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ABSTRACT. – We study the long-time behavior of solutions of semilinear parabolic equations
of the following type (PE)∂tu−∇.A(x, t, u,∇u)+ f (x,u)= 0 wheref (x,u)≈ b(x)|u|q−1u,
b being a nonnegative bounded and measurable function andq a real number such that 06 q < 1.
We give criteria which imply that any solution of the above equations vanishes in finite time and
these criteria are associated to semi-classical limits of some Schrödinger operators. We also give
a series of sufficient conditions onb(x) which imply that any supersolution with positive initial
data does not to vanish identically for any positivet .  2001 Éditions scientifiques et médicales
Elsevier SAS

RÉSUMÉ. – Nous étudions le comportement en temps grand de solutions d’équations
paraboliques du type (PE)∂tu − ∇.A(x, t, u,∇u) + f (x,u) = 0, où f (x,u) ≈ b(x)|u|q−1u,
b étant une fonction positive, bornée et mesurable, etq un nombre réel tel que 06 q < 1.
Nous donnons des critères qui impliquent que toute solution des équations ci-dessus devient
identiquement nulle en temps fini et ces critères sont associés à des problèmes de limite semi-
classique d’opérateurs de Schrödinger. Nous donnons aussi une série de conditions suffisantes
sur b(x) qui impliquent que toute sur-solution avec des données initiales positives ne devient
jamais identiquement égale à zéro. 2001 Éditions scientifiques et médicales Elsevier SAS

1. Introduction

LetΩ be a bounded domain inRN, b(x)a nonnegative function inΩ , non-identically
zero and 06 q < 1. Consider the following equation semilinear equation

∂tu−1u+ b(x)|u|q−1u= 0 inΩ × (0,∞),
∂νu= 0 on∂Ω,

u(x,0)= u0(x) in Ω.

(1.1)

E-mail addresses:belaud@univ-tours.fr (Y. Belaud), Bernard.Helffer@math.u-psud.fr (B. Helffer),
veronl@univ-tours.fr (L. Véron).
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This type of equation is a simple model to understand some phenomenological
properties of nonlinear heat conduction with a non-constant strong absorption term
b(x)uq , depending both on the media and the temperatureu. It is well-known that if
b(x) > β > 0 the comparison principle with the solutions of the ordinary differential
equation 

∂tϕ + γ |ϕ|q−1ϕ = 0 in (0,∞),
ϕ(0)= ‖u0‖L∞,

(1.2)

implies thatu vanishes fort > T = ‖u0‖1−qL∞ /γ (1− q). The property that any solution of
Eq. (1.1) becomes eventually zero fort large enough is called the Time-Compact Support
property (shortly theTCS-property). On the opposite, if we assume thatb(x)≡ 0 for any
x belonging to some connected open subsetω of Ω , the restriction toω of any solution
u of (1.1) satisfies the linear equation

∂tu−1u= 0 inω× (0,∞). (1.3)

Let λω denote the first eigenvalue of−1 in W
1,2
0 (ω) and ϕω the corresponding

eigenfunction normalised by maxω ϕω = 1. If we assume thatu is a nonnegative solution
of (1.1) with ess infω u0 = σ > 0, thenu(x, t) is bounded from below byσe−tλωϕω(x)
onω× (0,∞).

Between those two extreme situations there exists a wide class of situations which
were first explored by Kondratiev and Véron [10]. Ifn is an integer, they introduce the
fundamental state of an associated Schrödinger operator

µn = inf
{∫
Ω

(|∇ψ |2+ 2nb(x)ψ2)dx: ψ ∈W 1,2(Ω),

∫
Ω

ψ2 dx = 1
}
, (1.4)

and they proved that if

∞∑
n=0

µ−1
n ln(µn) <∞ (1.5)

holds, then (1.1) possesses theTCS-property. For example, ifb(x) > β > 0, then
µn > β2n and the above series is convergent. On the contrary, ifb(x) ≡ 0 for any
x ∈ ω⊂Ω for some open subdomainω, thenµn 6 λ1,ω and the series is divergent.

In this article we study theTCS-property for a much more general class of quasilinear
equations which need not satisfy any comparison principle between solutions, namely
we consider weak solutions of equations of the following type


∂tu−∇.A(x, t, u,∇u)+ f (x,u)= 0 inΩ × (0,∞),
∂νu= 0 on∂Ω × (0,∞),
u(x,0)= u0(x) in Ω.

(1.6)
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Besides the standard Caratheodory assumptions onA and f , it is assumed only a
minimal linear growth estimate in the gradient forA,

|A(x, t, r,p)|6 C|p|,
A(x, t, r,p).p > |p|2,

(1.7)

for some positive constantC. As for the functionf , we shall assume that there exists a
nonnegative, bounded and measurable functionb and a real numberq ∈ [0,1) such that,

f (x, r)r > b(x)|r|q+1, (1.8)

in Ω ×R. Defining the functionµ on (0,∞) by

µ(α)= inf
{∫
Ω

(|∇ψ |2+ αq−1b(x)ψ2)dx: ψ ∈W 1,2(Ω),

∫
Ω

ψ2 dx = 1
}
, (1.9)

we first prove the following result.

THEOREM 2.2. –Suppose that0 6 q < 1, that b is a nonnegative, bounded and
measurable function defined inΩ and that there exists a decreasing sequence{αn} of
positive numbers such that

∞∑
n=1

1

µ(αn)

(
ln
(
µ(αn)

)+ ln
(
αn

αn+1

)
+ 1

)
<∞, (1.10)

then Eq.(1.7)satisfies theTCS-property.

Under this form, this result is not easy to apply, but a simpler form of the above
criterion is derived from the fact that the existence of a decreasing sequence{αn}
satisfying (1.10) is a consequence of the following relation

1∫
0

ln(µ(t))

µ(t)

dt

t
<∞. (1.11)

Since the functionµ in (1.9) is monotone and{αn} decreases, condition (1.10) implies
that limn→∞µ(αn)=∞ and limn→∞ αn = 0. It is derived from (1.9) that the analysis of
the functionµ near 0 is linked to the analysis of the fundamental state of the Neumann
realization of the Schrödinger operatorHh−2b in L2(Ω) defined by

ϕ 7→Hh−2bϕ =−1ϕ + h−2b(x)ϕ, (1.12)

in whichh is a positive parameter tending to 0. Because we will need only a rather weak
information, this analysis of the behaviour ofµ can be performed by using techniques
of the so-called semi-classical analysis. Using a formula due to Lieb and Thirring, we
obtain an estimate on meas.{x: h−2b(x) 6 ρ} from which we derive a simple integral
criterion which implies theTCS-property in a bounded domain.
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THEOREM 3.1. –Suppose thatN > 1, and thatb is a bounded, measurable and
almost everywhere nonnegative function which is essentially positive near∂Ω . If
ln(1/b) ∈Lp(Ω) for somep >N/2, then estimate(1.11)holds.

A similar result holds if the Neumann boundary conditions in (1.6) are replaced by
homogeneous Dirichlet condition, without the assumption thatb is essentially positive
near∂Ω . For example ifb > 0 is continuous and nonnegative in̄Ω , analytic inΩ and
positive on∂Ω the above integrability condition is satisfied. We give other examples in
which the setb−1(0) has a much less regular structure.

On the opposite, the global non-vanishing property asserts that a solution of some
inequation with positive initial data will not vanish for any positivet . Our method is
a local one, settled upon the study of some mean value types inequalities, therefore we
consider semilinear differential inequalities in divergence form in some domainΩ ⊂RN

(not necessarily bounded)
∂tu− ∂xi (ai,j (x)∂xj u)+ b(x)uq > 0 inΩ × (0,∞),
u> 0 inΩ × (0,∞),
u(x,0)= u0(x) in Ω.

(1.14)

The matrix A(x) = (aij (x)) is symmetric, locally bounded and defines a locally
uniformly elliptic operator inΩ , q is some real number with 06 q < 1, and b ∈
L

1/(1−q)
loc (Ω) a nonnegative function. Ifω ⊂Ω is any smooth subdomain andρ ∈L∞(ω)

is nonnegative, we denote by

νAρ,ω = inf
{∫
ω

(
aij (x)∂xjψ∂xiψ + ρ(x)ψ2)dx: ψ ∈W 1,2

0 (ω),

∫
ω

ψ2 dx = 1
}
.

(1.15)

If ψρ,ω is a corresponding positive eigenfunction and ifu0 ∈L1
loc(Ω),u0> 0, we define

Tρ,ω(u0)= 1

νAρ,ω
ln

(
1+ νAρ,ω

(∫
ω ψρ,ωu0 dx

)1−q(∫
ω b

1/(1−q)ψρ,ω dx
)1−q

)
. (1.16)

Our general criterion for a global nonnegative weak solution not to vanish is as follows.

THEOREM 4.1. –Let

u ∈C([0,∞);L1
loc(Ω)

)∩L1
loc

([0,∞);W 1,1
loc (Ω)

)
be a weak solution of(1.14). If

sup
ρ,ω
Tρ,ω(u0)=∞, (1.17)

then, for anyt ∈ [0,∞), x 7→ u(x, t) is never identically zero.
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Clearly the above criterion is uneasy to check since the initial valueu0 and the
potentialb appear only in a very intricate way in (1.16). Therefore we shall give a series
of expressions where inf essΩ u0 > 0, which emphasizes the local behavior ofb near its
minimal value 0, and will imply that (1.17) holds forTρ,ω(u0). For example

THEOREM 4.3. –Let us assume that the matrixA(x) is uniformly elliptic and
bounded. Fory ∈Ω let us introduceRy = sup{r > 0: Br(y)⊂Ω}. Then, ifinf essΩ u0>

0,

sup
y∈Ω

sup
0<r<Ry

r2 ln
(

1∫
|x−y|<r b1/(1−q) dx

)
=∞⇒ sup

ρ,ω
Tρ,ω(u0)=∞. (1.18)

Condition (1.18) is strongly linked to the behaviour ofb(x) near the setb−1(0). As
another application, we prove that, ifb> 0 satisfies

sup
0<r<Rx0

r2 ln

(
1∫

|x−x0|<r b
1/(1−q) dx

)
=∞, (1.19)

for somex0 ∈Ω andu is a solution of (1.1) with a continuous initial datau0 nonnegative
in Ω̄ and positive atx0, thenu(x0, t) > 0 for anyt > 0.

In the model case of Eq. (1.1) withb(x) = e−|x−x0|−β , for somex0 ∈ Ω , the border
case betweenTCS-property and its negation occurs forβ = 2.

Our paper is organized as follows:
(1) Introduction.
(2) The time compact support property.
(3) The semi-classical analysis.
(4) The non-vanishing property.
(5) References.

2. The time compact support property

In this sectionΩ is a bounded domain ofRN (N > 1) with a Lipschitz-continuous
boundary,A : (x, t, r,p) 7→ A(x, t, r,p) andf : (x, t, r,p) 7→ f (x, t, r) are measurable
functions fromΩ ×R+ ×R×RN with value respectively inRN andR. We assume that
A andf are continuous in the variables(r,p) ∈R×RN and satisfies

(i) |A(x, t, r,p)|6 C|p|
(ii) A(x, t, r,p).p > α|p|2

(∀(x, t, r,p) ∈Ω ×R+ ×R×RN),
(2.1)

f (x, t, r)r > b(x)|r|q+1 (∀(x, t, r) ∈Ω ×R+ ×R
)
, (2.2)

for some positive constantsC and α. In the sequelb is a bounded, nonnegative and
measurable function,q is a parameter in[0,1) andC denotes a generic positive constant,
whose value usually only depending onΩ , and sometimes onA, b andq.
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DEFINITION 2.1. –A function u belonging toC([0,∞);L2(Ω)) ∩ L2
loc([0,∞);

W 1,2(Ω)) and such thatf (. , . , u)∈ L2
loc((Ω×(0,∞)) is a weak solution of the problem

∂tu−∇.A(x, t, u,∇u)+ f (x, t, u)= 0 inΩ × (0,∞),
∂νu= 0 on∂Ω × (0,∞),
u(x,0)= u0(x) in Ω,

(2.3)

whereu0 ∈ L2(Ω), if for any ζ ∈ L2
loc([0,∞);W 1,2(Ω)) ∩W 1,2

loc ([0,∞);L2(Ω)) and
t > 0, there holds

t∫
0

∫
Ω

(−uζt +A(x, t, u,∇u).∇ζ + f (x, t, u)ζ )dx dτ

=
∫
Ω

ζ(x,0)u0(x)dx −
∫
Ω

ζ(x, t)u(x, t)dx. (2.4)

Remark2.1. – Assumptions 2.1 and 2.2 are the natural ones for giving meaning to
the notion of weak solutions and to use energy estimates in the spaceW 1,2(Ω). The use
of energy estimates is fundamental for deriving uniform bounds of the solutions via the
Nash–Moser iterative scheme andL2-time exponential decay. Moreover, by changing
the functionsA andb it is always possible to assume thatα = 1, which will be done in
the sequel.

The scheme for proving that weak solutions of (2.3) may vanish identically whent

becomes large enough is first to start by an exponentialL2-decay estimate at timeτ0,
and this is done by using the energy estimate. Then, thanks to the regularizing effects
associated to this type of equation, to transform thisL2 estimate into an exponential
L∞-decay estimate at timeτ0 + τ1. Finally using the fact that the exponentq is less
than 1, to derive an improved exponentialL2 decay at timeτ0 + τ1 + τ2. The TCS-
property will follow by iterating this procedure and optimizing over the different time
shift τi (i = 0,1, . . . ,∞). The following a priori estimates are classical in the theory
of monotone second order parabolic equations, but for the sake of completeness and to
point out the role of our assumptions, we shall give a sketch of their proofs.

THEOREM A. – Suppose thatb> 0 a.e. inΩ and thatu is a weak solution of(2.3).
(i) If u0 ∈ Lp(Ω) (26 p 6∞), thenu ∈ L∞([0,∞);Lp(Ω)) and t→‖u(. , t)‖Lp

is decreasing on[0,∞).
(ii) If u0 ∈L2(Ω), thenu(. , t) ∈ L∞(Ω) for any t > 0 and there holds∥∥u(. , t)∥∥

L∞ 6 C
(
1+ t−1)N/4‖u0‖L2, (2.5)

whereC =C(Ω).
Proof. –The proof of (i) is straightforward, by taking as test functions the trun-

cated functionTm,p(u)=min(mp−1, |u|p−1)sign(u) for m> 0 (at this point the assump-
tions (2.1)–(2.2) are needed), and then by letting m go to infinity. The proof of (ii) is
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an adaptation from Evans [4] of the celebrated Nash–Moser iterative scheme [17,16].
It relies on takingTm,pn(u) as test functions, for some sequence{pn}n∈N = {2kn}n∈N.
Herek > 1 depends only onN via the Gagliardo–Nirenberg inequality (this is for this
point that we need the Lipschitz regularity of∂Ω). Using the definition of a solution
betweentn−1 andtn wheretn = (1− 2−n)t , instead of 0 andt and applying the previous
imbedding inequalities yields an estimate of the type

Cp−1
n−1(tn − tn−1)

∥∥min(|u(. , tn)|,m)
∥∥pn−1

Lpn

6
(
1+ (tn − tn−1)

)∥∥min
(∣∣u(. , tn)∣∣,m)∥∥pn−1

Lpn−1, (2.6)

valid for anym> 0 andn ∈N. This series of inequalities implies (2.5).2
We define a decreasing functionµ on (0,∞) by

µ(α)= inf
{∫
Ω

(|∇ψ |2+ αq−1b(x)ψ2)dx: ψ ∈W 1,2(Ω),

∫
Ω

ψ2 dx = 1
}
. (2.7)

The followingL∞ exponential decay estimate is fundamental in the sequel.

LEMMA 2.1. –Supposeb> 0 a.e. inΩ , 06 q < 1 andu is a bounded weak solution
of (2.3)such that‖u0‖L∞ 6 α for someα > 0. Then∥∥u(. , t)∥∥

L∞ 6min
(
1,C

(
µ(α)

)N/4
e−tµ(α)

)‖u0‖L∞ (∀t > 0), (2.8)

whereC = C(Ω) > 0.

Proof. –We takeζ = u in (2.4) and use (2.2), then
t∫
s

∫
Ω

(−uut + |∇u|2+ b(x)|u|q+1)dx dτ 6
∫
Ω

u2(x, s)dx −
∫
Ω

u2(x, t)dx

for 06 s < t . Since|u|q−1> αq−1 by Theorem A(i), we get

1

2

d

dt

∫
Ω

u2 dx +
∫
Ω

(|∇u|2+ bαq−1u2)dx 6 0. (2.9)

Combining this with Hölder’s inequality yields∥∥u(. , s)∥∥
L2 6 e−sµ(α)‖u0‖L2 6 |Ω|1/2e−sµ(α)‖u0‖L∞ (2.10)

for s > 0. From (2.5)

∥∥u(. , t)∥∥
L∞ 6C

(
1+ 1

t − s
)N/4
|Ω|1/2e−sµ(α)‖u0‖L∞ . (2.11)

If we taket − s = 1/µ(α) (this is actually almost the optimal choice fors whenµ(α)
is large), we derive the following inequality from which (2.8) follows immediately

C

(
1+ 1

t − s
)N/4
|Ω|1/2e−sµ(α) = C(1+µ(α))N/4e|Ω|1/2e−tµ(α). 2
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THEOREM 2.2. –Let us assume that(2.1)–(2.2)holds and that{αn} is a decreasing
sequence of positive numbers such that

∞∑
n=1

1

µ(αn)

(
ln
(
µ(αn)

)+ ln
(
αn

αn+1

)
+ 1

)
<∞. (2.12)

Then any weak solution of(2.3)satisfies theTCS-property.

Proof. –Since any weak solution of (2.3) is bounded for positivet , we shall assume
that u0 is bounded. By changingu into λu and b into λ1−qb, which does not affect
the property (2.12), we can also assume‖u(. ,0)‖L∞ = 1. Settingα0 = 1 and applying
Lemma 2.1 yields ∥∥u(. , t)‖L∞ 6min

(
1,C

(
µ(1)

)N/4
e−tµ(1)

)
. (2.13)

Clearly if t > t0= ln(C(µ(1))N/4)/µ(1), then‖u(. , t)‖L∞ 6 C(µ(1))N/4× e−µ(1)t . We
definet1> t0 by

α1= C(µ(1))N/4e−t1µ(1)⇔ 1

µ(1)
ln
(
C(µ(1))N/4

α1

)
= t1 (2.14)

(it is always possible to assumeα1< 1). Since‖u(. , t1)‖L∞ 6 α1, we apply Lemma 2.1
with 0 replaced byt1, and obtain∥∥u(. , t)∥∥

L∞6min
(
1,C

(
µ(α1)

)N/4
e−(t−t1)µ(α1)

)
α1 (2.15)

in Ω × (t1,∞). We definet2 by

α2 = min
(
1,C

(
µ(α1)

)N/4
e−(t2−t1)µ(α1)

)
α1

= C(µ(α1)
)N/4

e−(t2−t1)µ(α1)α1

⇔ (2.16)

t2− t1 = 1

µ(α1)
ln
(
C
(
µ(α1)

)N/4α1

α2

)
.

Iterating this process, we construct an increasing sequence{tn} such that‖u(. , t)‖L∞ 6
αn−1 for t > tn−1 and

αn = min
(
1,C

(
µ(αn−1)

)N/4
e−(tn−tn−1)µ(αn−1)

)
αn−1

= C(µ(αn−1)
)N/4

e−(tn−tn−1)µ(αn−1)αn−1

⇔ (2.17)

tn − tn−1 = 1

µ(αn−1)
ln
(
C
(
µ(αn−1)

)N/4 αn−1

αn

)
.

Consequently‖u(. , t)‖L∞ 6 αn for t > tn and accordingly∥∥u(. , t)∥∥
L∞ 6min

(
1,C

(
µ(αn)

)N/4
e−(t−tn)µ(αn)

)∥∥u(. , tn)∥∥L∞. (2.18)



Y. BELAUD ET AL. / Ann. Inst. Henri Poincaré Anal. nonlinear 18 (2001) 43–68 51

From (2.17)

tn − t0=
n−1∑
k=0

1

µ(αk)
ln
(
Cµ(αk)

αk

αk+1

)

= lnC
n−1∑
k=0

1

µ(αk)
+

n−1∑
k=0

1

µ(αk)

(
ln
(
µ(αk)

)+ ln
(
αk

αk+1

))
. (2.19)

By assumption the right-hand side is bounded. Therefore limn→∞ tn = T and (2.18)
yields ∥∥u(. , t)∥∥

L∞ 6min
(
1,C

(
µ(αn)

)N/4
e−(t−T )µ(αn)

)
αn, (2.20)

for t > T . Because of (2.12), limn→∞µ(αn)=∞ and limn→∞(µ(αn))N/4×e−δµ(αn) = 0
for anyδ > 0. Lettingn go to infinity in (2.20) implies‖u(. , t)‖L∞ = 0 (∀t > T ). 2

Actually the following result gives a simpler form for the assumption (2.12).

THEOREM 2.3. –The existence of a decreasing sequence satisfying condition(2.12)
in Theorem2.3 is implied by

1∫
0

ln(µ(t))

µ(t)

dt

t
<∞. (2.21)

Moreover it implies

1∫
0

dt

tµ(t)
<∞. (2.22)

Proof. –Suppose that (2.12) holds for some decreasing sequence{αn} converging to
zero and such that 0< αn 6 1. Then{µ(αn)} increases,{1/µ(αn)} decreases forn large
enough (n> 1 without any loss of generality) and limn→∞µ(αn)=∞. Therefore

1

µ(αn+1)
ln

αn

αn+1
6

αn∫
αn+1

dt

tµ(t)
6 1

µ(αn)
ln

αn

αn+1
, (2.23)

and
α1∫

0

dt

tµ(t)
6
∞∑
n=1

1

µ(αn)
ln

αn

αn+1
<∞. (2.24)

Conversely suppose that (2.21) holds and consider{αn} = {2−n}. Then ln(αn/αn+1) =
ln2,

lnµ(αn+1)

µ(αn+1)
ln
αn+1

αn+2
= lnµ(αn+1)

µ(αn+1)
ln

αn

αn+1
6

αn∫
αn+1

lnµ(t)

µ(t)

dt

t
, (2.25)

and
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1

µ(αn+1)
ln
αn+1

αn+2
= 1

µ(αn+1)
ln

αn

αn+1
6 1

lnµ(αn+1)

αn∫
αn+1

lnµ(t)

µ(t)

dt

t
,

6 1

lnµ(2)

αn∫
αn+1

lnµ(t)

µ(t)

dt

t
. (2.26)

Consequently

∞∑
n=1

1

µ(αn)

(
ln
(
µ(αn)

)+ ln
(
αn

αn+1

)
+ 1

)
<C

1∫
0

lnµ(t)

µ(t)

dt

t
<∞ (2.27)

for someC > 0. 2
Remark2.2. – In problem (2.3), we can replace the Neumann boundary condition on

∂Ω by a Dirichlet boundary condition. In that caseµ(α) has to be replaced byµ0(α),
which is defined in the same way, except that the test functionsψ in the definition (2.7)
are taken inW 1,2

0 (Ω). Lemma 2.1 still holds without any regularity requirement on∂Ω .
Consequently, if there exists a decreasing subsequence{βn} such that

∞∑
n=1

1

µ0(βn)

(
ln
(
µ0(βn)

)+ ln
(
βn

βn+1

)
+ 1

)
<∞, (2.28)

then any solution of (2.3) with Dirichlet boundary conditions satisfies theTCS-property.

Remark2.3. – If b(x) > β > 0, thenµ(α) > βαq−1 and the convergence of the
integral in (2.13) follows. More generally as soon as there exists an estimate of one
of the following types

µ(α)>Kα−δ
(∀α ∈ (0,∞)) (2.29)

for someδ > 0, or

µ(α)>K
(
ln(α−1)

)ρ (∀α ∈ (0,1)) (2.30)

for someρ > 1, then the condition (2.12) is fulfilled. Therefore the key problem is to
look for a condition on the functionb which implies estimates as above. Clearly, if
b≡ 0 in some subdomainω ⊂Ω , (2.12) does not hold.

Remark2.4. – Estimate (2.8) in Lemma 2.1 has the disadvantage that it contains the
termCµ(α)N/4e−tµ(α) which might be very large whent is close to 0, (or equivalently
the exponential decay will not be effective unlesst is large enough, depending on
µ(α)). If we suppose thatA(x, t, r,p) = p, andf (x,u) = b(x)|u|q−1u (2.3) reduces
to a semilinear heat equation. The Riesz–Thorin interpolation theorem applied to the
linear problem 

∂tu−1u+ αq−1b(x)u= 0 inΩ × (0,∞),
∂νu= 0 on∂Ω × (0,∞),
u(x,0)= u0(x) in Ω,

(2.31)
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whose solutions are natural supersolutions for (2.3), implies the following decay estimate∥∥u(. , t)∥∥
Lp
6 e−2tµ(α)/p‖u0‖Lp (2.32)

for t > 0 and 26 p 6∞, while Lemma 2.2 means an exponential decay estimate inL∞
of orderC(µ(α))N/4e−tµ(α). It would be interesting to know for what type of nonnegative
and bounded functionsb(x) the following estimate holds:∥∥u(. , t)∥∥

L∞ 6 Ce−tµ(α)δ‖u0‖L∞ (2.33)

for t > 0, with constantsC, δ > 0 independent ofµ(α). This estimate withδ = 1/2 was
supposed to be always true in [10], which we do not know; therefore in Theorem 4.3
(respectively 4.7) of this paper, inequality

∑∞
0 µ

−1
n <∞ (respectively

∑∞
0 µ

−1/2
n <∞)

has to be replaced by
∑∞

0 lnµn/µn <∞ (respectively
∑∞

0 lnµn/
√
µn <∞). However

if any solution of (2.31) satisfies an estimate of the type∥∥u(. , t)∥∥
L∞ 6 Ce−tα

q−1δ‖u0‖L∞, (2.34)

for any t > 0, with constantsC, δ > 0 independent ofα, then inf essx∈Ω b(x)> δ. This
follows by takingu0=ΦΩ whereΦΩ is a first eigenfunction of the Neumann realization
of −1+ αq−1b(.) in L2(Ω) and by applying Lemma 3.2 in Section 3.

The TCS-property admits a local version if we assume that the operatorA reduces
to a N × N bounded and measurable matrixA(x) = (aij (x)) and r 7→ f (x, r) is
nondecreasing. Ifω ⊂Ω is some subdomain, we denote

µ0,ω(α)= inf
{∫
ω

(|∇ψ |2+ αq−1b(x)ψ2)dx: ψ ∈W 1.2
0 (ω),

∫
ω

ψ2 dx = 1
}
, (2.35)

and we consider the following problem
∂tu−∇.(A(x)∇u)+ f (x,u)= 0 inΩ × (0,∞),
∂νu= 0 on∂Ω × (0,∞),
u(x,0)= u0(x) in Ω.

(2.36)

THEOREM 2.4. –Letω⊂Ω be some smooth subdomain. Assume thatr 7→ f (x, r) is
nondecreasing for anyx ∈Ω , satisfies(2.2)with 06 q < 1 andb ∈ L∞(Ω), b > 0 a.e.
in Ω . We assume also thatb is essentially bounded from below by a positive constant in
a neighbourhood of∂ω and that there exists a decreasing sequence of positive numbers
{γn} such that

∞∑
n=1

1

µ0,ω(γn)

(
ln
(
µ0,ω(γn)

)+ ln
(
γn

γn+1

)
+ 1

)
<∞. (2.37)

If u is a solution of(2.36), then for any compact subsetK ⊂ ω there existsT > 0
depending onK , u0 and{γn} such thatu(x, t)≡ 0 for any(x, t) ∈K × [T ,∞).
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Proof. –From (2.2) and the Caratheodory assumptionf (x,0)= 0 andf (x, r) has the
sign ofr for anyx ∈Ω . Consequently, ifu0 is nonnegative, the same holds foru. From
Theorem A(ii) we can assume thatu0 is bounded and therefore continuous inω̄×(0,∞),
from the standard regularity theory for parabolic equations. Finally, for anyτ > 0 there
holds

u6 uτ,1+ uτ,2 (2.38)

on ω̄× [τ,∞) where theuτ,i are solutions of

∂tuτ,i −∇.(A(x)∇uτ,i)+ b(x)uqτ,i = 0 inω× (0,∞), (2.39)

for i = 1,2, with the boundary and initial conditions (remember thatu is continuous),{
uτ,1= 0 on∂ω× (τ,∞),
uτ,2= u on ∂ω× (τ,∞), and

{
uτ,1(. ,0)= u(. , τ ) in ω,

uτ,2(. ,0)= 0 inω.
(2.40)

Moreoveruτ,2(x, t)6 ϕτ (x) in ω× [τ,∞) for anyτ > 0, where
−∇.(A(x)∇ϕτ )+ b(x)ϕqτ = 0 in ω,

ϕτ (x)= sup
t>τ

u(x, t) on ∂ω.
(2.41)

By the assumption onb, there existω′ ⊂ ω̄′ ⊂ ω andδ > 0 such that inf essω\ω̄′ b = δ.
Consequently forε > 0 small enough the solutionψε of

−∇.(A(x)ψε)+ δψε|ψε|q−1= 0 inω\ω̄′,
ψε(x)= ε on ∂ω,

ψε(x)= 0 on∂ω′,

(2.42)

is nonnegative and has compact support inω̄\ω̄′ [5]. Defining

ψ̃ε =
ψε in ω\ω′,

0 inω′,
and b̃=

 δ in ω\ω′,
b in ω′,

(2.43)

we see that̃ψε is the unique solution of−∇.(A(x)ψ̃ε)+ b̃ψ̃
q
ε = 0 in ω,

ψ̃ε(x)= ε on ∂ω.
(2.44)

Sinceu(. , t) has exponential uniform decay whent→∞, there existsτ > 0 such that
‖u‖L∞(ω×(τ,∞)) 6 ε. From the maximum principlẽψε > ϕτ , and consequentlyϕτ has
compact support in̄ω\ω̄′. From Remark 2.2, there existsT > τ such thatuτ,1(x, t)≡ 0
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in ω̄×[T ,∞). Thereforeu≡ 0 in ω̄′ × [T ,∞). Because we can replaceω′ by any larger
strict subdomain ofω, it follows that ifK ⊂ ω is any compact subset andu a solution
of (2.36), there existsT = T (a,K,‖u(. ,0)‖L∞) > 0 such thatu≡ 0 inK×[T ,∞). 2

3. The semi-classical analysis

The semi-classical analysis deals with the description of the behaviour of the spectrum
of Hh−2bϕ = −1ϕ + h−2b(.)ϕ whenh > 0 goes to zero. WritingHh−2bϕ = −1ϕ +
αq−1b(.)ϕ, then the first non-zero eigenvalueλ1= λ1(h) of this operator can be written
as

λ1(h)= λ1(α
(1−q)/2)= µ(α). (3.1)

We denote byσ (Hh−2b,Ω) the spectrum of the Neumann realization ofHh−2b in L2(Ω).
SinceΩ is bounded, this spectrum is discreteσ (Hh−2b,Ω)= {λj : j = 1,2, . . .}. This is
usually not the case ifΩ =RN. We also introduce the counting number ofHh−2b defined
for θ > 0 by

NH
h−2b,Ω

(θ)= card
{
λ ∈ σ (Hh−2b,Ω): λ6 θ

}
. (3.2)

The following theorem is the main result of this section.

THEOREM 3.1. –Suppose thatN > 1 and that b is a bounded, measurable and
almost everywhere nonnegative function which is essentially positive near∂Ω . If
ln(1/b) ∈Lp(Ω) for somep >N/2, then equation(2.3)satisfies theTCS-property.

Since we are dealing with Neumann boundary conditions, the assumption on the
boundary lower bound ofb is essential in our proof in order to extend some known
estimates concerning spectrum of Schrödinger operators defined in the whole space to a
bounded domain situation. The next lemma gives a very rough estimate on the behaviour
of λ1(h) whenh goes to zero.

LEMMA 3.2. –Assume thatN > 1 and thatb is a locally bounded and measurable
function inΩ .

(i) If ess infΩ b= η> 0, thenlimh→0h
2λ1(h)= η.

(ii) If b(x) > 0 for almost allx in Ω , thenlimh→0λ1(h)=∞.

Proof. –(i) It is always true thath2λ1(h) > ess minx∈Ω b(x) = η. Let ε ∈ (0,1), and
Ωε = {x ∈ Ω: η 6 b(x) 6 η + ε}. The setΩε is measurable with positive measure,
therefore almost all its points have density 1 with respect to Lebesgue measure [4] that
is

lim
r→0

meas.(Br(x) ∩Ωε)

meas.(Br(x))
= 1 (for a.e.x ∈Ωε) (3.3)

(Br(x) denoting the ball of centerx and radiusr > 0). Let y be a point inΩε such
that (3.3) holds, then for anyδ ∈ (0,1/2), there existsρ0 > 0 such that, for any
0< ρ 6 ρ0,

meas.
(
Bρ(y)∩Ωε

)
> (1− δ)meas.

(
Bρ(y)

)
. (3.4)
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Let us defineθ(ε, ρ) by θ(ε, ρ) = meas.(Bρ(y)\Ωε)/meas.(Bρ(y)); from (3.4) we
deduce the inequality

06 θ(ε, ρ)6 δ. (3.5)

We denote byλ1,Bρ(y) the first eigenvalue of−1 in W
1,2
0 (Bρ(y)) and byϕBρ(y) the

corresponding eigenfunction with the normalization
∫
Bρ(y)

ϕ2
Bρ(y)

dx = 1. Let α(ε, ρ) =
θ(ε, ρ)1/N . SinceϕBρ(y) is radially decreasing and sinceBρ(y) ∩ Ωε andBα(ε,ρ)ρ(y)
have same measure, we obtain∫

Bρ(y)\Ωε
ϕ2
Bρ(y)

dx 6
∫

Bαρ(y)

ϕ2
Bρ(y)

dx, (3.6)

and, using (3.5) and the definition ofα,∫
Bρ(y)\Ωε

ϕ2
Bρ(y)

dx 6
∫

B
ρδ1/N (y)

ϕ2
Bρ(y)

dx.

But ϕBρ(y)(x − y)= ρ−N/2ϕB1(y)((x − y)/ρ), so we get∫
B
ρδ1/N (y)

ϕ2
Bρ(y)

dx =
∫

B
δ1/N (y)

ϕ2
B1(0)

dx = γ (δ). (3.7)

It is clear thatγ (δ)→ 0 asδ→ 0, and we have∫
Bρ(y)\Ωε

ϕ2
Bρ(y)

dx 6 γ (δ). (3.8)

Finally

λ1(h)6
∫

Bρ(y)

(|∇ϕBρ(y)|2+ h−2b(x)ϕ2
Bρ (y)

)
dx

6 λ1,Bρ(y)+ h−2
∫

Bρ(y)∩Ωε
b(x)ϕ2

Bρ (y)
dx + h−2‖b‖L∞

∫
Bαρ(y)

ϕ2
Bρ(y)

dx

6 λ1,Bρ(y)+ h−2(ε+ η)+ h−2‖b‖L∞γ (δ), (3.9)

which implies that lim suph→0h
2λ1(h) 6 (ε + η) + ‖b‖L∞γ (δ). Since ε and δ are

arbitrary, the claim follows.
(ii) Let us assume that (ii) does not hold and that there exists a positive constantC such

thatλ1(h)6 C, for anyh > 0. Letϕ1,h be the corresponding eigenfunction normalized
by
∫
Ω ϕ

2
1,h dx = 1. Our assumption implies thatϕ1,h remains bounded inW 1,2(Ω) and

subsequently we can, by compactness, extract a subsequence{ϕ1,hn} such thatϕ1,hn→
ϕ1,0 strongly inL2(Ω) ashn→ 0. But

∫
Ω(h

2|∇ϕ2
1,h| + b(x)ϕ2

1,h)dx = h2λ1,h 6 h2C,
therefore

∫
Ω b(x)ϕ

2
1,0 dx = 0, which leads to a contradiction.2
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If we setσ (Hh−2b̃,R
N) = {λ̃j : j = 1,2, . . .}, the following moment formula due to

Lieb and Thirring will allow us to estimate the first eigenvalues whenh goes to 0.

THEOREM B. – Suppose thatN > 1 and thatb̃ is a locally bounded, measurable and
nonnegative function defined inRN with the property thatlim ess|x|→∞ b̃(x)=∞. Then,
for any real numberγ satisfyingγ +N/2> 1, there exists a positive constantLγ,N such
that ∑

λ̃j6ρ
(ρ − λ̃j )γ 6 Lγ,N

∫
{x: h−2b̃(x)6ρ}

(
ρ − h−2b̃(x)

)γ+N/2
dx, (3.10)

for anyρ > 0.

The usual conditionρ < inf essσ (Hh−2b̃,R
N) is vacuously fulfilled since the assump-

tions onb imply that essσ (Hh−2b̃,R
N) = ∅, and it is worth noticing that, whenN > 3

andΩ = RN, it is possible to imposeγ = 0 thanks to the celebrated Cwikel–Lieb–
Rozenblyum formula ([2,12,18] and [8]), which gives an upper estimate of the counting
number:

NH
h−2b̃ ,R

N(θ)6 L̃N
∫

{h−2b̃(x)}6θ

(
θ − h−2b̃(x)

)N/2
dx = LN

∫
{|ξ |2+h−2b̃(x)}6θ

dx dξ,

(3.11)

for anyθ > 0.

Proof of Theorem 3.1. – Since ln(1/b) ∈ Lp(Ω) for somep > N/2, b(x) > 0 for
almost allx in Ω . We denote dist(x, ∂Ω)= δ∂Ω(x) and define ess inf∂Ω b by

ess inf
∂Ω

b= lim
r→0

(
ess inf
δ∂Ω (x)6r

b(x)
)
. (3.12)

If we assume that ess infΩ b is not smaller than ess inf∂Ω b, then the assumption onb
implies thatb is bounded from below inΩ by a positive number. Therefore theTCS-
property holds from Section 2. Since the same conclusion holds if ess infΩ b > 0, in the
sequel we shall assume that 0= ess infΩ b < ess inf∂Ω b. We defineb̃ in whole RN by
setting

b̃(x)= (ess inf
∂Ω

b)
(
1+ δ∂Ω(x)) (∀x ∈RN\Ω). (3.13)

If λ̃1= λ̃1(h), the semi-classical analysis [8] assertsλ̃1(h)= λ1(h)(1+ o(1)) ash→ 0.
Applying Theorem B withρ = 3λ1(h) yields

(
λ1(h)

)γ 6Lγ,N ∫
{x: h−2b̃(x)63λ1(h)}

(
3λ1(h)− h−2b̃(x)

)γ+N/2
dx. (3.14)

Since 0= ess infΩ b, limh→0h
2λ1(h)= 0 by Lemma 3.2. Therefore{

x ∈RN: h−2b̃(x)6 3λ1(h)
}= {x ∈RN: b̃(x)6 3h2λ1(h)

}
= {x ∈Ω: b(x)6 3h2λ1(h)

}
, (3.15)
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and (3.14) implies

(
λ1(h)

)γ 6 L̃γ,Nmeas.
{
x ∈Ω: h−2b(x)6 3λ1(h)

}(
λ1(h)

)γ+N/2
, (3.16)

or equivalently

16 L̃γ,N
(
λ1(h)

)N/2
meas.

{
x ∈Ω: ln

1

b(x)
> ln

1

3h2λ1(h)

}
6 L̃γ,N

(
µ(α)

)N/2
meas.

{
x ∈Ω: ln

1

b(x)
> ln

1

3αq−1µ(α)

}
, (3.17)

with the notation (3.1) (notice that limα→0α
1−qµ(α)= 0). But

meas.
{
x ∈Ω: ln

1

b(x)
> ln

1

3αq−1µ(α)

}
6 1(

ln 1
3αq−1µ(α)

)p ∫
Ω

(
ln

1

b(x)

)p
dx,

(3.18)

therefore we derive from (3.17), (3.18) that there existα0> 0 andCγ,N,p,b > 0 such that

µ(α)>Cγ,N,p,b
(
ln(αq−1/µ(α))

)2p/N (∀α ∈ (0, α0]). (3.19)

It follows from (3.19) that limα→0µ(α) = ∞. In order to derive a lower estimate
on µ(α) by a function ofα, we set x = α(q−1)N/2p, y = y(x) = (µ(α))N/2p and
k = (2p/N)CN/2p. Then x ∈ [x0,∞) with x0 = α(q−1)N/2p

0 , limx→∞ y(x) = ∞ and
0< y < x. With these notations inequality (3.19) reads

y > k ln(x/y)⇔ x 6 yey/k. (3.20)

If we define the functionx 7→ z(x) on [x0,∞) by the relationx = zez/k, then by
monotonicityzez/k 6 yey/k ⇒ z 6 y. But x = zez/k implies limx→∞ lnx/z = 1/k and
there existsx1> x0 such thatx > x1 impliesz> (k/2) lnx. Consequently

y(x)> k
2

lnx⇒ µ(α)>
(
(1− q)/2)2p/N(

lnα−1)2p/N (∀α ∈ (0, α1]) (3.21)

for someα1. Since 2p/N > 1,
∫ 1

0
lnµ(t)
µ(t)

dt
t
< ∞, and theTCS-property holds from

Section 2. 2
Remark3.1. – Estimates (3.18) is actually an estimate in the Marcinkiewicz space

Mp(Ω). However we have not been able to exploit this weaker form.

Remark3.2. – The essential positivity assumed onb near the boundary can be
weakened if we assume that the functionb is continuous inΩ̄ and has only
isolated zeroes{a1, . . . , ap} on ∂Ω . In this case, we first introduce a family{Ωj } of
disjoint open neighborhoods of the{aj }, and in each of them we perform a local
reflection on the boundary (up to a nonlinear change of coordinates), which reduces
the boundary degeneracy problem ofb into an internal degeneracy problem. If̃Ω =
Ω\⋃j=1,...,p Ωj ∩Ω , and if we denote byλΩ1 (h), λ

Ω̃
1 (h), λ

Ω∩Ωj
1 (h) and λ

Ωj
1 (h) the



Y. BELAUD ET AL. / Ann. Inst. Henri Poincaré Anal. nonlinear 18 (2001) 43–68 59

ground states of the Neumann realization ofHh−2b in L2(Ω), L2(Ω̃), L2(Ω ∩Ωj) and
L2(Ωj) respectively, then it is classical that

λΩ1 (h)> inf
{
λΩ̃1 (h), λ

Ω∩Ω1
1 (h), . . . , λ

Ω∩Ωp
1 (h)

}
. (3.22)

Since λ
Ω∩Ωj
1 (h) ≈ λΩj1 (h), in the sense that there existsC > 0 such that 1/C 6

λ
Ω∩Ωj
1 (h)/λ

Ωj
1 (h)6 C for anyh ∈ (0, h0], the extension of the previous result follows

from the general internal criterion.

In the case of Dirichlet boundary conditions we have a stronger result.

THEOREM 3.3. –Suppose thatN > 1, and b is a bounded, measurable and almost
everywhere nonnegative function. Ifln(1/b) ∈ Lp(Ω) for somep > N/2, then any
solution of Eq.(2.3) subject to homogeneous Dirichlet boundary conditions instead of
Neumann satisfies theTCS-property.

The proof goes as the one of Theorem 3.1 except that the extended potentialb̃ can be
taken to be identically equal to infinity inRN\Ω . For such a potential the Lieb–Thirring
formula applies.

COROLLARY 3.4. –Suppose thatN > 1, and b is continuous inΩ̄ and positive in
Ω̄\F , whereF = ⋃Jj=1Cj and theCj are C1 and d-dimensional(0 6 d 6 N − 1)
compact submanifolds ofΩ . Suppose also that there existsC > 0 and 0< σ < 2(N −
d)/N such that

b(x)> C exp
(−δ−σF (x)

)
(∀x ∈Ω), (3.23)

whereδF (x)= dist(x,F ), then Eq.(2.3)satisfies theTCS-property.

Proof. –If we setVt = {x ∈Ω: b(x)6 t}, we have

Vt ⊂Dt = {x ∈Ω: C exp
(−δ−σF (x)

)
6 t
}
. (3.24)

But

Dt =
{
x ∈Ω: δF(x)6

(
ln
C

t

)−1/σ}
⊂

J⋃
j=1

{
x ∈Ω: δCj (x)6

(
ln
C

t

)−1/σ}
,

(3.25)

whereδCj (x)= dist(x,Cj ), and by the co-area formula (or also Weyl’s formulas),

|Dt |6 C ′
(

ln
C

t

)(d−N)/σ
. (3.26)

Therefore, if we set ln(1/t)= T , we have

T (N−d)/σ |Vt | = T (N−d)/σmeas.
{
x ∈Ω: ln(1/b(x))> T

}
6 C ′′. (3.27)

This means that ln(1/b) ∈M(N−d)/σ (Ω). As (N − d)/σ > N/2, the result follows from
Theorem 3.1 and Remark 2.3.2
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Remark3.3. – The regularity ofF = b−1(0) in Corollary 3.4 is not really necessary,
and even the integrality ofd. The only important ingredients for obtaining the
TCS-Property are the inequality (3.23) and the Lebesgue measure of the tubular
neighbourhoods ofF .

COROLLARY 3.5. –SupposeN > 1, b is analytic inΩ , nonnegative and continuous
in Ω̄ and positive on∂Ω . Then Eq.(2.3)satisfies theTCS-property.

Proof. –The setF = {x ∈ Ω: b(x) = 0} is a semi-analytic set in the sense of
Lojaciewicz and is compact inΩ . Therefore, by a result of de Rham [19,13], it is a
finite union of analytic manifoldsCj with dimensiondj ∈ {0,1, . . . ,N − 1}, each of
them being the graph of a functionΦj which satisfies|DΦj | 6 M for someM > 0.
By Lojaciewicz’s inequalities [13,14] and the compactness ofF , there exist positive
constantsC andK such that

b(x)> C
(
δF (x)

)K
, (3.28)

whereδF (x) = dist(x,F ). The remaining of the proof is a slight variant of the one of
Corollary 3.5, sinceVt = {x ∈Ω: b(x)6 t} ⊂Dt = {x ∈Ω: C(δF (x))K 6 t} and

|Dt |6 C ′t1/K, (3.29)

for t small enough. Thereforet−1/K |Vt | = t−1/Kmeas.{x ∈ Ω: 1/b(x) > 1/t} 6 C ′′
which means thatb−1 ∈MK(Ω). We conclude with Theorem 3.1.2

4. The non-vanishing property

In this sectionΩ is a connected, possibly unbounded, open subset ofRN (N > 1), and
A= (aij (x)) a symmetricN ×N matrix with coefficients inC1(Ω), which satisfies for
any compact subsetK ⊂Ω ,

aij (x)ξiξj > λ(K)
N∑
i,

ξ2
i

(∀x ∈K,∀(ξ1, . . . , ξN) ∈RN), (4.1)

for someλ(K) > 0 (here we use the usual summation convention). This defines a locally
uniformly elliptic operator inΩ . We consider the following differential inequality

∂tu− ∂xi (aij (x)∂xj u)+ b(x)uq > 0 inΩ × (0,∞),
u> 0 inΩ × (0,∞),
u(x,0)= u0(x) in Ω,

(4.2)

where q satisfies 06 q < 1 and b ∈ L1/(1−q)
loc (Ω), b > 0. By a solution of (4.2),

we mean a weak supersolution in the sense of the following definition (weaker than
Definition 2.1).
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DEFINITION 4.1. –A function u belonging toC([0,∞);L1
loc(Ω)) ∩ L1

loc([0,∞);
W

1,1
loc (Ω)) is a weak solution of problem(4.2) if u > 0 and for anyζ ∈ C2,1

c (Ω ×
[0,∞)), ζ > 0,

∞∫
0

∫
Ω

(−uζt + aij (x)∂xj u∂xi ζ + b(x)uqζ )dx dτ >
∫
Ω

ζ(x,0)u0(x)dx. (4.3)

As we shall see it later on in the proof of Theorem 4.1, the assumptions onb andq
imply thatbuq ∈L1

loc(Ω × [0,∞)). If ω ⊂Ω is any smooth subdomain andρ ∈L∞(ω)
is nonnegative, we defineνAρ,ω by

νAρ,ω = inf
{∫
ω

(
aij (x)∂xjψ∂xjψ + ρ(x)ψ2)dx: ψ ∈W 1,2

0 (ω),

∫
ω

ψ2 dx = 1
}
. (4.4)

Letψρ,ω be a corresponding positive eigenfunction. Since the coefficients of the operator
areC1, the functionψρ,ω belongs toW 2,p(ω) for anyp such that 16 p <∞. We denote

Tρ,ω(u0)= 1

νAρ,ω
ln

(
1+ νAρ,ω

(∫
ω ψρ,ωu0 dx

)1−q(∫
ω b

1/(1−q)ψρ,ω dx
)1−q

)
, (4.5)

(valid becauseu0 ∈ L1
loc(Ω)). The basic criterion which implies that solutions with

positive initial data remain positive for allt > 0 is the following.

THEOREM 4.1. –Letu be a weak solution of(4.2) in the sense of Definition4.1. If

sup
ρ,ω
Tρ,ω(u0)=∞, (4.6)

then, for anyt > 0, the functionx 7→ u(x, t) does not vanish identically.

Proof. –Sinceu ∈C([0,∞);L1
loc(Ω)), we can takeζ =ψα

ρ,ωχ[0,t )×ω as a test function
(with α > 1, t > 0), and it follows from (4.3) that

t∫
0

∫
ω

(
αaij (x)ψ

α−1
ρ,ω ∂xj u∂xiψρ,ω + b(x)uqψα

ρ,ω

)
dx dτ

>
∫
ω

u0(x)ψ
α
ρ,ω dx −

∫
ω

u(x, t)ψα
ρ,ω dx. (4.7)

By the chain rule and the eigenvalue equation satisfied byψρ,ω ,

−∂xj
(
ψα−1
ρ,ω aij (x)∂xiψρ,ω

)= (νAρ,ω − ρ(x))ψα
ρ,ω − (α− 1)ψα−2

ρ,ω aij (x)∂xjψρ,ω∂xiψρ,ω

6
(
νAρ,ω − ρ(x)

)
ψα
ρ,ω.

Becauseu(. , t) ∈ W 1,1
loc (ω) a.e., is nonnegative and∂νAψρ,ω = aij (x)νj × ∂xiψρ,ω 6 0

on ∂ω, it follows by approximatingu(. , t) by smooth nonnegative function, Green’s
formula and the above inequality that
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ω

aij (x)ψ
α−1
ρ,ω ∂xj u∂xiψρ,ω dx 6

∫
ω

(
νAρ,ω − ρ(x)

)
ψα
ρ,ω dx 6 νAρ,ω

∫
ω

ψα
ρ,ω dx. (4.8)

Using this last inequality in (4.7), and lettingα go to 1, yields∫
ω

u(. , t)ψρ,ω dx + νAρ,ω
t∫

0

∫
ω

uψρ,ω dx dt +
t∫

0

∫
ω

b(x)uqψρ,ω dx dt

>
∫
ω

u0ψρ,ω dx. (4.8)

Since 06 q < 1, we have by Hölder’s inequality (this implies thatbuq ∈ L1
loc(Ω ×[0,∞)))

∫
ω

b(x)uqψρ,ω dx 6
(∫
ω

uψρ,ω dx

)q(∫
ω

b1/(1−q)ψρ,ω dx

)1−q
.

Setting y(t) = ∫ω uψρ,ω dx and K = (∫ω b1/(1−q)ψρ,ω dx)1−q we derive an integral
inequality

y(t)+ νAρ,ω
t∫

0

y(s)ds +K
t∫

0

yq(s)ds > y(0), (4.9)

to which we associate an integral equation

z(t)+ νAρ,ω
t∫

0

z(s)ds +K
t∫

0

zq(s)ds = y(0), (4.10)

equivalent to a Bernoulli differential equation

z′ + νAρ,ωz+Kzq = 0 on[0,∞), z(0)= y(0)=
∫
ω

u0ψρ,ω dx. (4.11)

Sincew= z−y satisfiesw(t)+νAρ,ω
∫ t

0 w(s)ds+K
∫ t

0 `(t)w(s)ds 6 0 on[0,∞) where
the function`= (zq −wq)/(z−w) is continuous, it follows from Gronwall’s inequality
thatw6 0.

The solution of (4.11) is explicited by introducing the unknownz1−q (which gives rise
to a linear equation). Combining this expression and the fact thaty > z yields

y1−q(t)e(1−q)ν
A
ρ,ωt > z1−q(t)e(1−q)ν

A
ρ,ωt = y1−q

0 − K

νAρ,ω

(
e(1−q)ν

A
ρ,ωt − 1

)
. (4.12)

As long as

t <
1

(1− q)νAρ,ω
ln
(

1+ z(0)ν
A
ρ,ω

K

)
= T ∗,
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the right-hand side of (4.12) remains positive. Because of the assumption onu0, z(0)=∫
Ω ψρ,ωu0 dx, andT ∗ = (1/(1− q))Tρ,ω(u0). But supω,ρ Tρ,ω(u0) = ∞, therefore for

any t > 0 there existω ⊂Ω andρ ∈ L∞+ (ω) such that(1/(1− q))Tρ,ω(u0) > t , which
implies

∫
ω u(x, t)ψρ,ω(x)dx > 0. 2

Whenb is degenerate on the boundary it may be useful to replace the local Dirichlet
eigenvalue problem associated to a functionρ defined inω by a global Neumann
eigenvalue problem. Assuming thatΩ is bounded, thatρ ∈ L∞(Ω), ρ > 0, we denote
νAρ by

νAρ = inf
{∫
Ω

(
aij (x)∂xj ψ∂xiψ + ρ(x)ψ2)dx: ψ ∈W 1,2(Ω),

∫
Ω

ψ2 dx = 1
}
.

(4.13)

If ψρ a corresponding positive first eigenfunction, we defineT̃ρ(u0) by

T̃ρ(u0)= 1

νAρ
ln

(
1+ νAρ

(∫
Ω ψρu0 dx

)1−q(∫
Ω b

1/(1−q)ψρ dx
)1−q

)
. (4.14)

The proof of the result below follows the same lines as for Theorem 4.1.

THEOREM 4.2. –Assume thatΩ is bounded with a smooth boundary andu is a weak
solution of(4.2). If supρ T̃ρ(u0)=∞, the conclusion of Theorem4.1 is still valid.

Remark4.1. – Theorem 4.1 essentially gives the non-vanishing property over a
domainω⊂Ω if supρ Tρ,ω(u0)=∞. In the particular case whereρ = 0, then

νA0,ω = λA1,ω = inf
{∫
ω

(
aij (x)∂xjψ∂xiψ +ψ2)dx: ψ ∈W 1,2

0 (ω),

∫
ω

ψ2 dx = 1
}
.

(4.15)

It is clear that the condition

sup
ω

1

λA1,ω
ln

(
1+ λA1,ω

(∫
ω ϕ

A
ωu0 dx

)1−q(∫
ω b

1/(1−q)ϕAω dx
)1−q

)
=∞ (4.16)

(hereϕAω is a first eigenfunction associated toλA1,ω) implies

sup
ω,ρ
Tρ,ω(u0)=∞.

When b has only isolated zeroes, it is natural to localize the study ofb by using
balls centered at those zeroes instead of subdomainsω ⊂ Ω . If y ∈ Ω , we denote
Ry = sup{r > 0: Br(y)⊂Ω}.

THEOREM 4.3. –Assume that the matrixA satisfies

0< λ6 inf
x∈Ω specA(x)6 sup

x∈Ω
specA(x)6Λ (∀x ∈Ω), (4.17)
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for some constantsλ andΛ, and that

sup
y∈Ω

sup
0<r<Ry

r2 ln

(
1∫

BR(y)
b1/(1−q) dx

)
=∞. (4.18)

If u is a weak solution of problem(4.2)such thatess infΩ u0> 0, u(. , t) is not identically
zero for anyt > 0.

Proof. –Since ess infΩ u0> 0, there is no loss of generality in assuming ess infΩ u0=
1. Let us first observe that (4.18) is a condition relative to a neighbourhood ofb−1(0).
Let λ1,Br (y) and ϕBr(y) be respectively the first eigenvalue and eigenfunction of−1
in W 1,2

0 (Br(y)). It follows from (4.17) and Hopf boundary lemma [7] that there exist
positive constantsα andβ such that for anyy ∈Ω and anyr ∈ (0,Ry) there holds

α 6
ϕABr (y)

ϕBr (y)
6 α−1 and β 6

λA1,Br (y)

λ1,Br (y)
6 β−1 (∀y ∈Ω, ∀r ∈ (0,Ry)), (4.19)

provided the normalization conditionϕBr(y)(y) = ϕABr (y)(y) = r is imposed. Moreover
`6 ϕBr(y)(x)/(r−|x−y|)6 `−1 andλ1,Br (y) = cr−2 where` > 0 andc > 0 only depend
on the dimensionN . Finally

λA1,ω

(∫
ω

ϕAω dx
)1−q

≈ λ1,Br(y)

( ∫
Br(y)

ϕBr (y) dx
)1−q

≈ C(N)r(N+1)(1−q)−2 (4.20)

(where≈means that the quotients of the two quantities which are involved are bounded
independently ofy andr), and∫

ω

b1/(1−q)ϕAω dx ≈
∫

Br (y)

b1/(1−q)ϕBr (y) dx 6 `−1r

∫
Br (y)

b1/(1−q) dx. (4.21)

Therefore (4.18) implies (4.16) withu0> 1. 2
In order to compare with the analysis made in Sections 2 and 3, it is natural to

introduce a local version ofµ(α), namely

µAω(α)= inf
{∫
ω

(
aij (x)∂xjψ∂xiψ + αq−1b(x)ψ2)dx: ψ ∈W 1,2

0 (ω),

∫
ω

ψ2 dx = 1
}
.

(4.22)

ClearlyµAω(α)= νAαq−1b,ω
. We introduce the following assertions

sup
ω⊂Ω

sup
0<α<1

ln(1/α)

µAω(α)
=∞, (4.23)

sup
ω⊂Ω

(
ln
(
1/‖b‖L∞(ω))
λA1,ω

+ lnλA1,ω
λA1,ω

)
=∞. (4.24)
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THEOREM 4.4. –The following implications hold:

(4.24)⇒ (4.23)⇒ (4.6) with ess inf
Ω

u0> 0.

Proof. –
Step 1.(4.24)⇒ (4.23).
We fix ω and recall thatψαq−1b,ω is defined in (4.4) withρ = αq−1b. Then

µAω(α)

∫
ω

ψ2
αq−1b,ω dx =

∫
ω

(
aij (x)∂xj ψαq−1b,ω∂xiψαq−1b,ω + αq−1b(x)ψ2

αq−1b,ω

)
dx

6
(
λA1,ω + αq−1‖b‖L∞(ω))∫

ω

ψ2
αq−1b,ω dx (4.25)

for anyα ∈ (0,1]. Consequently

µAω(α)6 λA1,ω + αq−1‖b‖L∞(ω),
and

lnαq−1

λA1,ω + αq−1‖b‖L∞(ω) 6
lnαq−1

µAω(α)
6 sup

β∈(0,1]
lnβq−1

µAω(β)
. (4.26)

SinceλA1,ω/‖b‖L∞(ω) is not bounded from above whenω is shrinking, we can suppose
thatω is chosen in such a way thatλA1,ω/‖b‖L∞(ω) > 1. Therefore the particular choice
of αq−1= λA1,ω/‖b‖L∞(ω) yields to the following inequality which implies the claim:

ln(1/‖b‖L∞(ω))
λA1,ω

+ lnλA1,ω
λA1,ω

6 2(1− q) sup
β∈(0,1]

ln(1/β)

µAω(β)
. (4.27)

Step 2.(4.23)⇒ (4.5) with ess infΩ u0= δ > 0.
Forγ > 1, let us introduce

τAω (γ )= inf
{∫
ω

(
aij (x)∂xjψ∂xiψ + γ b1/(1−q)(x)ψ2)dx: ψ ∈W 1,2

0 (ω),

∫
ω

ψ2 dx = 1
}
.

(4.28)

ThenτAω (γ )= νAγb1/(1−q),ω andτAω (γ )6 µAω((γ ‖b‖q/(1−q)L∞(ω) )
1/(q−1)).

Moreover
lnγ

τAω (γ )
> lnγ

µAω
(
(γ ‖b‖q/(1−q)L∞(ω) )

1/(q−1)
)

= (1− q) ln(1/θ)
µAω(θ)

+ q

1− q ln
(
1/‖b‖L∞(ω)), (4.29)

by settingθ = t (γ ‖b‖q/(1−q)L∞(ω) )
1/(q−1), and

1

τAω (γ )
ln
(
1+ (τAω (γ ))qγ 1−q)> (1− q) lnγ

τAω (γ )
+ q ln(τAω (γ ))

τAω (γ )
. (4.30)
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Since ln(1/‖b‖L∞(ω)) is bounded from below by ln(1/‖b‖L∞(Ω)), it follows from (4.26)
and (4.30) that

sup
ω⊂Ω

sup
0<α<1

ln(1/ω)

µAω(α)
=∞⇒ sup

ω⊂Ω
sup
γ>1

lnγ

τAω (γ )
=∞,

⇒ sup
ω⊂Ω

sup
γ>1

1

τAω (γ )
ln
(
1+ (τAω (γ ))qγ 1−q)=∞. (4.31)

Let ψ̃γ =ψαq−1b,ω be an eigenfunction corresponding toτAω (γ ), then

sup
ρ

1

νρ,ω
ln

(
1+ νρ,ω

(
δ
∫
ω ψρ,ω dx

)1−q(∫
ω b

1/(1−q)ψρ,ω dx
)1−q

)

> sup
γ>1

1

τAω (γ )
ln

(
1+ τ

A
ω (γ )

(
δ
∫
ω ψ̃γ dx

)1−q(∫
ω b

1/(1−q)ψ̃γ dx
)1−q

)
. (4.32)

Integrating the equation satisfied bỹψγ yields γ
∫
ω b

1/(1−q)ψ̃γ dx 6 τAω (γ )
∫
ω ψ̃γ dx;

then

τAω (γ )
(
δ
∫
ω ψ̃γ dx

)1−q(∫
ω b

1/(1−q)ψ̃γ dx
)1−q > (τ

A
ω (γ ))

qδ1−qγ 1−q. (4.33)

Then right-hand side of (4.32) is minorized by supγ>1
1

τAω (γ )
ln(1+ (τAω (γ ))qδ1−qγ 1−q);

it follows from (4.23), (4.32) that supω,ρ Tρ,ω =∞. 2
We end this section by a result which exhibits the pointwise character of the non-

vanishing property.

THEOREM 4.5. –Let us suppose thatb is a continuous and nonnegative function
defined inΩ̄ which satisfies for somex0 ∈Ω

lim
r→0

r2 ln
(
1/‖b‖L∞(Br (x0)

)=∞. (4.34)

Letu be a weak solution of(4.2)whereu0(x)> ε > 0 a.e. in some neighbourhood ofx0,
then ∫

Br (x0)

u(x, t)dx > 0
(∀0< r < Rx0, ∀t > 0

)
. (4.35)

If we assume moreover that the matrixA is constant in a neighborhood ofx0, and that
u ∈C(Ω × (0,∞))∩L2

loc((0,∞);W 1,2
loc (Ω)), then

u(x0, t) > 0 (∀t > 0). (4.36)

Proof. –We first notice that(4.34)⇒ (4.24)⇒ (4.23)⇒ (4.5) with ess infΩ u0 > 0.
More precisely the analysis of the proof of Theorem 4.1 via Remark 4.1 shows that (4.35)
holds. In order to prove the pointwise estimate (4.36) we can suppose thatA = I near
x0, and we define a radially increasing (with respect tox0) function b̃ by

b̃(x)= b̃(|x|)= ‖b‖L∞(B|x|(x0)). (4.37)
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We may assume thatu0(x)> ε > 0 for |x − x0|6 r0, and denote bỹu the solution of
∂t ũ−1ũ+ b̃(x)ũq = 0 inBr0(x0)× (0,∞),
ũ= 0 onBr0(x0)× (0,∞),
ũ(x,0)= ε in Br0(x0).

(4.38)

Such a functioñu is uniquely determined because of the monotonicity of the operator.
Since b̃ > b in Br0(x0), the comparison principle (which holds because of the extra
regularity assumptions onu) implies that u > ũ in Br0(x0) × (0,∞). Moreover
x 7→ ũ(x, t) is radial with respect tox0 for any t > 0. By the classical moving
planes method for parabolic equations [6], the functionx 7→ ũ(x, t) is actually radially
decreasing. This may not appear completely clear sincer 7→ rq is not Lipschitz
continuous, but we can replace it byr 7→ (r + δ)q − δq if q > 0 or tanh(r/δ) if
q = 0 (δ > 0). Let ũδ be the solution of problem (4.35) in which the nonlinearity is
now (ũδ + δ)q − δq . Thenx 7→ ũδ(x, t) is radially decreasing with respect tox0 for
any t > 0. Sinceũδ(. , t) converges tõu(. , t) whenδ→ 0 uniformly in B̄r0(x0). Since
‖b̃‖L∞(Br (x0) = ‖b‖L∞(Br (x0), then it also holds the property

lim
r→0

r2 ln
(
1/‖b̃‖L∞(Br (x0)

)=∞. (4.39)

It follows from (4.35) applied to (4.38) that
∫
Br0(x0)

ũ(x, t)dx > 0 for t > 0. Therefore

u(x0, t)> ũ(x0, t)= max
|x−x0|6r0

ũ(x, t)>
∣∣Br0(x0)

∣∣−1
∫

Br0(x0)

ũ(x, t)dx > 0 (4.40)

which is (4.36). 2
Remark4.2. – It is very likely that the assumption on the behaviour of the matrixA

nearx0 is unnecessary. It can also be noticed that the assumption on the sign ofb in
wholeΩ̄ is also unnecessary: only the sign ofb in B̄r0(x0) is useful.

As consequence we have the following counterpart of Corollary 3.4.

COROLLARY 4.6. –Assume thatΩ is bounded with a smooth boundary and let
b be a continuous and nonnegative function defined inΩ̄ which satisfies for some
x0 ∈Ω, C > 0 andσ > 2,

b(x)6 C exp
(−|x − x0|−σ ) (∀x ∈Ω). (4.41)

If u is a nonnegative solution of,
∂tu−1u+ b(x)uq = 0 in Ω × (0,∞),
∂νu= 0 on ∂Ω × (0,∞),
u(x,0)= u0(x) in Ω,

(4.42)

whereu0(x) > ε > 0 for someε > 0, a.e. in some neighbourhoodV (x0) of x0, then
estimate(4.36)holds.
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Proof. –The statement follows from Theorem 4.5 and the inequality

r2 ln
(
1/‖b‖L∞(Br (x0)

)
> r2−σ − r2 lnC. 2 (4.43)
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