 5.80

Proof of Lemma 5.7. Note that Lemma 5.8 guarantees that fBf' a.e.zg =
(xo,%0) € X

/ | ful? = / lgnl?=1+0(r,n7 "), / fo-8n=0(r,n71). (5.24)

Pr(z0) Pr(z0) Pr(z0)
Here
\/EDXMH \/éDyun
In 8n

= 1 = 1°
(Jp, (o) (IDxttn]? + | Dyt 7)) 2 (Jp, o) (| Dty |2 4 | Dyt |2))2

Therefore, applying the Parseval’'s inequality, we have

2 2
ey 2o i g / /
im tim [ P> tim lim ([ duss) ([ du

Pr(z0) Pr(20) Pr(20)

substituting f,, andg, into the inequality and using the fact that

lim lim / D, 2= 0

r¢0n—>oo
Py (z0)
we have
o dupnDuy)> 1
lim lim Jortap Ot Dt <lim lim = / EXHE (5.25)
S TS PRI LU

Pr(z0)

On the other hand, we know that f&¥" a.e.zg = (xg, fp) € %,

o | 3,1, Du,|?
| Hyy(x0) 12 dit, (zo) < lim lim 2 S Brtin Dt
rl0n—o00 fPr(Zo) |DMn|2

Therefore, we have

| Hiyx0) 2 caCio, 1) < lim fim [ 10,002l
rl{0njoo

Pr(z0)

:Iri?(} / |8,u|2+n(Pr(zo))=|ri57(1)77(Pr(Zo))-

Py (z0)
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This clearly implies

/¢(X)|Hz(X)|2de(X)dt</¢(X)dn(x,t), V¢ e CXQ.Ry. O
N »s

Once Lemma 5.7 is proved, we see easily that Theorem 5.6 is proved as well. Now wi
introduce the notion of suitably weak solution to the heat equation of harmonic maps.

DEFINITION 5.9.—A mapu € H1.(Q x Ry, N) N L®(R,, HY(Q, N)) is a suitably
weak solution to the heat equation of harmonic maps, if

(1) It is a weak solution to the heat equation of harmonic m@pg).

(2) It satisfies the energy conservation law as follows. For @ry#; < t, < co and
¢ € C5(Q, R,

1 1
/ S1Dul(x, 1) () — / DUl g ()

Q Q

== / / (18,*(x, ¢ (x) + DpduDu). (5.26)

n Q

We would like to remark that it is easy to check that any smooth solution to (1.0) is a
suitably weak solution.
A direct consequence of Theorem 5.6 is

COROLLARY 5.10. —Under the same assumptions as in Theok®nlf, in addition,
that the weak limiting map € Hl.(Q x R,, N) is a suitably weak solution t¢1.0).
Then, the defect measurgs}, >, satisfiesfor any0 <s <r < oo and¢ € C&(Q, Ry),

b (@) — Vo) < — / / (W H, ()2 — (TS D (x), H,(x0))) dvy(x) dr. (5.27)

s X

Now we want to show that (5.27) actually implies tHaf},~o is a Brakke flow.
First, let us recall the definition of Brakke flow given by llimann [20], which is slightly
stronger than the original definition by Brakke [8].

DEFINITION 5.11 ([8,20]). -Letv be a Radon measure fa and¢ € C5($2, R,), we
set

B(v,¢) =— /(d)lle — ((T.v)" D¢, H)) dv

Q

provided that the following three conditions hold
Q) v=|V| in{¢ > 0} for someV € RV,,_»(2),
(2) sV=H|V]|in{¢p >0},
(3) HelLf, ({¢ >0} R").

Otherwise, we sdf(v, ¢) = —o0.
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DEFINITION 5.12 ([8,20]). Let {u},>0 be Radon measures a2. We say that
{:}i>0 is a Brakke flow if

5:#1 (¢) =limsup < B(uy, ¢) (5.28)

s—>t

s (P) — 14 ()
s —1

forall t > 0and¢ € C3(Q2, Ry).

THEOREM 5.13. —Under the same assumption as Theoff If, in addition, that
u € H.(Q x Ry, N) is a suitably weak solution t¢1.0). Then{v,},>o is a Brakke
flow.

Proof. —First it follows from Section 4 and Lemma 5.2 that fbt a.e.r € R, we
have (a):v, = | V,|| for someV; € RV,,_»(Q); (b): @™ 2(|| V]|, x) > 73 for H"? a.e.
x € 5;; (€): 8V, = H,|| V|| with H, € L?,, (2, R™); (d): H,(x) L T,||V;|| for H"? a.e.
x € ¥,. Now we argue that (a)—(d) and (5.27) are sufficient to show (5.28)fdpro.
To see it, let us check the upper right derivatde of v, for + > 0, the proof for lower
right derivative is similar for > 0. Let

l N
L =limsup———— (¢|H,|? — (D¢, H,)) dv, dr.
/]

st s —

Note that (5.27) implie. > D v, (¢). If L = —o0, thenD_v,(¢) = —oo so that (5.28)
holds automatically. Hence we assume that —oo andD v, (¢) > —oo. Lets; | t be
such that

. 1
lim —

i»oo §; — 1t

[ @i~ g, ) dv ar =1 (5.29)
t Q
andy; € (¢, s;) be such that (a)—(d) hold atand

/(¢|Hl,. 1> — (T, %,)" D¢, H,)) dv,, < —L +0O(i ). (5.30)
Q

By the compactness theorem of Allard [6], we may assumeWthat V in {¢ > 0} x
Gy—2m for someV € RV,,_,(2). Moreover, by the result of llmanen [20] (cf. also
Lemma 2.5 of Section 1), we know th¥ || = v,. There exists & € LﬁV”(Q, R™)
suchthabV = H||V| = Hv, and

/(¢|H|2 (TS H))dy,

Q

<liminf [ (§1H, 2~ (T.%,)* Dy, H,)) dv, = L.
Q
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Therefore

Dovi(¢) <L< —/(¢|H|2 (LT, H))dv =BG d). O
Q

We end this section with the following remark.

Remark5.14. — (1) It follows from Proposition 5.3 of Ambrosio and Soner [2] that
the Brakke flow is also a distance solution to the mean curvature flow. Therefore, unde
the condition thai: is a suitable weak solution, Theorem 5.13 implies fha},>o is a
distance solution to the mean curvature flow.

(2) Under the assumption that is a suitable weak solution. iy = « H”2LT
for somea > 0 and a closedm — 2)-dimensional Riemannian manifolfly. Let
{T";};c0.1) Is the smooth mean curvature flow. Then there exists a nonincreasing functior
«:[0,T) — [0, @] such thab, = a(r) H" LT, for ¢ € [0, T) (see Proposition 4.5 of [1],
and also [25,22]).

6. Energy quantization of the energy density function

Throughout this section, we assume that= S~ ¢ R andm > 3. We will show
that, forP™ a.e.zo = (xo, fo) € %, the density functio®”~2(||V,,|l, xo) is the finite sum
of energies of harmoni§?’s (i.e., nontrivial harmonic maps froi$?). In the static case,
this type of quantization result was first obtained by Lin and Rivieré [27] for stationary
harmonic maps, and then Lin and Wang [32] for critical points for Ginzburg—Landau
functionals. Our results here can be viewed as the parabolic extension of that of [27
32]. Form = 2, this type of quantization result is called as energy identity or bubbling
phenomena by people (see, [34] and [32] references therein). Let's consider the he:
flow of the Ginzburg—Landau functional here, the corresponding result for the heat flow
of harmonic maps is treated in Section 7.

The main theorem of this section is

THEOREM 6.1. —For P™ a.e.zg = (xo, fo) € X,

110
O™ 2(|Violl, x0) = > E (¢, $%) (6.1)
i=1

for somel </, < oo, hereg; 5?2 5 sFlagig l,,) are nontrivial harmonic maps.

Proof. —Let us first list all the necessary facts needed, which can be found from
Sections 3, 5, and [31]. The following properties hold: Eéra.ezy € R,

nli_)rrgo/latunlz(x,to)dx < oo, 6.2)
Q

lim lim 2" / 10un|? < 00, for H" 2 a.ex € 5y, 6.3)

r{0n—o0
By (x)
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and, forP™ a.e.zg = (xq, fp) € X,

£5 < O" (| Vi, x0) < 00, (6.4)
: : 2—m 2 __

Ir'%nleoor / |0,u,|=0, (6.5)

Pr(z0)
®"(u, zo) is P™ approximately continuous as, (6.6)

T —m 2
im lim 7 / IDrun2=0, VT €Ty, 6.7)

Pr(z0)
Ii?gr_m / |Du|? + r?|d,ul?>=0, (6.8)
Pr(z0)

and, forL' a.e.to € R, we have, forH" 2 a.e.xg € =,
O"2(|| Vi, I, x0) is H™ 2 approximately continuous ab. (6.9)

Let us now pick up ag = (xq, tp) € T such that (6.2)—(6.9) all hold. Moreover, we may
assume thal,, =, = {(0,0)} x R"2={(0,0,Y): Y € R™2}, and writex = (X, Y) €

R? x R™~2 for x € R™. For anyr, | 0, define the rescaling maps: P,(0) — R* by
letting v, (x, 1) = u, (xo + r,x, to + r2t). Then, we have,

lim | Dyv,|> + 18,0, =0,

n—>00
P1(0)

v, — constant weakly ir*(P,(0), R¥), (6.10)

e(vy)(X,Y,r)dX dY dr — v, dt
as convergence of Radon measuresPg®). Similar to [31], we have
CLAIM 6.2. =V, df = @"~2(||V,o|l, xo) H" 2L R™~2 x L'LR, on Py(0).
To see this, lep € C3(B2, R,) and definef,, g,, h,: R""2 x R — R, by
L= [e@)C V000X, g0 = [ 10, P Y.0dX
B? B2
and

ho(Y, 1) = / Dyva 2(X, ¥, 1) dX.

2
Bl
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Then (6.10) implies

n—oo

lim / ga(Y, 1) + hn(Y,1)dY df = 0. 6.11)

B 2x(~1,1)

For 1< j <m — 2,Y; andz-derivative of f,, are as follows.

d 1
Wfﬂ(Ya t):/<DXUnD§(ijn _?f(vn)D)’jvn)¢+/DY,-UnD}2/1)/_iUn¢
J n
B}

2
By

1
:—/¢(Axvn + _Zf(vn))DY,'Uﬂ
e ;
B2 "

_/DX¢DXU,1DX,U”+/DyivnDlz,iijnqﬁ

2 2
Bl Bl

d
:—/¢3zvnDy_,Un —/Dx¢DxUnDy_,-Un + W/¢DY1U)1DY_,-U)1
B? B? g2

= fnl’j —I—diV(y,t)fnz’j' (6.12)
Here
R =— / (Dx¢ Dxvy Dy, vn + ¢, Dy, vn)
B

and

fRY, 1) = </¢Dylvan,vn,...,/¢DymZvnDijn,0>.
B? B?

d 1
agn(Yv t):_/<AXvn+8_£f(vn)>alvn¢

52
- / Dy Dy v, 9,0 + / ¢ Dy, v, Dy, (3,0,)

2 2
By B;

d
- —/|atvn|2¢ —/vaan(/)a,vn o /¢Dy,.vna,vn
B2 B2 le

=gl +diviye? (6.13)
Here

Y1) =— / (19:a1%6 + Dy va Dxdd,v,)

2
Bl
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and

&Y, 1) = </¢Dylvn8,vn,...,/¢Dym2vn8,vn,0>.

B B
Note that (6.10) implies

2

nleooZ;(||ferLl(B'1"—2x(—1,1)) + HgliHLl(B’l"_zx(—l,l))) =0. (6.14)

Based on (6.12), (6.13), and (6.14), we can apply the Allard’s strong constancy
Lemma [5] as in [23] or [31] to conclude the Claim 6.2. Moreover, one has

n"—>moo ||fn(Y, t) — ®m—2(” Vto”’ xO)HLl(Bi"’zx(—l,l)) =0. (615)

Therefore, for any > 0, there exist¥Es C B{”‘Z x (=1, 1) with |E5| > 1 — § such that

lim sup |£,(Y,1) = ®"2(IIV,l, x0)| = O. (6.16)

=00 (y 1\eE;

In order to prove tha®™~2(||V, ||, xo) is the sum of energies of finitely many harmonic
§2's, it suffices to prove thaf, (Y, t) converges to the sum of energies of finitely many
harmonic$?'s, for (Y,t) € Es. Now we define the local Hardy-Littlewood maximal
function for a functionf e L1(B}"? x (—1, 1)), with respect to the parabolic metric in
R™=2 x R, as follows

M(f)(Y,t):SUp{r_’" / (f)(z,s)dyds,P,(Y,t)CBi"_zx(—1,1)}.

Pr(Y,1)

Then the weak(l, 1) estimates implies that there exis&§ C B{”‘Z x (=1, 1), with
|F{| > 1— 6, such that

lim M(g, +h,)(Y,)=0, V(Y,1)€F, (6.17)
nli_[Tgo M(f)(Y, 1) SCO™2(|Vyll, x0), V(Y,1) € Fy, (6.18)
lim M(p)(Y,)=0, V(Y1) eF, (6.19)

where

1
p(Y, )= | SF@)X, Y, dX
8)‘[
52

herez, = j— — 0. Now we try to prove that for ang¥’, t) € E; N Fy

l
lim f,(Y,1) = > E(¢;.5%) (6.20)

j=1
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for some 1</ < oo, hereg; : §2 — §*~1 (1< j <) are nontrivial harmonic maps.

Stepl. First Bubble.

This step has been carried out in [31]. Here we give a slightly different proof. For any
given(Y,,t,) € EsNF!, letX, € B; ands, > 0 be such that

2

_ & _ . v 2
/e(vn)(X, Y, t,)dX = com _max{ / e(v)(X,Y,,t,)dX: X € B%}. (6.21)

2 2
Ba,, Ba,, (X)

Heregg > 0 is given by Lemma 2.3 and (m) > 0 is a large constant to be chosen. It
is not difficult to see tha¥X, — 0 andé, — 0 (cf. [23] and [31]). Moreover, as in [23]
and [31], we can apply (6.12)—(6.14) to get, for any: B2,

2

(25,)7" / e(v,)(X, Y, t)dx dY dr < &) (6.22)
B3, (X)X B 2(Yn) X (tn—483, 1,+467)
and
82
5 / (X, ¥, dxdrdr > 2. (6.23)
B2 (X)x B 2(Y) X (tn =83 tn+53)
We let

Wa (X, Y, 1) =0, (X, + 8, X, Y, +8,Y, 1, + 821).
Then Lemma 2.3 implies

w, = w in Cp.(R? x By ™2 x (—4,4), RY).

Moreover, (6.14) implies that,w = Dyw = 0 so thatw(X, Y, 1) = w(X) : R? - k-1

is a harmonic map with positive and finite energy, which can be lifted to a nontrivial
harmonic map frons? to S¥~%, named a,. By repeating all the possible blowing-up
at different points and scales, we can get

l
O" (| Vil x0) = lim £, (Y1) =Y E (8. 5%) (6.24)
j=1

for somel =1,, < ©"~2(||V,,|l, x0) /e, and some nontrivial harmonic mags: S? —
S-1(1<j < l)

Step2. (6.24) is an equality.

To achieve this, it suffices to show that there is no energy concentration over the
neck regions between two bubbles at the same point. This step is very similar to tha
of [32]. The idea is to use the interpolation betwdert and L>* norms of Dv, over
the neck region, which has been recently explored by Lin and Riviere [27] in the context
of stationary harmonic maps in higher dimensions, and [28,32] in the context of critical
points of Ginzburg—Landau functionals. For completeness, we sketch it here. First, we
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observe that by an induction argument/ansuffices to show that (6.24) is an equality
for =1 (cf. [14] form = 2 and [27,32] forn > 3 for the induction argument).

CLAIM 6.3. —For anye > 0 and sufficiently largeR > 0, we have

1
e(v,)(X,Y,,1,)dX <2, VRS, <r < > (6.25)

B2 (Xw)\BA(Xz)

For, otherwise, one can argue exactly as in [32] to conclude that one can rescale
suitably to get a second bubble, which would contradict Withl.

Now one can apply the Allard’s strong constancy lemma (cf. [5] and [32]) and Lemma
2.3 to conclude that

Cs?

n Xath < 626

A T |y A haae

for 2Rs, <|X — X,| <3, 1Y —v,| < 55! )y — |<M In particular, we have
Cs?

n vaat < 627

e(vn)( ) XX (6.27)

for 2Rs, < |X —X,| < 3, 1Y —Y,| < RS,, |t —t,] < R?$2. Hence, if we lew, (X, Y, 1) =
U (X + 8, X, Yy + 8,Y, 1, + 82t), then we have

2

1
V2R < |X| < ——. Y| <R, [t| < R% (6.28)

n X9Y7t<—a
) (XY < -

This implies thatDw, (-, Y, t) € L>>(B?
and

21\ B3p) forany (v, 1) € By 72 x (—R?, R?),

Sup ||le‘l('9 Y7 Z’)”LZOO(BZ \BZ ) < CS. (6-29)
(Y,1)eB"2x (—R2,R?) (4n)~1 2R
1)EB :

Here L>> denotes the Lorentz space with indéX oo) (see Ziemer [38] for the

definition). Now we try to estimate the?* norm of D s (-, Y, 1) over B2

CLAIM 6.4. —For P" a.e.(Y, 1) € BN 2 x (—R?, R?), Dy

(45,)~1

s Y, t)eL21(B 261"

Moreover,
Wy
/ HD .Y, 1) dy dr
) [wp| L21(B2 )
Bp~ x(—R2,R?) (43n)
<eCs™ / |Dv, |+ |0,u,? < C.  (6.30)

B2 (Xn) % By 2(Yy) X (ty — R262,1,+ R252)
2

Proof. —It is very similar to the proof of Theorem B in [32]. Here we only sketch the

outline. For any € (—R?, R?), denotew, (X, Y) = w,(X, Y, 1): 3(25) L X Byie? — RK.
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Then we have

1 2
wherel,,(X,Y) =0,w,(X,Y,1).
For 1<, j <k, leta/ be the 1-forms defined by = dw' w/ — @i dw/. Then

OSBRI BN B
d*o)) = Aw,w) — Awlw,

=lw —llo =HY, (6.31)
Aa =dHY + 2d* (do’, A dw). (6.32)

Now, let®, : R™ — R¥ be an extension ab, such that
||D60n||L2(Rm) C||Dwn||L2(32 L XBI=2) (6.33)

andH, : R" — R be an extension off/ such thatfl, = 0 outsideB2, . x Bji>.
Let F/ € HYX(R™, A%(R™)) solve

AFY =2dd} A da] . (6.34)
Then, we know from [32] thaf'/ € W21(R™, A2(R™)) and

HDZF;]‘HLl(Rm)\CHd‘” A Oo, HHl(Rm)

< C” Da)l‘l ”LZ(RV”)

< C”Dw””LZ(BZ XB?R_Z), (635)
whereH* denotes the Hardy space Bf'. Let G/ ¢ Hl(R’”, R) solve
AGY =H. (6.36)
Then, we have thab?G/ € L%(R™) and
2 i ij
HD G, / ||L2(R'") CHH ||L2(R'") C”atwﬂ”LZ(B2 _ X BE=2) (6.37)
In particular, we have, by the Holder inequality,
1
i i m—2¢—2\72
||D G]HLl(BZ - ><Bm 2) CHD G]||L2(B(225n)_1XB§nR_2)(R 3” )2
1
m—2¢—2\72
< C(R"7%5,°)? ||a,w,,||L2(B(225n)_1X3?R_2). (6.38)

Note that
o =dGY +2d*(FY) + K,
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whereK/ is a harmonic 1-form with*(e/ — 2d*F/ —dG¥) =0, and; : 3(3(25 J1 X

ng‘z) — R™ denotes the inclusion map. By choosiRg> 0 suitably and using the
2

Fubini’'s theorem, we may assume that

ij
[y ||L1(3(B(223 o Rz)) <CR™ ||Da)n||Ll(B§71xB£”R—2)5
n n

H|D2Gf1j| + |D2F;£j | ||L1(8(32

m—2
(zsm—lXB )

SCR™ 1H‘D2GU‘+‘D2 l]|||L1((BZ L XBo=2))

Therefore, by the well-known estimate on harmonic functions, we have

HDK HLl(B2

m—2
(48p)—1 BR )

L 3
<C(R’”‘25;2)§< / (|Dwn|2+|8,wn|2)dXdY>. (6.39)

2 m—2
B{rl x By
n

Hence it follows from the embedding result>1(R?) c L>Y(R?) (cf. Heléin [19]), that
we have, forH” 2 a.e.Y € By 2, thata/ (-, Y) e L? 1(B(4(3 ,-1) and
HC\(;ZJ (-, Y)||L2.l(B(24§n)—l) g C||Da:1] ||Wl,l(B(245n)*l)

<C[|p*G)|+|D*F/ |+ DK ||

B,
Therefore
[ i e
(asp)~1
B2
< CR" %52 / (IDw, 2 + 9, w, %) (X, ¥, ) dX dY. (6.40)

Bazn_lez’”R*z
Hence, by the duality betwedi?! and L% and (6.25), we obtain

/ e [2(X, Y) dx dY

(3(245 - 1\B3,)x B2

e I L P e B
Bm2

S Yes:mrizHO‘ (s Y)HL2°°(32 1\B§R) /2 ||Ol,l1](‘= Y)HLZI(B(ZMn)—l) ar
BY
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< CeR™ 252 / (IDw, | + |8,w,|?) (X, Y, 1) dX dY. (6.41)

2 m—2
Ba‘l xBp
n

Observe thal,; |dw,w] — o}, dw] |? = |w,|?| D2 |? and|w,| > 3 on BZ, x By 2. This,

|cwn|

plus integration over € (—R?, R?), yields

/ ‘D W
, , , |w|
(Bl -1 \BaR) x By~ x(—R2,R?)

n

2
(X,Y,1)dX dYy dr

< CeR™282 / (IDw, | + 18, w, |%). (6.42)

Bs_lxsg—zx(—RZ,RZ)
n

Finally, we need to control the? norm of D|w,|. To do it, writew,, = p,6,, with p, > %
ando, valued inS*~1, then one has

A,On+8n_2(1—,03),0n _pn|D9n|2=8twn9n- (643)

Multiplying both side by(1 — p,) and integrating it ovel(B(zMn)_l \ B3,) x B % x
(—R?, R?), we obtain

/ | Dou?

(3(243 )_l\BgR)ng—zx(—RZ,R%
n

<cer [ -

Ba{l x B2 (~R2,R?)

n

W,
e / (‘D
|w, |

(3(245’1)71\3&) x B 2% (~R%,R?)

2

+ 19, w,, |2> + boundary terms

<Ce+0(n™).

Here we have used (6.17)—(6.19) to show that the boundary term converges to zero. |
particular, we get

R / \Dw,2(X, Y,y dXdY dr < Ce.  (6.44)
(Ban)_l\BgR)xBZ'_Zx(—RZ,RZ)

This, combines with the Allard’s strong constancy lemma (see, [23,32]), implies

|Dw,|*(X, Yy, 1,) dx < Ce. (6.45)

2 2
B2 1 (Xn)\B(Xy)

This finishes the proof of Step 2. Therefore the proof of Theorem 6.1 is complete.
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Now we discuss the quantization result at time infinity for sequences of solutions
to (1.5)—(1.6). Letu, € C®(Q x R, R*) solve (1.5) and (1.6). By adopting the same
notations as Section 4, we know that 10, ) = 8aw,).new,) (x, t) dx,

Vi, (X)) = / 0y (x,1)Du, (x,1)X (x) dx

(x, 1) dx (6.46)

Q
—Z/DX: Du, @ Du,, F(u,)
J |Du,|? &2

for any X € C3(Q, R™). Note also that, by (1.6) and Lemma 2.4, we can findl oo
such that

t+1
lim / /|a,un|2dx dt—l—/la,unlz(x,tn)dx:O, (6.47)
! nh—1Q Q
_ 1
lim /—ZF(un)(x,tn)dx=O. (6.48)
nTooQ 8n

We may assume that, (1,) — u., weakly in H*(Q2, R™),

| Dt oo |?(x) dx + veo

NI =

e(un)(x, tn) dx — Hoo =

for some nonnegative Radon measuge on Q2. Moreover,V, ) = Voo IN V' ()
S0 that|| Vel = teo- It follows from (6.46)—(6.48) thasV,, = 0. Therefore, (4.16) of
Lemma 4.6 implies, for alk € spl(|| V. ||) and O< r < R < dist(a, 02),

R Vao |l (Br(@)) — r* ™| Vol (B, (a))
> / ly —al™"4sE ) PdV(y, S). (6.49)

Br(@)\Br(a)
In particular,0”~2(|| V||, x) exists for allx e spt(|| Vs ||). Now define
2L ={x € Q 0" 2(|Vall. x) > £3},
2 _ H : 2—m 2
Zoo_{xeﬂ. Irlirgrlllmor / [0,u,| (z)dz>0}.
Pr(x,tn)
Then, by (6.47) and the Vitali’s covering argument, we have

H"%(2l) <00,  H"?(%2)=0.

Now we need a slice-type-regularity result.
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CLAIM 6.5. —There exist; > 0 andé§; > 0 such that for any € Q if

p2m / e(u,)(x, t,) dx < &2, p2m / 8,1, |%(2) dz < &7 (6.50)
By (x) Pr(x,tn)
Then
(817)% sup e(u,)(x,1,) < Ce2. (6.51)
By (x)

Proof. —It follows from Lemma 2.1 that, for any, — r?> <t < t,

p2om / e(un) (x, 1) — 2" / e(un)(x, 1)

B (x) B%(X)
1 1
2— 2 — 2 2 2—m 2 2
> 2 / 92z dz — C (7 / \Dun?) (r / 19yt
Pr(xstn) Pr(xstn) Pr(xstn)
> —Cés.

Here we have used (3.2). Therefore, we have, for allz, — r?, 1,]

2—m
(;) / e(uy) (x, 1) dx < Ce2
B%(X)

so that we have

(%) / e(uy)(2) dz < Ce2.

Pr (x,tp)
2
Therefore, by choosing, sufficiently small and applying Lemma 2.3, we obtain (6.51).

CLAIM 6.6.-%, = X1 U2 is closed and has finit&~2 measure, and,, — u,
in CL(Q\ S, RY).

Proof. —For anyxg € Q \ T, there existo > 0 andng >> 1 such that fon > ng

rzm / e(uty) (x, 1,) dx < ™| Violl (B (x0)) + €2 < 262,

Bro (x0)

[ P de <l
Pro(XOstn)
Therefore, Claim 6.5 implies that for > no, supBaer(xO)e(un)(x,t”) < Ce?. Hence

Bs, o (x0) N oo =¥ SO thatX, is closed andk, — u in C|}JC(Q \ ¥, R¥). Note also that
this and (6.47) imply thai,, is a weakly harmonic map whose singular set is contained
in X,. Now we are ready to state the energy quantization theorem at time infinity.
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THEOREM 6.7. —Under the same notations as above. We h@yex,, is a closed
(m — 2)-rectifiable set(2) If, in addition, thatN = S*~*. Then, forH” 2 a.e.x € X,
there existl <1, < % andl,.-many harmonics?’s, {qﬁj}ljz‘zl, such that

0

Ix
O" (| Vaoll. ) = E(¢). S?). (6.52)

j=1

Proof. —(1) follows from the fact thaV,, is stationary and Theorem 4.9. (2) Itis very
similar to that of Theorem 6.1. One can also view it ak%gperturbation argument of
that of [32]. The only difference we need to make is to replace (6.7) by the following:
for H" 2 a.e.xg € Too,

lim lim 2" / Dy, |2(x) dx =0, (6.53)

rl0 ntoo
By (x0)

for all T € T,,2. (6.53) follows from the H™~2-approximate continuity of
O™ 2(||Vxll, -) atxg and the monotonicity inequality (6.49) (one can see Lemma 2.4
of [23] or 83 of [32]). Then one can follows lines by lines of the proof of theorem 6.1 to
show (6.52). O

7. Final remarks

In this section, we consider the clagks consisting all of the weak solutions
HL.(2 x Ry, N) N L>®(R,, HX(Q, N)) to the heat equation of harmonic maps (1.0),
which satisfy (1) the Pohozaev identity: (cf. also (5.19))

/a,uDuX(x): / %|Du|2div(X)— > wiuX (7.1)

QXR+ QXR+ 1<”<m

foranyX e C3(Q, R™); (2) the energy inequality (2.1); (3) the-regularity Lemma 2.3.
Note that the class of weak solutions satisfying both (7.1) and (2.1) was introduced by
Feldman [17], which was shown to satisfy Lemma 2.3 #be= S~ by [10] and [17]
independently. Since the partial regularity was not proven for general mamfoldt,
we henceforth add the property (3) in the definition of the cldssThe goal of this
section is to point out that all the results from Sections 3—6 are remaining to be true fol
the classA, and the proofs are almost the same or slightly easier.

As calculated in [17], any: € A satisfies the energy monotonicity inequality (2.3)
and (2.4) withe(u,) replaced by%|Du|2 and F (u,) replaced by 0. Now suppose that
{u,} C A satisfy the same initial valug(x, 0) = uo(x) for aug € C1(Q, N)

Sup (//|atun|2+E(un(-,t))> < E(uo). (7.2)
0 Q@

O<t<oo
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Then, as before, one assumes

1 1
E|Du,,|2(x, 1) dx dr — E|Du|2(x, Hdxdt +v=pu,

10,1, |2(x, 1) dx df — |8,u|?(x, t)dx dr + 1
for two nonnegative Radon measutes- v, dr andn on Q x R, . If we defineX as in
Section 2, withe(u,,) replaced by%|Dun|2, then Facts 2.4-2.11 all remain to be true.
Forzo € ¥, one can consider the tangent cone measure spgce), the same way as
in Section 3 and Lemma 3.2—Proposition 3.4 remain to hold. In particular, one can define
exactly as same as Definition 3.5, didt"(1°, -)) for any u° e T.,(u). Therefore, we
can obtain the same stratification fBras in Theorem 3.6, hamely

THEOREM 7.1. —For any sequence, C A as above. Let
% ={z20e = dmO"(u° ) <k, Vule T ()} for0<k<m.

Thendim(X,) < k for 0 <k <m and Xy is discrete.

One can also associate a generaliged- 2)-varifold V,, for eachu, as in Section 4.
If we let V denote the generalized varifold limit f,,, then all the results from Section 4
remain to be true fo¥ . In particular,

THEOREM 7.2.—For L' ae.t € Ry, V,L(Z; x A,_2,) is a (m — 2)-rectifiable
varifold. In particular, Z; is a (im — 2)-rectifiable set.

For the generalized varifold flow, all the results from Section 5 remain trud féor
example, we have

THEOREM 7.3. —Under the same notations as above. If, in additiaris a suitable
weak solution to the heat equation of harmonic maps. hgn.o is a Brakke flow.

Finally, we can prove an energy quantization for the density functidn at follows.
The proof is similar to that of Theorem 6.1 and in fact is slightly easier. One can also
modify the proof of [27] to show the following result.

THEOREM 7.4. —If, in addition, thatN = S¥~1. Then, forP™ a.ezp € T,

[

O"2(|IVioll, x0) = > E(¢;. 5?) (7.3)

j=1

Iy . ,
for somel </,, < oo and {¢}jil harmonicS?’s.

Remark7.5. —We conjecture that Theorems 6.1, 6.7, and 7.4 are true for any
Riemannian manifolav.

Remark7.6. — We believe that the concentration Xeis also(m — 1)-rectifiable set
with respect to the Euclidean metric & x R... The stratification Theorem 3.6 may be
useful to attack this problem.
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