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ABSTRACT. – We prove some asymptotic results concerning global (weak) solutions of
compressible isentropic Navier–Stokes equations. More precisely, we establish the convergence
towards solutions of incompressible Euler equations, as the density becomes constant, the Mach
number goes to 0 and the Reynolds number goes to infinity. 2001 Éditions scientifiques et
médicales Elsevier SAS

RÉSUMÉ. – Nous prouvons quelques résultats asymptotiques concernant des solutions (faibles)
globales des équations de Navier–Stokes (isentropique) compressible. Plus précisément, nous
établissons la convergence vers une solution des équations d’Euler incompressible, lorsque la
densité devient constante, le nombre de Mach tend vers 0 et le nombre de Reynolds tend vers
l’infini.  2001 Éditions scientifiques et médicales Elsevier SAS

1. Introduction

From a physical point of view, one can formally derive incompressible models from
compressible ones, when the Mach number goes to zero and the density becomes almost
constant. In Lions and the author [12], this problem is investigated starting form the
global solutions of the compressible Navier–Stokes equations constructed by Lions [11].
We have shown the convergence towards the incompressible Navier–Stokes equations as
well as the convergence towards the incompressible Euler equations (if the viscosity
coefficients go to zero and if the initial data are “well prepared”). These results have
been precised and extended in different works (see [13,2,1,14]).

In this paper, we extend the result shown in [12] concerning the convergence to the
Euler system to the case of more general initial data. In fact if the viscosity goes to zero
too, we loose spatial compactness properties. In order to circumvent this difficulty, we
use energy arguments. Hence, we have to describe (precisely) the oscillations that take
place and include them in the energy estimates. Ideas of this type were introduced by
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Schochet [17], (see also [4]) and extended to the case of vanishing viscosity coefficients
in [16]. Let us now precise the scalings, we are going to use, which are the same as those
used in [12]. The unknowns(ρ̃, v) are respectively the density and the velocity of the
fluid (gaz). We scalẽρ andv (and thusp) in the following way

ρ̃ = ρ(x, εt), v = εu(x, εt), (1)

and we assume that the viscosity coefficientsµ̃, ξ̃ (ξ̃ − µ̃, µ̃ are called the volumic and
dynamical viscosity coefficients) are also small and scale like

µ̃= εµε, ξ̃ = εξε, (2)

whereε ∈ (0,1) is a “small parameter” and the normalized coefficientµε, ξε satisfy
µε > 0, ξε +µε > 0. Moreover, we assume that

µε → 0 asε goes to 0+. (3)

With the preceding scalings, the compressible Navier–Stokes system reads
∂ρ

∂t
+ div(ρu)= 0, ρ � 0,

∂ρu

∂t
+ div(ρu⊗ u)−µε�u− ξε∇divu+ a

ε2
∇ργ = 0.

(4)

One can always assume thata = 1/γ by replacingε by
√
aγ ε. All throughout this paper

the domainΩ will be the the whole spaceRN or the torusTN (in this last case, all the
functions are defined onRN and assumed to be periodic with period 2πai in the ith
variable). We recall here that the inviscid limit, namely the convergence of the Navier–
Stokes equations to Euler equations in the case of a domain with boundary is an open
problem even in the incompressible case, which seems to be easier (see [15] for a partial
result).

1.1. Statement of the results

1.1.1. The whole space case
Let us begin with the case of the whole space. We consider a sequence of global

weak solutions(ρε, uε) of the compressible Navier–Stokes equations (4) and we assume
thatρε − 1 ∈ L∞(0,∞;Lγ

2 )∩C([0,∞),L
p
2) for all 1 � p < γ, whereLp

2 = {f ∈ L1
loc,|f |1|f |�1 ∈ Lp, |f |1|f |�1 ∈ L2}, uε ∈ L2(0, T ; H 1) for all T ∈ (0,∞) (with a norm

which can explode whenε goes to 0),ρε|uε|2 ∈ L∞(0,∞; L1) andρεuε ∈ C([0,∞);
L

2γ/(γ+1) −w) i.e. is continuous with respect tot � 0 with values inL
2γ/(γ+1)

endowed with
its weak topology. We require (4) to hold in the sense of distributions and we impose the
following conditions at infinity

ρε → 1 as|x| → +∞, uε → 0 as|x| → +∞. (5)
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Finally, we prescribe initial conditions

ρε|t=0 = ρ0
ε , ρεuε|t=0 =m0

ε, (6)

whereρ0
ε � 0, ρ0

ε − 1 ∈ Lγ , m0
ε ∈ L2γ /(γ+1), m0

ε = 0 a.e. on{ρ0
ε = 0} andρ0

ε |u0
ε|2 ∈ L1,

denoting byu0
ε = m0

ε/ρ
0
ε on {ρ0

ε > 0}, u0
ε = 0 on {ρ0

ε = 0}. The initial conditions also
satisfy the following uniform bounds∫

ρ0
ε

∣∣u0
ε

∣∣2 + 1

ε2

∫ (
ρ0
ε

)γ − 1− γ
(
ρ0
ε − 1

)
�C, (7)

where, here and below,C denotes various positive constants independent ofε. Let us
notice that (7) implies in particular that, roughly speaking,ρ0

ε is of order 1+ O(ε). In
the sequel, we will use the following notationρε = 1 + εϕε. Notice that ifγ < 2, we
cannot deduce any bound forϕε in L∞(0, T ;L2). This is why we prefer to work with
the following approximation

Φε = 1

ε

√
2a

γ − 1

(
ρ
γ

ε − 1− γ (ρε − 1)
)
.

Furthermore, we assume that
√
ρ0
ε u

0
ε converges strongly inL2 to someũ0. Then, we

denote byu0 = P ũ0, whereP is the projection on divergence-free vector fields, we also
defineQ (the projection on gradient vector fields), henceũ0 = P ũ0+Qũ0. Moreover, we
assume thatΦ0

ε converges strongly inL2 to someϕ0. This also implies thatϕ0
ε converges

to ϕ0 in L
γ
2 .

Our last requirement on(ρε, uε) concerns the total energy: we assume that we have

Eε(t)+
t∫

0

Dε(s)ds �E0
ε a.e.t,

dEε

dt
+Dε � 0 in D′(0,∞), (8)

where

Eε(t)=
∫
Ω

1

2
ρε|uε|2(t)+ a

ε2(γ − 1)

(
(ρε)

γ − 1− γ (ρε − 1)
)
(t),

Dε(t)=
∫
Ω

µε|Duε|2(t)+ ξε(divuε)
2(t)

and

E0
ε =

∫
Ω

1

2
ρ0
ε

∣∣u0
ε

∣∣2 + a

ε2(γ − 1)

((
ρ0
ε

)γ − 1− γ
(
ρ0
ε − 1

))
.

We now wish to emphasize the fact that we assume the existence of a sequence of
solutions with the above properties, and we shall also assume thatγ > N/2. We recall
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the results of Lions [11] which yield the existence of such solutions precisely when
γ > N/2 if N � 4, γ � 9/5 if N = 3 andγ � 3/2 if N = 2. We also refer to [12] for
the proof of the uniform bounds.

Whenε goes to zero andµε goes to 0, we expect thatuε converges tov, the solution
of the Euler system {

∂tv + div(v ⊗ v)+ ∇π = 0,
div v = 0 v|t=0 = u0,

(9)

in C([0, T ∗);Hs). We show the following theorem

THEOREM 1.1 (The whole space case). –We assume thatµε →ε 0 (such thatµε +
ξε > 0 for all ε) and thatP ũ0 ∈Hs for somes > N/2+ 1, thenP(

√
ρεuε) converges to

v in L∞(0, T ;L2) for all T < T ∗, wherev is the unique solution of the Euler system in
L∞

loc([0, T ∗);Hs) andT ∗ is the existence time of(9). In addition
√
ρεuε converges tov

in Lp(0, T ;L2
loc) for all 1� p <+∞ and allT < T ∗.

1.1.2. The periodic case
Now, we takeΩ = TN and consider a sequence of solutions(ρε, uε) of (4), satisfying

the same conditions as in the whole space case (the functions are now periodic in space
and all the integration are performed overTN ). Of course, the conditions at infinity
are removed and the spacesLp

2 can be replaced byLp. Here, we have to impose more
conditions on the oscillating part (acoustic waves), namely we have to assume thatQũ0

is more regular thanL2. In fact, in the periodic case, we do not have a dispersion
phenomenon as in the case of the whole space and the acoustic waves will not go to
infinity, but they are going to interact with each other. This is way, we have to include
them in the energy estimates to show our convergence result.

For the next theorem, we assume thatQũ0, ϕ0 ∈ Hs−1 and that there exists a
nonnegative constantν such thatµε + ξε � 2ν > 0 for all ε. For simplicity, we assume
thatµε + ξε converges to 2ν.

THEOREM 1.2 (The periodic case). –We assume thatµε →ε 0 (such thatµε + ξε →
2ν > 0) and thatP ũ0 ∈Hs for somes > N/2+1, andQũ0, ϕ0 ∈Hs−1 thenP(

√
ρεuε)

converges tov in L∞(0, T ;L2) for all T < T ∗, wherev is the unique solution of the
Euler system inL∞

loc(0, T
∗;Hs) andT ∗ is the existence time of(9). In addition

√
ρεuε

converges weakly tov in L∞(0, T ;L2).

In the above theorem, one can remove the condition 2ν > 0. In that case, we still have
the result of Theorem 1.2 but only on an interval of time(0, T ∗∗) which is the existence
interval for the equation governing the oscillating part, which will be given later on.

THEOREM 1.3 (The periodic case,ν = 0). – We assume thatµε →ε 0 (such that
µε + ξε → 0) and thatũ0 ∈ Hs for somes > N/2 + 1, andϕ0 ∈ Hs thenP(

√
ρεuε)

converges tov in L∞(0, T ;L2) for all T < inf(T ∗, T ∗∗), wherev is the unique solution
of the Euler system inL∞

loc(0, T
∗;Hs), T ∗ is the existence time of(9) and T ∗∗ the

existence time of(32), with ν = 0. In addition
√
ρεuε converges weakly tov in

L∞(0, T ;L2).
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2. The whole space case

We recall that in the case of the whole space, we do not assume any extra condition
on the viscosityξε, neither do we assume any regularity (more thanL2) for the gradient
part of the initial data. The proof relies on the dispersion property of the wave equation
[18,1] and the notion of non dissipative solutions for the Euler system [10,12].

First, using the energy bounds, we deduce thatρε − 1 converges to 0 inL∞(0, T ;Lγ
2 )

and that there exists someu ∈ L∞(0, T ;L2) and a subsequence
√
ρεuε converging

weakly tou. Hence, we also deduce thatρεuε converges weakly tou in L
2γ/(γ+1)

. We
next introduce the following group(L(τ ), τ ∈ R) defined by eτL whereL is the operator
defined onD′ × (D′)N , by

L

(
ϕ

v

)
= −

(
divv

∇ϕ
)
. (10)

It is easy to check that eτL is an isometry on eachHs × (H s)
N

for all s ∈ R and for all
τ . This will allow

eτL
(
ϕ

v

)
=
(
ϕ(τ)

v(τ)

)
solves

∂ϕ

∂τ
= −divv,

∂v

∂τ
= −∇ϕ

and thus∂
2ϕ

∂τ2 −�ϕ = 0.
Let (ψε,mε = ∇qε) be the solution of the following system

∂ψε

∂t
= −1

ε
divmε, ψε(t = 0)=Φ0

ε ,

∂mε

∂t
= −1

ε
∇ψε, mε(t = 0)=Q

√
ρ0
ε u

0
ε.

(11)

We recall that for allv ∈ Hs, we defineQv = ∇�−1 div v and Pv = v − Qv. We
also introduce the following regularizationsψε,δ = ψε ∗ χδ , ∇qε,δ = ∇qε ∗ χδ , where
χ ∈ C∞

0 (RN) such that
∫
χ = 1 andχδ(x) = (1/δN)χ(x/δ). Since (11) is linear it is

easy to see that(ψε,δ,∇qε,δ) is a solution of the same system with regularized initial
data. Using (as in [1]) Strichartz type inequality, we get

∥∥∥∥∥
(
ψε,δ

∇qε,δ

)∥∥∥∥∥
Lp(R;Ws,q(RN)))

�Cε1/p

∥∥∥∥∥
(

Φ0
ε

Q(
√
ρ0
ε u

0
ε)

)
∗ χδ

∥∥∥∥∥
Hs+σ

(12)

for all p,q > 2 andσ > 0 such that

2

q
= (N − 1)

(
1

2
− 1

p

)
, σ = N + 1

N − 1
.
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This yields that for all fixedδ and for alls ∈ R, we have asε goes to 0

(ψε,δ,∇qε,δ)→ 0 inLp
(
R;Ws,q

(
RN
))
. (13)

Now, we turn to the energy estimates. Let us rewrite the energy inequality for almost
all t

1

2

∫
Ω

ρε|uε|2(t)+Φ2
ε (t)+

t∫
0

∫
Ω

µε|Duε|2 + ξε(divuε)
2 � 1

2

∫
Ω

ρ0
ε

∣∣u0
ε

∣∣2 +Φ2
ε (0). (14)

Then, the conservation of energy forv reads∫
Ω

1

2
|v|2(t)=

∫
Ω

1

2
|u0|2, (15)

and using the fact thatL is an isometry onL2, we obtain for allt∫
Ω

1

2
ψ2
ε,δ(t)+ 1

2
|∇qε,δ|2(t)=

∫
Ω

1

2
ψ2
ε,δ(0)+ 1

2
|∇qε,δ|2(0). (16)

Next, the weak formulation of the conservation of mass yields for almost allt

∫
Ω

ψε,δϕε(t)+ 1

ε

t∫
0

∫
Ω

div(ρεuε)ψε,δ + div(∇qε,δ)ϕε =
∫
Ω

ψε,δϕε(0), (17)

while the weak formulation of (4) implies that we have for almost allt∫
Ω

ρεuε.v(t)+
t∫

0

∫
Ω

ρεuε.(v.∇v + ∇p)

−
t∫

0

∫
Ω

ρεuεuε.∇v +µε

t∫
0

∫
Ω

∇uε.∇v =
∫
Ω

ρ0
ε u

0
ε.u

0, (18)

∫
Ω

ρεuε.∇qε,δ(t)+
t∫

0

∫
Ω

ρεuε.

(
1

ε
∇ψε,δ

)
−

t∫
0

∫
Ω

ρεuεuε.∇mε,δ

+
t∫

0

∫
Ω

µε∇uε.∇mε,δ + ξε div(uε)div(mε,δ)

−
t∫

0

∫
Ω

(
1

ε
ϕε + γ − 1

2
Φ2
ε

)
div(∇qε,δ)=

∫
Ω

ρ0
ε u

0
ε.m

0
ε,δ. (19)

Summing up (14), (15), (16) and subtracting (17), (18), (19), we deduce from
straightforward computations the following inequality
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1

2

∫
Ω

∣∣√ρεuε − v −mε,δ

∣∣2(t)+ (Φε −ψε,δ)
2(t)+

t∫
0

∫
Ω

µε|∇uε|2 + ξε
∣∣div(uε)

∣∣2
� −

∫
Ω

(Φε − ϕε)ψε,δ(t)+
∫
Ω

(Φε − ϕε)ψε,δ(0)

+
∫
Ω

(√
ρε − 1

)√
ρεuε.(v +mε,δ)(t)

− (√ρ0
ε − 1

)√
ρ0
ε u

0
ε.
(
v0 +m0

ε,δ

)−
t∫

0

∫
Ω

µε|∇uε|2 + ξε
∣∣div(uε)

∣∣2

+
t∫

0

∫
Ω

µε∇uε.∇(v +mε,δ)+ ξε div(uε)div(mε,δ)

+
t∫

0

∫
Ω

ρεuε.(v.∇v + ∇p)− ρεuε(uε.∇v) (∗)

−
t∫

0

∫
Ω

ρεuε(uε.∇mε,δ)−
(
γ − 1

2
Φ2
ε

)
div(∇qε,δ)

+ 1

2

∫
Ω

∣∣√ρ0
εu

0
ε − v0 −m0

ε,δ

∣∣2 + (Φε −ψε,δ)
2(0). (20)

Only the term marked by(∗) in the second hand side of (20) needs some special
treatment, we are going to compute it below. In the sequel, we denote bywε,δ =√
ρεuε − v −mε,δ. Then, we have easily

t∫
0

∫
Ω

ρεuε.(v.∇v + ∇p)− ρεuε(uε.∇v)

= −
t∫

0

∫
Ω

wε,δ.∇vwε,δ +
t∫

0

∫
Ω

(
ρε − √

ρε
)
uε.(v.∇v)+ ρεuε.∇p

− (√ρεuε − v
)
.∇ v2

2
−

t∫
0

∫
Ω

mε,δ.∇vwε,δ + (√ρεuε − v
)
.∇v.mε,δ. (21)

Finally, we can see that (20) may be rewritten as∥∥wε,δ(t)
∥∥2
L2 + ∥∥Φε −ψε,δ(t)

∥∥2
L2

�
∥∥wε,δ(0)

∥∥2
L2 + ∥∥Φε −ψε,δ(0)

∥∥2
L2 + 2Aδ

ε + 2

t∫
0

∥∥wε,δ(s)
∥∥2
L2

∥∥∇v(s)∥∥
L∞ ds, (22)

where
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Aδ
ε = −

∫
Ω

(Φε − ϕε)ψε,δ(t)+
∫
Ω

(Φε − ϕε)ψε,δ(0)

+
∫
Ω

(√
ρε − 1

)√
ρεuε.(v +mε,δ)(t)− (√ρ0

ε − 1
)√

ρ0
ε u

0
ε.
(
v0 +m0

ε,δ

)

+
t∫

0

∫
Ω

µε∇uε.∇(v +mε,δ)+ ξε div(uε)div(mε,δ)

−
t∫

0

∫
Ω

ρεuε(uε.∇mε,δ)−
(
γ − 1

2
Φ2
ε

)
div(∇qε,δ)

+
t∫

0

∫
Ω

(
ρε − √

ρε
)
uε.(v.∇v)+ ρεuε.∇p− (√ρεuε − v

)
.∇ v2

2

−
t∫

0

∫
Ω

mε,δ.∇vwε,δ + (√ρεuε − v
)
.∇v.mε,δ. (23)

For all fixedδ, it is easy to see thatAδ
ε(t) converges to 0 for almost allt , uniformly in

t whenε goes to 0. Then, by Grönwall’s inequality, we deduce that we have for almost
all t ∈ (0, T )∥∥wε,δ(t)

∥∥2
L2 + ∥∥Φε −ψε,δ(t)

∥∥2
L2

�
[∥∥wε,δ(0)

∥∥2
L2 + ∥∥Φε −ψε,δ(0)

∥∥2
L2 + sup

0�s�t

Aδ
ε(s)

]
eC
∫ t

0
‖∇v(s)‖2

L∞ . (24)

Then, lettingε go to 0, we obtain

‖u− v‖2
L∞(0,T ;L2(Ω)) � lim

ε

(‖wε,δ‖2
L∞(0,T ;L2(Ω)) + ‖Φε −ψε,δ‖2

L∞(0,T ;L2(Ω))

)
�C0

(∥∥ũ0 − u0 −Qũ0 ∗ χδ
∥∥
L2(Ω)

+ ∥∥ϕ0 − ϕ0 ∗ χδ
∥∥
L2(Ω)

)
,

where

C0 = eC
∫ T

0
‖∇v(s)‖2

L∞ <+∞.

Then, letting δ go to 0, we deduce thatu = v and we obtain also the uniform
convergence int of P(

√
ρεuε) to v in L2, since

lim
ε

∥∥P (√ρεuε
)− v

∥∥
L∞(0,T ;L2)

� C0 lim
δ

[∥∥ũ0 − u0 −Qũ0 ∗ χδ
∥∥
L2(Ω)

+ ∥∥ϕ0 − ϕ0 ∗ χδ
∥∥
L2(Ω)

]= 0.

Moreover, we see that
√
ρεuε −mε converges uniformly int , strongly inL2 to v. In fact∥∥√ρεuε −mε − v

∥∥
L2 �

∥∥√ρεuε −mε,δ − v
∥∥
L2 + ‖mε −mε,δ‖L2 + ‖Φε −ψε,δ‖L2,
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and since(Φ0
ε ,m

0
ε = Q

√
ρ0
ε u

0
ε) converges strongly to(ϕ0,m0) and sinceL is an

isometry inL2, we deduce that we have

‖mε −mε,δ‖L2 + ‖Φε −ψε,δ‖L2 → 0 whenδ → 0

uniformly in t andε.
Finally, we can also deduce the local strong convergence of

√
ρεuε to v in

Lp(0, T ;L2(B)). Indeed let us denote byB a bounded domain ofRN . Then, we have
for all t ∥∥√ρεuε − v

∥∥
L2(B)

�
∥∥√ρεuε −mε,δ − v

∥∥
L2(B)

+ ‖mε,δ‖L2(B)

�
∥∥√ρεuε −mε,δ − v

∥∥
L2(B)

+ ‖mε,δ‖Lq(B)

for anyq > 2. Then, using the fact that for allδ, ‖mε,δ‖Lp(0,T ;Lq(B)) converges to 0 asε
goes to 0, we conclude easily by taking the limit inε and then inδ as above.

3. The periodic case

As in the case of the whole space, we can deduce, using the energy bounds, that
ρε − 1 converges strongly to 0 inL∞(0, T ;Lγ ). Then, using the bound on

√
ρεuε in

L∞(0, T ;L2), we may extract a subsequence which converges weakly to someu. To
pass to the limit in the equation, we need to describe the oscillations in time and show
that they will not affect the limit equation.

We next introduce, as in the whole space case, the following group(L(τ ), τ ∈ R)

defined by eτL whereL is the operator defined onD′
0 × (D′)N , whereD′

0 = {ϕ ∈
D′,

∫
ϕ = 0}, by

L

(
ϕ

v

)
= −

(
divv

∇ϕ
)
. (25)

In the sequel, we will use the following notations

Uε = (
ϕε,Q(ρεuε)

)
and V ε = L(−t/ε)(ϕε,Q(ρεuε)

)
,

and for some technical reasons related to theL2 integrability, we will also use the
following approximations

Ū ε = (
Φε,Q(

√
ρεuε)

)
and V̄ ε = L(−t/ε)(Φε,Q(

√
ρεuε)

)
,

which satisfy ∥∥Uε − Ū ε
∥∥
L∞(L2γ/(γ+1))

→ 0 whenε → 0.

Let us project Eq. (4) on “gradient vector-fields”

∂

∂t
Q(ρεuε)+Q

[
div(ρεuε ⊗ uε)

]− (µε + ξε)∇divuε
(26)

+ a

ε2
∇(ργε − γρε + (γ − 1)

)+ 1

ε2
∇(ρε − 1)= 0.
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Combining (26) with the conservation of mass, we obtain

ε
∂ϕε

∂t
+ divQ(ρεuε)= 0, ε

∂

∂t
Q(ρεuε)+ ∇ϕε = εFε, (27)

where

Fε = (µε + ξε)∇ divuε −Q
[
div(ρεuε ⊗ uε)

]− a∇
[

1

ε2

(
ργε − γρε + (γ − 1)

)]
.

Eq. (27) yields that∂tUε = 1
ε
LUε + (0,Fε), which can be rewritten as∂tV ε =

L(−t/ε)(0,Fε). It is easy to check thatFε is bounded inL2(H−s) (for somes ∈ R),
henceV ε is compact in time (the oscillations have been cancelled). If we had enough
compactness in space we could pass to the limit in this equation and recover the
following limit system for the oscillating part

∂t V̄ +Q1(u, V̄ )+Q2(V̄ , V̄ )− ν�V̄ = 0, (28)

whereQ1 andQ2 are respectively a linear and a bilinear forms inV̄ (which will be
defined and computed later on) and the term−ν�V̄ explained below. In fact, as in [17]
(see also [16]), we considerL(−t/ε)(0,Fε) as an almost periodic function inτ = t/ε

and compute its mean value, which yields (28).

DEFINITION 3.1. –For all divergence-free vector fieldu ∈ L2(Ω)N and all V =
(ψ,∇q) ∈ L2(Ω)N+1, we define the following linear and bilinear symmetric forms in
V

Q1(u,V )= lim
τ→∞

1

τ

τ∫
0

L(−s)
(

0

div(u⊗L2(s)V +L2(s)V ⊗ u)

)
ds, (29)

and

Q2(V ,V )= lim
τ→∞

1

τ

τ∫
0

L(−s)
(

0

div (L2(s)V ⊗L2(s)V )+ γ−1
2 ∇(L1(s)V )

2

)
ds. (30)

The convergences stated above takes place inW−1,1 and can be shown by using
almost-periodic functions (see [16] and the references therein). Indeed the functions
inside the integral in (29) and (30) are almost periodic inW−1,1 andQ1(u,V ), Q2(V ,V )

are their mean value. We will come back to this issue in the next section. We also remark
that in Eq. (28) the viscosity term was divided by 2 and that it applies for both component
of the vectorV̄ . This is due to the following proposition, which can be proved easily
using almost periodic functions (see also [5] and [3]).

PROPOSITION 3.2. –Under the same hypothesis onV , we have

−ν�V = lim
τ→∞

1

τ

τ∫
0

−L(−s)
(

0

2ν�L2(s)V

)
ds. (31)
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Nevertheless, the fact that the viscosity applies now for both components ofV is not
sufficient to yield compactness in space forV ε. To recover compactness in space, we
will use the regularity of the limit system and extend the method used in [12] to the case
of general initial data as was done in [16]. LetV 0 be the solution of the following system{

∂tV
0 +Q1(v,V

0)+Q2(V
0, V 0)− ν�V 0 = 0,

V 0|t=0 = (ϕ0,Qũ0),
(32)

wherev is, as in the case of the whole space, the solution of the incompressible Euler
equations with initial datau0. The existence of global strong solutions for the system (32)
(and local solutions if the viscosity term is removed) as well as the exact computations of
the two formsQ1 andQ2 will be detailed in the next section. We only need the following
two propositions.

PROPOSITION 3.3. – For all u, V , V1 and V2 (regular enough to define all the
products), we have∫

Q1(u,V )V = 0 and
∫

Q2(V ,V )V = 0, (33)

∫
Q1(u,V1)V2 +Q1(u,V2)V1 = 0, (34)

∫
Q2(V1, V1)V2 + 2Q2(V1, V2)V1 = 0. (35)

The proof of (33) will be given in the next section, (34) can be shown by applying the
first part of (33) toV1 + V2 and toV1 − V2. Finally (35) can be shown by applying the
second part of (33) toV1 +X V2 and identifying the term of degree 1.

The next proposition is a very simple consequence of the theory of almost-periodic
functions (see for instance Lemma 2.3 of [16]).

PROPOSITION 3.4. – For all u ∈ Lp(0, T ;L2) and V ∈ Lq(0, T ;L2), we have the
following weak convergences(p andq are such that the product are well defined)

w- lim
ε
L
(

− t

ε

)(
0

div
(
u⊗L2

(
t
ε

)
V +L2

(
t
ε

)
V ⊗ u

))= Q1(u,V ) (36)

and

w- lim
ε
L
(
− t

ε

)(
0

div
(
L2
(
t
ε

)
V ⊗L2

(
t
ε

)
V
)+ γ−1

2 ∇(L1
(
t
ε

)
V
)2
)

= Q2(V ,V ). (37)

Using the symmetry ofQ2, we deduce easily the following proposition.

PROPOSITION 3.5. – Eq. (37) of Proposition3.4 can be extended to the case where
we takeV1 andV2 using the symmetry ofQ2, namely
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w- lim
ε
L
(

− t

ε

)(
0

div
(
L2
(
t
ε

)
V1 ⊗L2

(
t
ε

)
V2 +L2

(
t
ε

)
V2 ⊗L2

(
t
ε

)
V1
))

+L
(

− t

ε

)(
0

γ−1
2 ∇(L1

(
t
ε

)
V1L1

(
t
ε

)
V2
))= Q2(V1, V2). (38)

Moreover, the above identity holds forV1 ∈ Lq(0, T ;Hs) andV2 ∈ Lp(0, T ;H−s) with
s ∈ R and 1/p + 1/q = 1. It is also possible to extend it to the case where we replace
V2 in the left hand side by a sequenceV ε

2 such thatV ε
2 converges strongly toV2 in

Lp(0, T ;H−s).

In order to show the convergence in Theorem 1.2, we will try to estimate

∥∥∥∥√ρεuε − v −L2

(
t

ε

)
V 0
∥∥∥∥2

L2
+
∥∥∥∥Φε −L1

(
t

ε

)
V 0
∥∥∥∥2

L2
.

We also introduce the following notationswε = √
ρεuε − v − L2(t/ε)V

0 and βε =
Φε − L1(t/ε)V

0. In the sequel, we also note(ψε,mε) = L(t/ε)V 0. The proof follows
the same lines as the proof in the whole space case apart from the fact that the equation
satisfied by the gradient part is not trivial and that we have to use the precise equation
satisfied by the oscillating terms. We recall the energy inequality

1

2

∫
Ω

ρε|uε|2(t)+Φ2
ε (t)+

t∫
0

∫
Ω

µε|Duε|2 + ξε(divuε)
2 � 1

2

∫
Ω

ρ0
ε

∣∣u0
ε

∣∣2 +Φ2
ε (0) (39)

as well as the conservation of energy forv∫
Ω

1

2
|v|2(t)=

∫
Ω

1

2
|u0|2. (40)

Using that ∫
Q1
(
u,V 0)V 0 = 0,

∫
Q2
(
V 0, V 0)V 0 = 0,

we deduce from (32) the following energy identity

∫
Ω

1

2

∣∣V 0∣∣2(t)+ ν

t∫
0

∫
Ω

∣∣∇V 0∣∣2(s)ds =
∫
Ω

1

2

∣∣V 0(t = 0)
∣∣2. (41)

Next, using the weak formulation of the conservation of mass, we obtain for almost
all t ∫

Ω

ψεϕε(t)+ 1

ε

t∫
0

∫
Ω

div(ρεuε)ψε + div(∇qε)ϕε
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−
t∫

0

∫
Ω

L1

(
t

ε

)
∂tV

0ϕε =
∫
Ω

ϕ0ϕε(0), (42)

while the weak formulation of (4), yields as before the following inequality for almost
all t ∫

Ω

ρεuε.v(t)+
t∫

0

∫
Ω

ρεuε.(v.∇v + ∇p)

−
t∫

0

∫
Ω

ρεuεuε.∇v +µε

t∫
0

∫
Ω

∇uε.∇v =
∫
Ω

ρ0
εu

0
ε.u

0, (43)

∫
Ω

ρεuε.∇qε(t)+
t∫

0

∫
Ω

ρεuε.

(
1

ε
∇ψε

)
−

t∫
0

∫
Ω

ρεuεuε.∇mε

−
t∫

0

∫
Ω

L2

(
t

ε

)
∂tV

0ρεuε +
t∫

0

∫
Ω

µε∇uε.∇mε + ξε div(uε)div(mε)

−
t∫

0

∫
Ω

(
1

ε
ϕε + γ − 1

2
Φ2
ε

)
div(∇qε)=

∫
Ω

ρ0
ε u

0
ε.Qũ0. (44)

Next adding up (39), (40), (41) and subtracting (42), (43), (44), we obtain

1

2

∫
Ω

|wε|2(t)+ (βε)
2(t)+

t∫
0

∫
Ω

µε|Dwε|2 + ξε(divwε)
2

� −
∫
Ω

(Φε − ϕε)ψε(t)+
∫
Ω

(Φε − ϕε)ϕ
0

+
∫
Ω

(√
ρε − 1

)√
ρεuε.(v +mε)(t)− (√ρ0

ε − 1
)√

ρ0
εu

0
ε.ũ

0

+ 1

2

∫
Ω

∣∣√ρ0
ε u

0
ε − ũ0∣∣2 + (Φε − ϕ0)2(0)+Aε +Bε, (45)

whereAε andBε are given by

Aε =
t∫

0

∫
Ω

−ν∣∣∇V 0∣∣2 +µε|Dmε|2 + ξε(divmε)
2 +µε|Dv|2

+
t∫

0

∫
Ω

−µε∇uε.∇(v +mε)− ξε(divuε)(divmε)− ν�V 0V ε

(46)

and
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Bε =
t∫

0

∫
Ω

ρεuε.(v.∇v + ∇p)− ρεuεuε.∇(v +mε)

+
t∫

0

∫
Ω

−γ − 1

2
Φ2
ε div(mε)+Q1

(
v,V 0)V ε +Q2

(
V 0, V 0)V ε.

(47)

Here, we have used that

t∫
0

∫
Ω

L
(
t

ε

)
∂tV

0Uε =
t∫

0

∫
Ω

∂tV
0V ε. (48)

It is easy to see that to apply a Grönwall’s lemma, one has to estimateAε andBε,
since one can show (as in the case of the whole space) that the other terms in the right
hand side of (45) converge to 0 uniformly in t. In the following two subsections, we will
show that

Bε(t)�
(∥∥wε(t)

∥∥2
L2 + ∥∥βε(t)∥∥2

L2

)∥∥∇(v +mε)
∥∥
L∞ + rε

and thatAε, rε converge to 0 uniformly in t. Therefore, we conclude as in the case of the
whole space, using that∇(v +mε) is bounded inL1(0, T ;L∞) uniformly in ε.

3.1. Bounds on Bε

We recall here that we assume (extracting subsequences if necessary) that
√
ρεuε and

uε converges weakly to someu and thatV ε = L(−t/ε)Uε as well asV̄ ε = L(−t/ε)Ū ε

converge (strongly in time) to(0, u)+ V̄ . In the sequel,rε will denote any sequence of
functions converging uniformly in t to 0. Rewriting (47), we get

Bε =
t∫

0

∫
Ω

−wεwε.∇(v +mε)− γ − 1

2
β2
ε div(mε)

+
t∫

0

∫
Ω

√
ρεuε.(v.∇v)− √

ρεuε.(v +mε).∇(v +mε)

+
t∫

0

∫
Ω

−v.(√ρεuε − v −mε

)
.∇(v +mε)

−mε.
(√

ρεuε − v −mε

)
.∇(v +mε)

+
t∫

0

∫
Ω

γ − 1

2
ψ2
ε div(mε)− 2

γ − 1

2
ψεΦε div(mε)

+
t∫

0

∫
Ω

Q1
(
v,V 0)V ε +Q2

(
V 0, V 0)V ε + rε. (49)
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Let us compute the limit whenε goes to 0 of the terms appearing in the right hand side.
On the one hand, we have

t∫
0

∫
Ω

mε.mε.∇(v +mε)+ γ − 1

2
ψ2
ε div(mε)

= −
t∫

0

∫
Ω

[
div(mε ⊗mε)+ γ − 1

2
∇(ψ2

ε

)]
.(mε + v)

= −
t∫

0

∫
Ω

L
(

− t

ε

)(
0

div(mε ⊗mε)+ γ−1
2 ∇(ψε)

2

)
.

(
V 0 +

(
0

v

))

= −
t∫

0

∫
Ω

Q2
(
V 0, V 0).(V 0 + (0, v)

)+ rε = rε.

On the other hand, using Proposition 3.5, we have

−
t∫

0

∫
Ω

(
mε ⊗ √

ρεuε + √
ρεuε ⊗mε

) : ∇(v +mε)+ (γ − 1)ψεΦεdiv(mε)

=
t∫

0

∫
Ω

[
div(mε ⊗ √

ρεuε + √
ρεuε ⊗mε)+ (γ − 1)∇(ψεΦε)

]
.(mε + v)

=
t∫

0

∫
Ω

L
(
− t

ε

)(
0

div(mε ⊗ √
ρεuε + √

ρεuε ⊗mε)+ (γ − 1)∇(ψεΦε)

)(
V 0 +

(
0

v

))

=
t∫

0

∫
Ω

2Q2
(
V 0, V̄

)
.
(
V 0 + (0, v)

)+Q1
(
u,V 0).(V 0 + (0, v)

)+ rε

= 2

t∫
0

∫
Ω

Q2
(
V 0, V̄

)
.V 0 + rε.

Moreover, it is easy to see that

t∫
0

∫
Ω

[
div
(
v ⊗ √

ρεuε + √
ρεuε ⊗ v

)]
.mε =

t∫
0

∫
Ω

Q1(v, V̄ ).V
0 + rε,

and that

t∫
0

∫
Ω

[
div(v ⊗mε +mε ⊗ v)

]
.mε =

t∫
0

∫
Ω

Q1
(
v,V 0).V 0 + rε = rε.



214 N. MASMOUDI / Ann. Inst. Henri Poincaré, Anal. non linéaire 18 (2001) 199–224

Finally, we also have

t∫
0

∫
Ω

Q1
(
v,V 0)V ε +Q2

(
V 0, V 0)V ε =

t∫
0

∫
Ω

Q1
(
v,V 0)V̄ +Q2

(
V 0, V 0)V̄ + rε.

3.2. Bounds on Aε

We recall thatµε goes to 0 and thatξε goes to 2ν. From the energy bounds onV 0 and
on v, we get

t∫
0

∫
Ω

µε|Dmε|2 +µε|Dv|2 −µε∇uε.∇(v +mε)→ 0

uniformly in t . Besides, integrating by parts and using thatmε = ∇qε, we get

t∫
0

∫
Ω

ξε(divmε)
2 = −

t∫
0

∫
Ω

ξε�mε.mε = −
t∫

0

∫
Ω

L
(

− t

ε

)(
0

ξε�mε

)
.V 0

= −
t∫

0

∫
Ω

ν�V 0V 0 + rε.

The same argument yields

−
t∫

0

∫
Ω

ξε(divmε)(divuε)=
t∫

0

∫
Ω

L
(

− t

ε

)(
0

ξε�uε

)
.V 0 =

t∫
0

∫
Ω

ν�V̄ V 0 + rε.

Finally, we have
t∫

0

∫
Ω

−ν�V 0V ε =
t∫

0

∫
Ω

−ν�V 0V̄ + rε.

Adding up the different contributions and integrating by parts, we deduce thatAε = rε
converges to 0 uniformly int .

4. Study of the oscillating part

This section is devoted to the study of the equation satisfied by the gradient part of the
momentum. We expect that the following computations will be used in a forthcoming
investigation of a new numerical approach to slightly compressible flows.

4.1. Computation of Q2

We recall thatΩ = TN and thatTN is a periodic domain with periods(2πa1, . . . ,

2πaN), where for alli, ai > 0. Then, we can decomposeL2(Ω)×{∇q, q ∈H 1(Ω)} into
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the following orthogonal basis. (In the sequelL2(Ω) denotes the space ofL2 functions
with zero average)

V +
k (X)= 1√

2|TN ||k|

( |k|
−sg(k)k

)
eik.X

and

V −
k (X)= 1√

2|TN ||k|

( |k|
sg(k)k

)
eik.X,

wherek is the vector whose components are defined byki = k′
i/ai for all 1 � i �N with

k′
i ∈ Z∗ and where the notation|k| is defined by|k|2 =∑

i k2
i and|TN | = (2π)N

∏
i ai .

Moreover, sg(k) is a generalization of the function sign, defined onRN − {0} by
sg(k) = +1 if and only if there existsi, 1 � i � N , such that for allj < i, we have
kj = 0 andki > 0. Otherwisesg(k)= −1. We think that the introduction of this notation
yields much simpler formulae. We only point out that we have

LV +
k (X)= isg(k)|k|V +

k (X) and LV −
k (X)= −isg(k)|k|V −

k (X).

DecomposingV on this basis, we have

V = ∑
k′∈ZN∗

a+
k V

+
k + a−

k V
−

k . (50)

We want to remark here thatV +
k = V +

−k and thata+
−k = a+

k , sinceV is a real function.
The same holds with+ replaced by−. Then, applying the groupL, we obtain

L(s)V = ∑
k′∈ZN∗

a+
k V

+
k eisg(k)|k|s + a−

k V
−

k eisg(k)|k|s. (51)

Next, we can compute easily the term inside the integral in the right hand side of (30)

L(−s) ∑
k,l

α=±,β=±

aαka
β
l i

(
0

(k + l).[αβsg(k) sg(l)k ⊗ l] + γ−1
2 (k + l)|k| |l|

)

× ei(k+l).X

2|TN ||k||l|e
i(αsg(k)|k|+βsg(l)|l|)s. (52)

Projection onV γ
m and on divergence-free vector fields, the function written above can be

rewritten as follows (F = PF + QF)

QF(s)= ∑
k+l=m
α,β,γ=±

aαka
β
l χ

αβγ
klm V γ

m exp
(
i(αsg(k)|k| + βsg(l)|l| − γ sg(m)|m|)s), (53)

PF(s)= ∑
k+l=m
α,β=±

aαka
β
l U

αβ
klm exp

(
i(αsg(k)|k| + βsg(l)|l|)s), (54)
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where χ
αβγ
klm is a constant andUαβ

klm = (0, uαβklm) is a vector such thatm.u
αβ
klm = 0.

Moreover, it is easy to see thatF is almost-periodic ins with periods of the form
αsg(k)|k| + βsg(l)|l| − γ sg(k + l)|k + l| andαsg(k)|k| + βsg(l)|l|. Hence, to obtain
the limit term in (30), we have to compute the mean value of (52). This is the same as
looking at the resonant terms, namely terms which do not depend ons. The resonance
condition between((k, α), (l, β), (m, γ )), namely(V α

k , V
β

l , V
γ
m) is{

k + l = m,

αsg(k)|k| + βsg(l)|l| = γ sg(m)|m|. (55)

Hence, 2k.l = 2αsg(k)βsg(l)|k| |l|, which means thatk is parallel tol. Rewriting this
product again and using thatk is parallel tol, we deduce thatk.l = sg(k) sg(l)|k| |l|.
This yields that we haveα = β and then we can see easily that (55) is equivalent to{

k + l = m, sg(k)|k| + sg(l)|l| = sg(m)|m|,
α = β = γ.

(56)

More precisely, we can only get resonances between the triplet(V +
k , V +

l , V +
m ) and

(V −
k , V −

l , V −
m ) separately. This was the reason why we have introduced the notation

sg(k). On the other hand, the possible contribution on the divergence-free part requires
the following resonance conditionαsg(k)|k| + βsg(l)|l| = 0 and hence|k| = |l|. Next,
using the symmetry betweenk andl, we get

u
αβ
klm + u

βα
lkm =P

[
α
(
βsg(k)sg(l)((k + l).l k + (k + l).k l

)
ei(k+l)X

+ γ − 1

2
(k + l)|k| |l|ei(k+l)X

]
= 0. (57)

The above relationship has already been used by Lions and the author in [12] to
show the weak convergence of the compressible Navier–Stokes equations towards the
incompressible Navier–Stokes equations. It means in some sense that the acoustic waves
do not perturb the incompressible flow.

Finally, we deduce that

Q2(V ,V )= ∑
k+l=m,α=±

sg(k)|k|+sg(l)|l|=sg(m)|m|

aαka
α
l χ

α
klmV

α
m, (58)

whereχ is symmetric ink and l. It only remains to computeχ . By projecting (30) on
V α

m, we get

χα
klm = (−αsg(m)m)√

2|TN |3|k||l||m|
·
(
isg(k) sg(l)m.kl + γ − 1

2
i|k||l|m

)
(59)

= −iα (γ + 1)sg(m)|m|
4
√

2|TN | . (60)

Inorder to understand more the structure ofQ2, we introduce the setP of prime
vectorsp, wherep ∈ ZN is such that theN components ofp are prime in their set.
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This is equivalent to saying that there does not exist any couple(n,q) ∈ N × ZN such
thatp = nq andn� 2. Then, we define

Wp(X)= ∑
k∈Z, k=kp

a
sg(p)
k V

sg(p)
k (X). (61)

We can associate to the above vector value function the following real value function

wp(z)= − γ + 1

4
√

2|TN |
∑

k∈Z, k=kp

a
sg(p)
k eikz. (62)

We notice that bothWp andwp are real. Indeed, this is a consequence of the fact thatV

is real. Moreover, we remark thatsg(p)sg(k)|k| = |p|k and that for alls ∈ R, we have

2π
γ + 1

4
√

2|TN |‖Wp‖Hs(TN) = |p|s‖wp‖Hs(T). (63)

The following proposition is very easy.

PROPOSITION 4.1. –For all p,q ∈ P , p �= q, we haveQ2(Wp,Wq) = 0 and the
following differential equations are equivalent

∂tV +Q2(V ,V )− ν�V = 0, (64)

∀p ∈P, ∂twp + |p|∂zw2
p − ν|p|2∂2

zwp = 0. (65)

This shows that we have to solve an infinite collection of viscous Burgers equations.
However, our initial equation is even more complicated and we will see that this
collection of viscous Burgers equations is coupled by a coupling coming from the term
Q1.

4.2. Computation of Q1

We recall that ifu is divergence-free it may be written as

u=∑
k

Ukeik.X, (66)

wherek.Uk = 0, for all k. Then, using the fact thatu is real, we deduce thatUk =U−k,
for all k. Hence, the term inside the integral in the right hand side of (29) is given by

L(−s) ∑
k,l
α=±

aαk
1√

2|TN ||k| i
(

0

αsg(k)(k + l).[ k ⊗Ul +Ul ⊗ k]
)

ei(k+l).Xeiαsg(k)|k|s.

(67)
Now, we have to look at the resonant terms as we did in the preceding section forQ2.
The resonance condition between((k, α), l, (m, γ )), namely(V α

k ,Ul, V
γ

m) is{
k + l = m,

αsg(k)|k| = δsg(m)|m|. (68)
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We just notice that if(V α
k ,Ul, V

δ
m) is a resonant triplet than it is also true for

(V δ−m,Ul, V
α−k). We will see that this yields the conservation of energy. Of course, we

also get other resonances for instance for(V α−k,U−l, V
δ−m) . . . Next, we get

Q1(u,V )= ∑
k+l=m

αsg(k)=δsg(m)
|k|=|m|

aαkσ (k,Ul)V
δ

m, (69)

where

σ (k,Ul)= (−δsg(m)m)

2|k||m| · (iαsg(k) [m.k Ul + k.Ul k]) (70)

= −i m.k
|k||m| Ul.k. (71)

Moreover, using the fact thatl.Ul = 0, we get thatσ (−m,Ul) = −σ (k,Ul). It must be
noticed that whileQ2(V ,V ) is formed by resonances between modes oscillating in the
same direction,Q1(u,V ) is formed by resonances between modes oscillating with the
same frequency. This induces some coupling in the limit equation (32) which can be
seen as a an infinite collection of coupled viscous Burgers equations. However, we will
see that for suitable choices of the periods of the domain this coupling is low. Next, we
introduce the following set, that we call the set of trivial resonances

Ap = {q ∈P, ∀i, qi = ±pi}. (72)

PROPOSITION 4.2. –For almost all choices of(a1, . . . , aN) ∈ R+N ,Q1(u,V ) reduces
to trivial resonances, namely

Q1(u,V )= ∑
k∈Am, αsg(k)=δsg(m)

aαkσ
α(k,Um−k)V

δ
m. (73)

More precisely if 1
a2

1
, . . . , 1

a2
N

are Q independent then the above conclusion holds.

The proof of this proposition is very easy. In fact, if1
a2

1
, . . . , 1

a2
N

areQ independent,

then the equation

N∑
i=1

k
′2
i

a2
i

=
N∑
i=1

m
′2
i

a2
i

(74)

has only trivial solutions, namelyk
′2
i = m

′2
i , which means thatk ∈ Am. Moreover in this

case the resonance also holds for the prime represent of(k, α) and (m, δ), namelyq
andp such thatsg(q) = α, k = kq andsg(p) = δ, m = mp, sincek = m in this case.
However, in the general case, the resonances couple all the different modes.
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To be able to use the notationsWp to analyze the limit system, we defineCp(u,Wq)

which is the contribution ofWq onWp

Cp(u,Wq)= ∑
k+l=m

k=kq, m=mp

m|p|=k|q|asg(q)k

σ (k,Ul)V
sg(p)

m . (75)

Indeed, using thatk = kq, m =mp, the second equation in (68) yields

sg(q)sg(k)|k| = sg(p)sg(m)|m|, (76)

from which we deduce the conditionm|p| = k|q|. We also introduce the corresponding
notation forwp

cp(u,wq)= ∑
k+l=m, k=kq, m=mp, m|p|=k|q|

a
sg(q)
k σ (k,Ul)e

imz. (77)

With these notations, we can see that

PROPOSITION 4.3. –Solving the system(32) for V = ∑
p∈P Wp is equivalent to

solving the system(ICVB) of infinite coupled viscous Burgers equations

(ICVB) ∀p ∈P, ∂twp + |p|∂zw2
p − ν|p|2∂2

zwp +∑
q∈P

cp(u,wq)= 0. (78)

We also notice that, whenν = 0, the system reduces to an infinite coupled Burgers
equations

(ICB) ∀p ∈P, ∂twp + |p|∂zw2
p +∑

q∈P
cp(u,wq)= 0. (79)

The proof of the existence of solutions will rely on the energy estimates. Therefore, we
begin by proving Proposition 3.3, which is the essence of the conservation of the energy.

4.3. Proof of Proposition 3.3

Let us start by proving the first part of Eq. (33). It is easy to see that if(V α
k ,Ul, V

δ
m) is

resonant then it is also true for(V δ−m,Ul, V
α−k). Moreover using thatV is real, we deduce

thata+
−k = a+

k and hence the following computations are obvious∫
Q1(u,V )V = ∑

k+l=m, αsg(k)=δsg(m)
|k|=|m|

aαkσ (k,Ul)a
α
m

= 1

2

∑
k+l=m, αsg(k)=δsg(m)

|k|=|m|

−i m.k
|k||m|

(
Ul.kaαka

α
−m −Ul.maαka

α
−m

)
= 0.
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For the second part of Eq. (33), we just remark that if(V α
k , V

α
l , V

α
m) is a resonant

triplet, it is also true for(V α
k , V

α−m, V
α−l) and(V α−m, V

α
l , V

α−k). Hence∫
Q2(V ,V )V = ∑

k+l=m, α=±
aαka

α
l χ

α
klma

α
−m

= 1

3

∑
k+l=m, α=±

−iα (γ + 1)

4
√

2|TN |
(
sg(m)|m|aαkaαl aα−m

+ sg(−l)|l|aαkaα−ma
α
l + sg(−k)|k|aαl aα−ma

α
k

)
= 0.

4.4. Existence of global solutions for the coupled system (ICVB)

In this subsection, we give a sketch of proof of existence and uniqueness of solutions
to (ICVB) and hence for (32). Letu ∈ L∞(H s), with s � N/2 + 1 be a given function
(the regularity ofu can be weakened butu ∈ L∞(H s) is the regularity we get from the
fact thatu is a solution of the Euler system) andV0 =∑

p W
0
p ∈Hs−1, we also definew0

p
as above. Then, the following theorem holds

THEOREM 4.4. –There exists a unique global strong solution for(ICVB), with

∀p ∈P, wp ∈L∞(Hs−1(T)
)∩L2(Hs(T)

)
. (80)

And hence, we obtain a unique strong solution for(32), with V = ∑
pWp ∈

L∞(H s−1(TN))∩L2(H s(TN)).

We are just going to give the a priori bounds we can derive for this system. The
existence result is then easily deduced by solving some approximated systems. For
instance, we can solve(ICVBM) for all M ∈ N, defined byPM = {p ∈ P, |p| � M}
and

(ICVBM) ∀p ∈PM, ∂twp + |p|∂zw2
p − ν|p|2∂2

z wp + ∑
q∈PM

cp(u,wq)= 0. (81)

Of course all the a priori estimates we are going to show for(ICVB) can be easily
extended to(ICVBM). Then, we have just to take the limitM → ∞ and use a
compactness method to pass to the limit. To solve(ICVBM) for fixed M , we can use
any classical type of regularization. For instance, one can use a Galerkin approximation
method.

Now, we turn to the proof of the a priori bounds. If Proposition 3.3 is sufficient to get
L2 energy estimates, we need the following Proposition to get higher order estimates.

PROPOSITION 4.5. –For all p,q, ∈P and all j ∈N , we have∫
T

∂jz cp(u,wq)|p|2j ∂jz wp +
∫
T

∂jz cq(u,wp)|q|2j ∂jz wq = 0. (82)
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Proof. –It relies upon the following observations. Since for all resonant triplet
(V α

k ,Ul, V
δ

m) (with sg(q) = α, k = kq and sg(p) = δ, m = mp), we know that
(V δ−m,Ul, V

α−k) is also resonant andσ (−m,Ul)= −σ (k,Ul), we obtain

aδ−mσ (−m,Ul)|k|2jaαk + aαkσ (k,Ul)|m|2jaδ−m = 0. (83)

Here, we have also used that|m|2j = |m|2j |p|2j = |k|2j = |k|2j |q|2j . Then, we conclude
easily. ✷

Using Proposition 3.3, we get the followingL2 energy estimate for allt

1

2

∑
p∈P

‖wp‖2
L2(t)+ ν

t∫
0

∑
p∈P

|p|2‖∂zwp‖2
L2 � 1

2

∑
p∈P

‖wp‖2
L2(0)=C‖V0‖2

L2. (84)

Next, for allj ∈N and allp ∈P , we have

1

2
∂t
∥∥∂jwp

∥∥2
L2 + ν|p|2∥∥∂j+1wp

∥∥2
L2 + |p|

∫
T

∂j+1(w2
p

)
∂jwp

+
∫
T

∑
q

∂jcp(u,wq)∂
jwp = 0. (85)

To estimate
∫

T
∂j+1(w2

p)∂
jwp, we need the following

PROPOSITION 4.6. – Using interpolation inequality, we get∫
T

∂j+1(w2
p

)
∂jwp � C‖wp‖L∞

∥∥∂jwp
∥∥
L2

∥∥∂j+1wp
∥∥
L2. (86)

Proof. –Indeed, by Hölder inequality, we find∫
T

∂j+1(w2
p

)
∂jwp �

∑
s+r=j+1
j�r, s�1

(
j + 1

r

)∥∥∂rwp
∥∥
L4

∥∥∂swp
∥∥
L4

∥∥∂jwp
∥∥
L2

+ 2‖wp‖L∞‖∂j+1wp‖L2

∥∥∂jwp
∥∥
L2. (87)

Then, using Gagliardo–Nirenberg’s inequality, we deduce

∥∥∂rwp
∥∥
L4 �C‖wp‖1−θ

L∞
∥∥∂j+1wp

∥∥θ
L2, (88)

where1
4 − s = θ(1

2 − (j + 1)). And, sincer + s = j + 1, we also have

∥∥∂swp
∥∥
L4 � C‖wp‖θL∞

∥∥∂j+1wp
∥∥1−θ
L2 (89)

and the proposition is proved.✷
Then, multiplying (85) by|p|2j and summing up inp, we get
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1

2
∂t‖V ‖2

Hj + ν‖V ‖2
Hj+1 �

∑
p

‖wp‖L∞|p|2j+1∥∥∂jwp
∥∥
L2

∥∥∂j+1wp
∥∥
L2

� C

ν

∑
p

‖wp‖L∞|p|2j∥∥∂jwp
∥∥2
L2 + ν

2

∑
p

|p|2j+2∥∥∂jwp
∥∥2
L2,

where we have used Cauchy–Schwarz inequality. This yields for allt

∂t‖V ‖2
Hj + ν‖V ‖2

Hj+1 � C

ν

(
sup
p

‖wp‖2
L∞
)‖V ‖2

Hj � C

ν

(∑
p

‖wp‖2
L∞

)
‖V ‖2

Hj . (90)

Then, by Gagliardo–Nirenberg’s inequality, we have for allt ,∑
p

‖wp‖2
L∞ �

∑
p

‖wp‖L2‖∂zwp‖L2 �
(∑

p

‖wp‖2
L2

)1/2(∑
p

‖∂zwp‖2
L2

)1/2

.

Integrating in time and using again Cauchy–Schwarz’ inequality, we obtain

T∫
0

∑
p

|wp|2L∞ � C
√
T√
ν
. (91)

Finally, by Grönwall inequality, we find for allt

‖V ‖2
Hj (t)+ ν

t∫
0

‖V ‖2
Hj+1 �C‖V0‖2

Hj exp
(
C

√
t

ν3/2

)
. (92)

We want to remark, that it is possible to get an estimate independent oft , by noticing
that sincewp has a zero average then‖wp‖L∞ � ‖∂zwp‖L2. This yields the following
estimate

‖V ‖2
Hj (t)+ ν

t∫
0

‖V ‖2
Hj+1 � C‖V0‖2

Hj exp
(
C

ν2

)
. (93)

The argument, we presented here uses the fact thatj ∈ N. However, it can be easily
adapted to the case wheres ∈ R, hence we get that

‖V ‖2
Hs (t)+ ν

t∫
0

‖V ‖2
Hs+1 � C‖V0‖2

Hs exp
(
C

√
t

ν3/2

)
, (94)

and we conclude.

4.5. Existence of local solutions for the coupled system (ICB)

In this case the proof is the same, apart from the fact that we can no longer use the
effect of the viscosity. Hence, inequality (86) should be replaced by∫

T

∂j+1(w2
p

)
∂jwp � ‖∂zwp‖L∞‖∂jwp‖2

L2. (95)
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Indeed, computing∂j+1(w2
p), we have

∂j+1(w2
p

)= 2wp∂
j+1wp + 2(j + 1)∂wp∂

jwp + ∑
r+s=j+1

j−1�r, s�2

∂rwp∂
swp. (96)

The first term in the left hand side can be treated as follows∫
T

wp∂
j+1wp∂

jwp =
∫
T

wp∂
(
∂jwp

)2 = −
∫
T

∂wp
(
∂jwp

)2
. (97)

For the others, we conclude as in the proof of Proposition 4.6.
Besides, inequality (90) must be replaced by

∂t‖V ‖2
Hj � C‖V ‖3

Hj . (98)

In fact, sincej > 3/2, we deduce that‖∂zwp‖L∞ � ‖∂jwp‖L2. Finally, it is easy to see
that (98) yields the local existence for(ICB).

Acknowledgements

The author wishes to thank P.L. Lions for many discussions about this work.

REFERENCES

[1] Desjardins B., Grenier E., Low Mach number limit of compressible viscous flows in the
whole space, Preprint.

[2] Desjardins B., Grenier E., Lions P.-L., Masmoudi N., Compressible incompressible limit
with Dirichlet boundary condition, J. Math. Pures et Appl. 78 (5) (1999) 461–471.

[3] Gallagher I., A remark on smooth solutions of the weakly compressible periodic Navier–
Stokes equations, Preprint, 1999.

[4] Grenier E., Oscillatory perturbations of the Navier–Stokes equations, J Math. Pures et Appl.
9 76 (6) (1997) 477–498.

[5] Hagstrom T., Lorenz J., All-time existence of classical solutions for slightly compressible
flows, SIAM J. Math. Anal. 29 (3) (1998) 652–672.

[6] Klainerman S., Majda A., Singular limits of quasilinear hyperbolic systems with large
parameters and the incompressible limit of compressible fluids, Comm. Pure Appl.
Math. 34 (5) (1981) 481–524.

[7] Klainerman S., Majda A., Compressible and incompressible fluids, Comm. Pure Appl.
Math. 35 (5) (1982) 629–651.

[8] Kreiss H.O., Lorentz J., Naughton M.J., Convergence of the solutions of the compressible
to the solutions of the incompressible Navier–Stokes equations, Adv. in Appl. Math. 12 (2)
(1991) 187–214.

[9] Lin C.K., On the incompressible limit of the compressible Navier–Stokes equations, Comm.
Partial Differential Equations 20 (3–4) (1995) 677–707.

[10] Lions P.L., Mathematical Topics in Fluid Dynamics, Vol. 1: Incompressible Models, Oxford
University Press, 1996.



224 N. MASMOUDI / Ann. Inst. Henri Poincaré, Anal. non linéaire 18 (2001) 199–224

[11] Lions P.L., Mathematical Topics in Fluid Dynamics, Vol. 2: Compressible Models, Oxford
University Press, 1998.

[12] Lions P.L., Masmoudi N., Incompressible limit for a viscous compressible fluid, J. Math.
Pures Appl. 77 (1998) 585–627.

[13] Lions P.L., Masmoudi N., On a free boundary barotropic model, Annales de l’IHP, Analyse
Non Linaire 16 (1999) 373–410.

[14] Lions P.L., Masmoudi N., Une approche locale de le limite incompressibel, C. R. Acad. Sci.
Paris Sr. I Math. 329 (5) (1999) 387–392.

[15] Masmoudi N., The Euler limit of the Navier–Stokes equations, and rotating fluids with
boundary, Arch. Rational Mech. Anal. 142 (1998) 375–394.

[16] Masmoudi N., Ekman layers of rotating fluids, the case of general initial data, Comm. Pure
Appl. Math. 53 (4) (2000) 432–483.

[17] Schochet S., Fast singular limits of hyperbolic PDEs, J. Differential Equations 114 (1994)
476–512.

[18] Ukai S., The incompressible limit and the initial layer of the compressible Euler equation,
J. Math. Kyoto Univ. 26 (2) (1986) 323–331.


