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A new approach to Young measure theory,
relaxation and convergence in energy

M.A. SYCHEV *

Ann. Inst. Henri Poincaré,
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Novosibirsk 630090, Russia

ABSTRACT. - The main idea of this paper is to reduce analysis of behavior
of integral functionals along weakly convergent sequences to operations
with Young measures generated by these sequences. We show that Young
measures can be characterized as measurable functions with values in a

special compact metric space and that these functions have a spectrum of
properties sufficiently broad to realize this idea. ,

These new observations allow us to give simplified proofs of the results
of gradient Young measure theory and to use them for deriving the results
on relaxation and convergence in energy under optimal assumptions on
integrands.
We think that this work helps to clarify role of Young measures.

© Elsevier, Paris
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RESUME. - L’ idee principale de cet article est de ramener l’analyse du
comportement de fonctionnelles integrales portant sur des suites faiblement
convergentes a des operations sur les mesures de Young associees a ces
suites. Nous montrons que les mesures de Young peuvent etre caracterisees
comme des fonctions mesurables a valeurs dans un certain espace metrique
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774 M.A. SYCHEV

compact et que ces fonctions ont un ensemble de proprietes suffisament
large pour mettre en 0153uvre cette idee.

Ces nouvelles observations nous permettent de donner des demonstrations

simplifiees de resultats en theorie du gradient des mesures de Young et de
les utiliser pour obtenir des resultats sur la relaxation et la convergence en

energie sous des hypotheses optimales sur les integrandes.
Nous pensons aussi que ce travail aide a clarifier le role des mesures de

Young. © Elsevier, Paris

1. INTRODUCTION

Consider the functional

where Q is a domain in Rn, u : SZ --~ Rm and where L : H x Rm x Rnrn --+
R is a Caratheodory function. Some of the fundamental questions in the
Calculus of Variations are

~ under which conditions on L is I lower semicontinuous with respect
to weak convergence in the Sobolev space 

. can the lower semicontinuous envelope of I be expressed as an integral
functional;

. under which conditions do weak convergence uo in Rm)
and convergence in energy I ( uo ) imply strong convergence.

A number of results that answer these questions in different generality
have been obtained in [1], [4], [14], [15], [19] since the fundamental work
of Morrey [36] (see also [18], [38], [41], [44] for the scalar case m = 1). In
recent years it has become clear that optimal results are most easily stated
and proved in the framework of Young measures ([3], [5], [29]-[30], [45]).
The purpose of this paper is to present a streamlined and self-contained

approach to the theory of gradient Young measures and its applications to
the above problems.
We do not mention here all previous contributions in the area under

discussion, but give appropriate references each time that we state a result
similar to a known one or utilize a proof repeating a scheme discovered
earlier somewhere else.
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775A NEW APPROACH TO YOUNG MEASURE

In this paper we do not touch other problems in which Young measures
play an essential role (see e.g. [8], [51]). An intensive study of the

applications of Young measure theory to PDE started since the works

of Tartar [49], [50].

We assume H is an open bounded subset of Rn, with meas(~03A9) = 0,
unless otherwise stated. By W 1 ~p ( S~; R’n ) we denote the space of all

measurable functions u with finite > . - +

Wo ’P ( ~ ~ R"2 ) is the closure of in

By Rm) we denote the space of measurable

mappings u : Rm such that u E for any open set

r2 compactly embedded in Q (r2 C C The space CO(Rl) is the closure
of in the supremum norm. Equivalently,

Recall that L(x, u, v) : S2 x Rm x R is a Caratheodory
integrand if L(x, . , .) is continuous for a.a. x and L(~, u, v) is measurable
for all u, v. It is well known that L is a Caratheodory integrand if and
only if for each E > 0 there exists a compact subset SZE of H such

that meas(03A9 B 03A9~) ~ E and the restriction of L to SZE x Rm x is

continuous, see [18].
From now on we will denote weak and strong convergence by - and

~, respectively. Convergence fk -* f in means convergence
of integrals 10 fkgdx to 03A9 fgdx for all g E L1(0). Convergence in

Rm) means convergence in for each SZ C C Q.

The ball of radius E with center at x will be denoted by B (x, E) . We
denote by R nm the space of all m x n matrices and, for A E Rnm and
x G Rn we denote by Ax the vector defined by matrix multiplication. By lA
we denote a linear function Rn -~ Rm such that lA(x) = Ax everywhere.
We write for the space of all bounded Radon measures supported

in Rl, for the total variation of a measure ~c. To distinguish
the action of a measure on a function from the scalar product we use the
notation (L; ~c~ in the first case. Sometimes we also utilize more classical
notation  L(v)d .

Recall the definition of Young measures

DEFINITION 1.1. - A family (vx)x~03A9 of probability measures vx E 
is called a Young measure if there exists a sequence of measurable functions
z~ : S2 ~ Rl such that for each ~ E Co(Rl)

Vol. 16, n ° 6-1999.



776 M.A. SYCHEV

If the zk are gradients of a sequence E W 1 ~p (SZ; R’n ), p E ~l, which

converges weakly in and for which the sequence is

equi-integrable, then is called gradient p-Young measure.
Note that uk converges weakly in to some uo, and

= for a.a. x E H (cf. Theorem 3.7). Then Uo is

unique (up to additive constants) and is called underlying deformation.
We call a Young measure an homogeneous Young measure

if vx does not depend on x. is the set of all homogeneous
gradient p-Young measures with the center of mass at A, is

the set of all homogeneous measures generated by gradients of sequences
converging weakly* in We will frequently identify elements
of the sets GMp(A), with measures in Note that the

sets GMoo(A) do not depend upon Q.
Note also that a function 03A6(z0) : 03A9 ~ R coincides with the function

given by the action of the family of Dirac masses on the

function ~ .

Other notations frequently used in this paper will be given in §3, which
is completely devoted to general Young measure theory.

An improved version of fundamental theorem in Young measures by [3],
[5] states that any sequence, which is bounded in LP with p > 0, generates
(after passage to a subsequence) a Young measure. Moreover, under certain
conditions on an integrand the action of this measure on the integrand
coincides with the limit of the values of the functional along the sequence
(see [3], [5] and Theorem 3.7 stated below). In addition to these facts a
characterization of the classes of Young measures generated by gradients
of the Sobolev functions was obtained in [29].

These results give us a hope that analysis of behavior of integral
functionals on weakly convergent sequences can be completely reduced
to operations with Young measures generated by these sequences. In order
to implement this idea one has to find a simple characterization of Young
measures and effective tools for work with these objects. It turns out that
such a characterization exists. In fact, Young measures are just measurable
functions with values in a compact metric space with the metric having an
integral representation (see Lemma 3.3). Although these functions are not
so simple as the ones with values in Rl, they still have a broad spectrum
of properties (these properties are given by propositions 3.2-3.5).

It turns out that the characterization of Young measures as measurable
functions and operations available for work with these functions suffice to
prove all standard results of general Young measures theory. In this paper
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777A NEW APPROACH TO YOUNG MEASURE

we do not discuss these matters, but concentrate on applications to gradient
Young measure theory and problems of the Calculus of Variations related to
behavior of integral functionals on weakly convergent sequences of Sobolev
functions. In view of that we restrict our work to families of probability
measures with measurable actions on continuous functions not proving
explicitly that this class of families coincides with the class of Young
measures. A curious reader can consult about the omitted issues in [46].

In §2 we will recall some auxiliary facts on Sobolev functions from [1],
[7], [25]. The most important one is Theorem 2.1 recently proved in [30]
(for an alternative proof see [23]).

In §3 we prove the characterization of Young measures as measurable
functions into a special metric space and discuss basic properties of these
functions: the Lusin property (Theorem 3.2), some quantitative estimates
on how the convergence of the elements of the families of probability
measures transforms into convergence of the families (Lemma 3.4), and a
theorem on measurable selections (Theorem 3.5). We also state a version
of the fundamental theorem in Young measures in a form convenient for
our purposes (see Theorem 3.6). Since in this work we need to analyze
behavior of integral functionals on sequences of Young measures, we extend
the theorem on relation of the value of an integral functional on a Young
measure with the values on a sequence of functions generating this measure
to this generality (see Theorem 3.7).

In §4 we give simplified and self-contained proofs of the basic results
of the theory of gradient Young measures (Theorems 4.2, 4.3), the main
one of which is the classification of gradient p-Young measures (Theorem
4.3), obtained by Kinderlehrer &#x26; Pedregal [29]. In the homogeneous case,
we replace abstract duality arguments from [29] by ones relying on the
integral formula for the metric corresponding to weak* convergence of
measures and Theorem 3.7. Our arguments can be extended to the case
of arbitrary integrands, see [47]. Then, we extend the result to the general
case following construction proposed in §6 of [44].

In §5 we obtain some applications of the theory developed in §2-4 to
the behavior of integral functionals on weakly convergent sequences of
Sobolev functions. It turns out that the approach above leads to a simple
proof of the relaxation theorem under optimal conditions on integrands if
the standard growth conditions are assumed.

Vol. 16, n° 6-1999.



778 M.A. SYCHEV

Recall that

a function L : - R is called quasi convex at A E if for each
~ E Co ( SZ ; the inequality

holds. This definition does not depend on the choice of an open set Q, with
meas(~03A9) = 0 (cf [7]). 

’

THEOREM 1.2. - Let L( x, u, v) : Rn x x -~ R be a Caratheodory
integrand such that

Let

Then Lq~ satisfies the same estimates as L, is a Caratheodory integrand, and
the function v - isquasiconvexfora.a. x E !1andallu E Rm.
Ifuk - uo in W 1 ~P (SZ; then > Moreover,

there exists a sequence u~ E R’n ) such that the sequence 
is equi-integrable, uo in and 

Remarks.

1. If L is continuous then Lq~ is continuous (see the proof of Theorem
1.2).

2. It follows from the second part of the theorem that is the weak
lower semicontinuous envelope of the original functional I.

The previous most significant results in relaxation (see [ 1 ], [10], [15])
involve some additional requirements on behavior of integrands with respect
to x, u. In [1] ] a result on sequential weak lower semicontinuous envelope
has been stated under less restrictive assumptions on growth of L. We will
show how this result can be derived from Theorem 1.2 in the remark after
the proof of the theorem.

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire



779A NEW APPROACH TO YOUNG MEASURE

The following property of integral functionals is called the weak-strong
convergence property:

We obtain precise characterization of integrands satisfying this property
at a fixed function in ~5 (see also [45]). Results of previous authors

indicated some sufficient conditions for this property to hold at a function,
everywhere (see [19], [29], [30], [41], [42], [52], [53] and papers cited in
[44]). In the scalar case a pointwise characterization of this property has
been obtained in [44] .

DEFINITION 1.3. (see [29], [30], [39]) - Let L : R be continuous

function such that |L(v)| ~ A|v|p + B, A > 0. Then L is closed p-

quasiconvex at vo if L(.)dv > for any homogeneous gradient
p-Young measure v (see Definition l.1 ) with the center of mass at vo. L is
strictly closed p-quasiconvex if the inequality is strict unless v is a Dirac
mass.

THEOREM 1.4. - Let uo E and let L : R

be a Caratheodory integrand satisfying the inequalities

Then the following assertions hold
l. If L( x, uo (x), v) is strictly closed p-quasiconvex at v = ~u0 (x) for a.a.

x E S2, then the convergences uo in W 1 ~p ( SZ; R’~’~’~ ), -~ I(uo)
imply the convergence uo in W 1 ~ 1 ( S~; any sequence u~ such

that the negative parts of L(x, u~ (x), are equi-integrable.
2. Conversely, if the convergences uo in W 1 ~p ( SZ; R’n ) and

-~ I(uo) imply the convergence u~ in W 1 ~ 1 (SZ; R"~ ) for all
sequences u~ such that u~ E uo + Co (SZ; then either L(x, uo(x), v)
or - L( x, uo(x), v) is strictly closed p-quasiconvex at v = for a.a.
x E Q.

Remark. - In the situation in l. the convergence

The "sufficient" part of the theorem has been proved in [30] through
arguments introduced in [29]. We also will follow these arguments in the

proof of this part of the theorem.

Vol. 16, n° 6-1999.



780 M.A. SYCHEV

Remark. - As proved in [45], for p > 1 and integrands bounded from
below strict closed p-quasiconvexity of L at vo is equivalent to the property
called in [45] strict p-quasiconvexity (see that paper for the motivations of
this choice in terminology). The property is the following.
A function L : --~ R is strictly p-quasiconvex at vo E if L is

quasiconvex at vo and for every c, E > 0 there exists b = b(c, E) > 0 such
that for 03C6 E Co (SZ; the inequalities

imply the inequality

Therefore, Theorem 1.4 indicates the additional requirement to

quasiconvexity on behavior of integral functionals on linear functions both
necessary and sufficient for the weak-strong convergence property to hold.
In the scalar case (m = 1) strict p-quasiconvexity at a point vo becomes
strict convexity: ~ CiL( Vi) > L( va) for any Ci > 0, vo such that

03A3 Ci = 1, 03A3 civi = vo (see [44], [45]). In this case the second claim of
Theorem 1.4 still holds if restricting considerations to the class of uk with
equi-integrable We did not succeed to prove analogous result in the
vector-valued case. As for the result from [45], it also has been obtained

for the sequences uk with equi-integrable however assuming more
restrictive growth conditions.

In this paper we do not treat the case p = 1. We also do not consider

the situation when the exponent of the Sobolev space, in which the weak

convergence holds, is less than growth exponent of the integrands at infinity.
For results in this direction and counterexamples see [2], [4], [6], [7] [9],
[ 11 ], [16], [21], [22], [24], [32-35], and papers mentioned therein. It seems
that the papers [6], [22] describe these results in the most generality.

2. SOME AUXILIARY RESULTS

This section contains some auxiliary facts utilized in this work. The basic
fact from the theory of Sobolev functions which we need in this work is
the following (see [1], [23], [25], [30,Th.3.10])

THEOREM 2.1. - Let p and let uk be a sequence bounded
in There exists a subsequence u~, and a sequence v~ E

Annales de l’Institut Henri Poincaré - Analyse non linéaire



781A NEW APPROACH TO YOUNG MEASURE

such that ~- ~ [ -~ 0 in measure and

(P is equi-integrable. 
’

It took a surprisingly long time to understand that the key point in
some previous results is the above property of Sobolev functions. The

technique sufficient to prove Theorem 2.1 had been utilized in [ 1 ] while
the theorem was first stated explicitly only ten years later in [30,Th 3.10]
(as a consequence of the stability result in the Hodge decomposition from
[25]). An alternative proof has been proposed recently in [23, ~4].
Another important observation from [7] is the following fact. Let SZ be

an open bounded set such that meas(~03A9) = 0 and 0 E Q. Let  be an
arbitrary open and bounded set. Then by Vitali covering theorem [56, Ch.1 ]
for any E > 0 there exists a decomposition of fi in sets of the form ai + ~i03A9
(i E N), where Ei  E, and a set No of zero measure. Moreover

LEMMA 2.2. - Let uo E l A + R’n ). For each k ~ N consider the
decomposition of SZ in disjoint sets of the type af + ~ki03A9 (i E N, 1/k)
and a set Nk of null measure.

Defining u~ as Ax + for x E and

as Ax otherwise, we obtain that l A in and,
moreover, the sequence ~p is equi-integrable with the same modulus
of equi-integrability as the function |~u0|p multiplied by the factor
(meas/meas03A9).

Proof. - is given in [7] with exception of the estimate for the modulus of
equi-integrability of which follows immediately from the relation

PROPOSITION 2.3. - Let K ~ Rn be a compact set of nonzero
measure. Then, for each r~ > 0 there exists an open set O~ (consisting,
possibly, of several domains) with smooth boundary and such that

supx~O~ dist(x, K) ~ ~, meas{ (K B O~) U (O~ B K)} ~ 0 as ~ ~ 0.

Proof. - Let f > 0 be a usual mollifying kernel, i.e. let f be smooth
with the support in the unit ball and JRn f = 1. Let = 

The convolution fE * x, where x is the characteristic function of K, is
a smooth function with support lying in 2E-neighborhood of the support of
x. Moreover, meas(supp( fE * X) B I~) ~ 0 as E -~ 0.

For almost all 8 the set Ss = * x = b~ is a smooth

hypersurface (consisting, possibly, of several connected pieces). Actually,
by the Sard theorem for a.a. 8 the inequality ~ ( f E * x) (x) ~ > 0 holds

Vol. 16, n° 6-1999.



782 M.A. SYCHEV

for all x E 82. For each such 6 and x E 82 the hypersurface Ss is smooth
in sufficiently small neighborhoods of x by the implicit function theorem.
Because of compactness of Ss we obtain smoothness of Ss everywhere.

Because of the convergence fE * x - x a.e. in Rn, for each a > 0 we
can isolate Eo = such that and

The sets O~ can be chosen as {x G R~ : ( f E° ~~~ * x) (x) > 1- b(r~)~, where
b(r~) E]r~, 2r~[ are such that the hypersurfaces Ss°{’’~ are smooth. Indeed,

by (2.1) meas ( K B O~ )  r~ ~ 0 0. The rest follows from the

inclusion O.~ C x).
The proof is completed.

3. GENERAL YOUNG MEASURE THEORY.

THEOREM ON BEHAVIOR OF INTEGRAL FUNCTIONALS

ALONG SEQUENCES OF YOUNG MEASURES

In this section we will prove that the families of Radon measures 

with measurable actions on elements of Co(R/) can be identified with
measurable functions into a certain compact metric space (Lemma 3.3).
This fact will allow us to apply some standard (but powerful) tools for
constructing Young measures. In fact these tools, which are given by
propositions 3.2-3.5, are enough to prove all standard results of Young
measure theory (see [46]).

By the Riesz representation theorem, bounded linear functionals over
the space Co(Rl) are given by actions of Radon measures: _ ~ ~ ; v ~ .
Therefore the space of all Radon measures over Rl is dual to

Co (Rl ) . Moreover it is a Banach space with the total variation

as a norm.

Let K~. _ {v E  c} and let f~2 : i E N} (~~ ~ 0)
be a dense set in The metric

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire



783A NEW APPROACH TO YOUNG MEASURE

defined for elements of endows K~ with weak* topology for each
c > 0. It follows again from the Riesz representation theorem that (Kc, p)
is a compact metric space.

DEFINITION 3.1. - Let S2 be a bounded measurable subset A family
of Radon measures where vx E Kc for a. e. x E SZ, is called weak*
measurable if for any 03A6 E Co(Rl) the function v(.)~ is measurable. We
denote the set of these families as Lw (SZ; K~).
A sequence of such families converges weakly* to a family

in Lw (SZ; Kc) if * 03A6; v(.)~ in L°° (S2), k ~ ~, for
each ~ E Co ( Rl ) . In this case we use the notation ~ * 

The space of weak* measurable families of Radon measures, which is

Kc), is the dual space to L1(~, (cf.[5],[17,p.588]) and
this motivates our terminology.

In the following we frequently identify with the map v : SZ --~

(Kc, p) given by = VX. It turns out that is weak* measurable

if and only if v is measurable: for any closed subset C of p) the set
v-1 (C) is measurable (see Lemma 3.3). This identification let us utilize
some standard (but powerful) results on measurable maps, first of which
is the Lusin property.

THEOREM 3.2. (Lusin type characterization of measurable functions) -
Let SZ be a bounded measurable subset of Rn, (M, d) be a compact metric
space. A function ~ : SZ -~ (M, d) is measurable if and only if for any E > 0
there exists a compact set SZE C S2 such that  E and the
restriction of ~ to SZE is continuous.

The proof is a straightforward modification of the proof of the standard
version of this theorem.

LEMMA 3.3. - Let SZ be a bounded measurable subset of Rn. Let vx E K~
for a.a. x E SZ. The family is weak~‘ measurable if and only if
v : SZ -~ p) is a measurable mapping.

Proof - Assume that a family has measurable actions on
elements ~ of Co (Rl ) . Let C Co (Rl ) be a sequence of functions,
which is dense in Co(Rl). For given E > 0, i E N there exists a compact
set SZi C SZ such that the restriction of v(.) ~ : : R to SZi is
continuous and meas(03A9 B 03A9i)  ~/2i. Then meas(03A9 B nS2i)  E and the
restrictions of all functions v(.)~ to ~03A9i are continuous. This implies
continuity of the function v : (Kc, p). Then v : SZ -~ (Kc, p) is
a measurable function.

Vol. 16, nO 6-1999.



784 M.A. SYCHEV

Conversely, let v be a measurable mapping from 0 into (Kc, p). Then,
by Theorem 3.2, the Lusin property holds for v. Thus, for any fixed E > 0
there exists a compact subset H, of H such that meas(03A9 B 03A9~)  E and
the restriction of v to Of is continuous in p-metric, that implies continuity
of the restriction of the function ~; v( . ~ ~ to Of for each ~ E Co(Rl).
Therefore v(.)~ is a measurable function for each ~ E This

completes the proof. QED

We define the average of a weak* measurable family of
measures as follows

It is clear that if ,~x E K~ for a.e. x E SZ then is a linear
functional over Co ( Rl ) bounded in norm by c. Thus 
We will need the following continuity property of the operation

LEMMA 3.4. - Let S~ be a bounded measurable subset of R~ and let
E Kc). Then

1 ) If SZs is a measurable subset of SZ such that meas(03A9 B 03A903B4)  03B4meas03A9
and  b for all x E 03A903B4, then

Proof - of the first claim is based on the representation formula for p.
Actually, if Wi = then

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire



785A NEW APPROACH TO YOUNG MEASURE

The second assertion of the theorem is an immediate consequence of the
first one. Actually, let  be a measurable subset of Q. By the first statement
of the theorem -, * as 03BA ~ ~. Hence, for any
~ E the convergence ~c~ ) ~ ~* ~~; ~c~.) ~ in L°° (SZ) holds.
The proof of Lemma 3.4 is completed. QED

We recall also a version of the theorem on measurable selections from

[31 ] (for more sophisticated versions of such theorems see [12]).
Let SZ be a bounded measurable subset of Rn and let (M, d) be a compact

metric space. A mapping V : SZ --~ 2M is a closed measurable multi-valued
mapping if, for a.a. x E SZ, the set Y(x) is closed and if for any closed
subset C of M the set {x E SZ : Y ( x ) n is measurable.

THEOREM 3.5. - If V : SZ --~ 2M is a closed measurable multivalued

mapping then there exists a measurable selection, i. e. a measurable map
v : (M, d) such that v(x) E Tl (x) for E Q.

The following result is a version of fundamental theorem of Young
measures (see [3], [5], [20], [49], [50], [54], [55]) stating weak*

compactness of families of Radon measures.

THEOREM 3.6. (Compactness result) - Let SZ be a measurable bounded
subset ofRn and let E Lw ( SZ; Kc). Then there exists a subsequence

(not relabeled) and a E Lw ( S2; Kc), such that

~* in L.u,(SZ; I~~)

that is 03A6; vk(.)~ * 03A6; v(.)~ in L°° (SZ) for any 03A6 E Co(Rl).
is a family of probability measures then also consists

of probability measures provided there exists a function g : R+ such
that g(v) = oo and

Vol. 16, n° 6-1999.



786 M.A. SYCHEV

In particular, each sequence ofmeasurable functions SZ -~ Rl such that
f~  c contains a subsequence generating a Young measure.

Proof. - of the compactness result is given in [5], [20], [30]. It follows
from the duality and and the Banach-

Alaouglu theorem. For a proof in context of the concept of Young measures
as measurable functions see [46].
To prove the second part of the theorem note that vx is nonnegative for

a. a. x E 0 and 1.

Let Ok be an increasing sequence of compact subsets of H such that
meas(03A9 B 03A9k) ~ 0 as k - oo and the restrictions of v : 03A9 ~ (K1,03C1) to

Ok are continuous. Let i E N and = {x E  1 - 
Then is a closed subset of Suppose that meas03A9i,k > 0.
Consider = = By the assumptions we

have vj -* v (this follows from the convergence -* 

in Lw(SZ; K~)), fR~  c, and  1 - 1/i. In particular one
has, for all C  oo the inequality

holds. Thus for any sufficiently large C we have > 1 - 1/2i
for all j e N.

Rl --+ [0,1] is continuous, = 1 for C, and ~(u) = 0
for ~v~ > 2C, then

for all j E N. This contradiction with the convergence vj -* v proves
that measf2i,k = 0. Thus = 0 and, as a consequence,

= 1 for a.e. x E H. QED

Recall that the main idea of this work is to replace analysis of behavior
of integral functionals along weakly convergent sequences by work with
Young measures generated by these sequences. In order to implement this
idea we need to characterize the cases when the action of a Young measure
on an integrand coincides with the limit of the values assumed by the
integral functional at a sequence generating this measure. In the general
case only the lower semicontinuity result holds (see [3], [43], and Theorem
3.7). Since the inner demands of the theory which we develop in this paper
require work with sequences of Young measures instead of functions, we
have also to indicate such a characterization in this, more general, situation.

Annales de l’Institut Henri Poincaré - Analyse non linéaire



787A NEW APPROACH TO YOUNG MEASURE

It turns out that a relevant characterization is the following one.

Let F (x, v ) : Rn x Rl --~ R+ be a nonnegative Caratheodory integrand,
Lw(SZ; K~) (i E N). We will say that satisfies the

tightness condition with the integrand F on H C Rn if

where R -~ R is a continuous function satisfying the requirements:
0   t everywhere, ~M (t) = 0 for t  M, ~M (t) = t for t > 2M.

It is easy to see that in the case = the tightness condition
coincides with equi-integrability of the sequence F(., zi (.)).

The next theorem gives answer to the above question.

THEOREM 3.7. - Let SZ be a bounded measurable subset of Rn.
Let be a sequence of families of probability measures with support

in Rl, and let L (x, v ) : SZ x R be a Caratheodory integrand. Suppose
that satisfies the tightness conditions with the negative part L- of
L (therefore the integrals of the functions ~Rl L(., are either finite
or equal and that generates a family of probability measures
(vx)xES2.
Then

Moreover, 03A9 R1 L(x, 03A9 Rl L(x, v)dvxdx if and
only if satisfies the tightness condition with In this case

~Rl L(~, ~ fRl L(~, v)dv(.) in L1.

Proof - Let Ok be a sequence of compact sets such that 2014~

0 oo and the restrictions of L to SZ~ x Rl are continuous. Let us
prove first the theorem under the additional requirement of boundedness
of L from below.

Consider a sequence of continuous functions Rl -~ [0,1] such that
= 1 for v e = 0 for v ~ ~(0,2~’), and 

is nondecreasing in j for any fixed v E Rl.
For fixed k ~ N, j E N let w be a modulus of continuity of the restriction

of L to Ok x [-2j, 2j]l. Decompose SZ~ on the sets K1, ... , Km in such a
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way that diamKp  b, p E {1,..., m}. Let also xp E Kp, p = 1,..., m.
Then, for any fixed p e {1,..., m ~

Thus, letting 6 -~ 0 we obtain

Since L is bounded from below the Fatou lemma implies

as j -~ oo, i E N (the same holds for the family Thus

It is also clear that for the complete convergence we need tightness of
with L+. In this case ~RL L(., ~ L(., in

Because meas(03A9B03A9k) ~ 0 as k - oo and L is bounded from below the
desired result follows. Theorem 3.7 is thus proved for integrands bounded
from below. For general integrands consider the auxiliary integrands
Ln = max~L, -n~ for which the inequality

has been proved. In view of the tightness condition for with L-
and Fatou’s lemma the same holds for the original integrand. Moreover we
have complete convergence if and only if satisfies the tightness
condition with L+, and in this case fRl ~ L(~, v)dv~.) in

Ll as i -~ oo.

The proof of the theorem is completed. QED

In the following we will frequently use Proposition 3.8.
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PROPOSITION 3.8. - Let S2 be a bounded measurable subset of Rn. Let
Rl be a sequence of measurable functions that generates a Young

measure Then the following assertions hold.

l. ) The sequence z~ converges in measure if and only if v~ is a Dirac

mass for a. a. x E Q.

2. ) If the sequence y~ satisfies ~~ ~ 0 in measure as j ~ oo then
it generates the same Young measure.

Proof - Convergence z~ -~ zo in measure implies strong convergence
in L 1 ( SZ ) for each ~ E Co(Rl). Hence z~ generates the

family bzo ( ~ ) : -~ * ~ ~’; bzo ( ~ ) ) in L°° for E Co(Rl).
To prove the inverse note that given E > 0 we can find a bounded

continuous integrand L : SZ x Rl -~ R and a set SZE C S~ such that

meas(03A9 B 03A9~)  E, 0  L  1 everywhere, and for each x E SZE we
have L(x, v) = 1 for v E B(zo(x), E/2), L(x, v) = 0 for v E).
By Theorem 3.7 we have L(., z~(~)) -* L(., zo(.)) in L°°(SZ). Since

03A9 L(x, zo(x))dx > meas03A9~ we infer

This implies convergence -~ zo in measure.
Proof of the second part of Proposition 3.8 is immediate since

0 in L 1 ( SZ ) for each ~ E QED

4. GRADIENT YOUNG MEASURE THEORY

Recall first the definition of gradient p-Young measures. Let H be an
open bounded domain with meas(~03A9) = 0.

DEFINITION 4.1. - A Young measure is a gradient p-Young
measure, p E [1, ~[, if it is generated by gradients ~uj of a sequence
uj E W 1 ~p ( S~; Rrn) such that u~ converges weakly in W 1 ~p ( SZ; and the

functions ~p are equi-integrable.
If uj 

-, uo in then Theorem 3.7 implies 
(. )dvx for a.a. x E Q. The function uo is called the underlying

deformation.

A Young measure is called homogeneous if it does not depend
on x. By GMp (A) we denote the set of all homogeneous gradient p-Young
measures with the center of mass at A. By we denote those of
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them which are generated by gradients of sequences converging weakly*
in Both these sets do not depend on Q.
By v o A we denote the measure obtained by exchanging the center

of mass of v to A: if v is generated as a gradient p-Young measure by
and B is the center of mass of v then v o A is generated by the

sequence + lA-B.
The main purpose of this section is to give self-contained proofs of the

following two basic results of gradient Young measure theory first proved
in [27]-[29].

THEOREM 4.2. - Let be a gradient p-Young measure with

underlying deformation uo, p E [l, oo [. Then
1) (Averaging principle) If there exists an A E such that E

then E If uo - l~ E 
then E 

2) (Localization principle) For a. a. x E SZ the measure v~. is a

homogeneous gradient p-Young measure.

COROLLARY OF THEOREM 4.2. - Let L : R be continuous,
I  + B, p E ~l, ~o~. Then

l. the following identities hold

2. the function L is quasiconvex at A if and only if

THEOREM 4.3. (Characterization of gradient p-Young measures) - A
family E of probability measures is a gradient p-Young
measure with p E [1, ~[ if and only if

(i) there exists uo E such that ( ~ ) v~ _ for
a. a. x E SZ;

(ii) for a.a. x E SZ the inequality L(v)dvx holds for
any quasiconvex function L such that c  L(v)  + B.

(iii) ~~ (1 +  oc.

Remark. - The theorem asserts that a probability measure v E 
is a homogeneous gradient p-Young measure if and only v)  o0

and L( ~; v~ )  (L; v) for all quasiconvex L with c  L  ~p + B.
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Thus Kl ) is gradient p-Young measure if and only if
(i), (iii) hold and for a.a. x E 0 the measure vx is a homogeneous gradient
p-Young measure.

In the scalar case = 1 quasiconvexity becomes convexity.
Therefore any family of probability measures satisfying conditions (i),(iii)
is a gradient p-Young measure. This fact was also implicitly proved in
[44,§6] through approximation results from [18, Ch.10] .

To prove Theorems 4.2, 4.3 we will need two simple auxiliary
propositions .

PROPOSITION 4.4. - 1. Let p E]l,oo[, be a Young measure
generated by gradients of a sequence u~ bounded in (no
assumptions on equi-integrability of and let uo be the underlying
deformation. Then is generated also by gradients of a sequence

uo + such that the functions are equi-integrable
and vk ~ uo in In particular, is a gradient p-Young
measure.

2. Let p E [1, oo [, let equi-integrable and u~ - uo E

Let also generate a Young measure
Then there exists a sequence v~ E uo + gradients of

which generate as a gradient p-Young measure.
It is clear that in the case p > 1 the statement of the second assertion

is close to the statement of the first one, but proofs of the seconds parts
of both propositions 4.4 and 4.5 do not involve Theorem 2.1. We state the
second assertions of these propositions separately in order to show that,
like in [29], Theorem 4.3 can be proved without using Theorem 2.1.
Note that Proposition 4.4 was proved in [29] using arguments similar to

those in [1] and Theorem 4.3. Theorem 2.1, which we use in the proofs of
the first parts of Propositions 4.4 and 4.5, were established later in [30].

Proof. - 1. By Theorem 2.1 there exists a subsequence (not relabeled)
and a sequence Wj e R’n ) such that is equi-integrable and

u~ ) ~ -~ 0 in measure. By Proposition 3.8 generates the same

Young measure as Without loss of generality we can also assume
that uo in 

Let Ok C C H be an increasing sequence of sets with smooth boundary
such that meas(O B S2~ ) -~ 0 as k - oo. Let ~~ E be
a sequence such that 0   1, (~ = 1 on Consider a sequence
v~ = (Wj(k) - We will prove that there exists a subsequence
j(k) -~ oo such that the sequence is equi-integrable and vk ~ uo

Vol . 16, n° 6-1999.



792 M.A. SYCHEV

in We have

Then

First two terms in the right-hand side of the first inequality converge
to zero for any choice of j(k) --~ oo, both the last term and the right-
hand side of the second inequality converge to zero for a special choice
of j(k) --~ oo since wj - uo - 0 in as j --~ oo. Thus 
is equi-integrable for this choice and v~ ~ uo in 
Because 0 in measure the sequence Vvk generates the
same Young measure (cf. Proposition 3.8).

In order to meet the last requirement vk E uo + Co (SZ; we can

take the mollifiers with sufficiently small radii of the already obtained
sequence vk.

The second part of the proposition may be proved by the same arguments,
taking wj = u~ .

Proposition 4.4 is proved. QED

PROPOSITION 4.5. - Let be a sequence of gradient p-Young
measures such that -, * as j -~ oo and the underlying
deformations u~ are equi-bounded in p E 

1) +  c and p > 1 then is a gradient
p-Young measure.

2) If the sequence satisfies the tightness condition with the

integrand (1 -f- ~ ’ ~P) then is a gradient p-Young measure.

Proof - By Proposition 4.4 for any fixed j there exists a sequence
+ Co ( SZ; (u~ is the underlying deformation for 

such that -~* in ~ ~ in

as 1~ -~ oo, and the functions are equi-integrable. In
particular Theorem 3.7 shows that
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Because of the convergence by usual diagonalization
arguments we may isolate a sequence u~~~) bounded in such

that * (vx)x~03A9 in as j ~ 00 and

Thus, the first assertion follows from Proposition 4.4.
To prove the second assertion note that the tightness condition implies

see Theorem 3.7. Now we proceed as before, and because of the

convergence

by the same theorem we obtain that the functions ~P are equi-
integrable. By the second part of Proposition 4.4 is a gradient
p-Young measure.

Both assertions of Proposition 4.5 are proved. QED

Proof of Theorem 4.2. - Without loss of generality we may assume
that 0 E H. Consider first the case Recall that

u0 ~ lA + 
For each i E N consider a cover of S2 by disjoint sets 0; of the form

a; + ( j E N) with diam03A9ij  l/i, and a set Ni of zero measure.
Suppose also that for each i’ > i, j’ E N either c 0; or n 0; = 0.

Define vi (x) for x E = lA (x) otherwise. Then

We claim that

Let be a subsequence (not relabeled) which generates, a Young
measure Let 0 := where 0; is the set of interior points
of 0;. It is clear that meas(H B Q) = 0. For each x0 ~  there exists a
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sequence ~~ ~i~ such that SZ~ ~2~ for each i E N. By the Lusin property
(Theorem 3.2) and Lemma 3.4

for a.a. Because

we infer that

Because each subsequence of the original sequence contains

a subsequence converging weakly* in L.u, (SZ; Kl ) to the homogeneous
Young measure we obtain that the original sequence has
this property.

By Lemma 2.2 the functions are equi-integrable. Hence

E GMp (A). In the case uo E lA + Wo’°° (SZ; we have

that v2 - lA -* 0 in ~~’°°(SZ; Thus E 

If is a gradient p-Young measure with the underlying deformation
uo E lA + T~o’P(S~; then by Proposition 4.4 there exists a sequence
~ E l A + generating as a gradient p-Young
measure (in this case the functions ~p are equi-integrable). Because

-’ * and the modulus of equi-integrability of
p-powers of gradients of sequences generating does not

exceed modulus of equi-integrability of (cf. Lemma 2.2) we obtain
that the sequence satisfies the requirements of the second
assertion of Proposition 4.5. Hence e GMp(A). This completes
the proof of the first claim of the theorem.

Let us prove the second claim. Let be a gradient p-Young
measure. There exists a sequence Ok of compact subsets of 0 such that

meas(03A9B03A9k) ~ 0 as k - oo, the restrictions of v(.) to 03A9k are continuous in

p metric, and all points of SZ~ are Lebesgue for the map x - (1 + vx).
Let ~ui be a sequence generating as a gradient p-Young measure.

Let xo be a Lebesgue point of 03A9k and let C H for an E > 0. For

j E N consider a sequence ui, i E N, defined on B(xo, E) C SZ by the
formula + y) ~/j ) ~ 

For |y|  E we have that ~uji (x0+y) = ~ui(x0+y/j). Then ~uji, z E N,
generate a gradient p-Young measure with = 
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~/ E By continuity of the restriction (Kl , p) to SZ~ and
Proposition 3.4 we infer ~* ’vxo in Lw(B(xo, E); Kl) (here
vxo is a homogeneous Young measure). Moreover, since xo is a Lebesgue
point for the (1 + we have

Thus satisfies the tightness condition with the integrand 
(cf. Theorem 3.7). By the second assertion of Proposition 4.5 we infer that

vxo is a homogeneous gradient p-Young measure. This proves the second
claim of the theorem.

The proof of the theorem is completed. QED

Proof of Corollary of Theorem 4.2. - It is obvious that

infv~GMp(A)L;v~ ~ infv~GM~(A) L; v) . The inequality

holds because (cf. Theorem 4.2). To prove
the converse inequality

notice that by Proposition 4.4 a v e is generated as a gradient
p-Young measure by gradients of a sequence uk E l A + In

particular, by Theorem 3.7

The first assertion is proved. Let us prove the second one.
If L is quasiconvex at A then for any k ~ N the inequality

holds with the above u~, and, as a consequence, (L; v) > L(A).
Conversely, if ~ E lA + then the inequality

~L; > L(A) holds because E 

This implies the inequality f~ L(A + > L(A)measSZ. Thus
L is quasiconvex at A.
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The proof of the corollary is completed. QED

The proof of Theorem 4.3 from [29] is based on an abstract version of the
Hahn-Banach theorem for special functional spaces, the relaxation theorem
in the simplest form (Theorem 4.6), and some technical approximation
results (see Lemma 5.1 and the proof of Theorem 1.1 from [29]). We
also prove this result first in the homogeneous case through the relaxation
theorem (we give a direct and self-contained proof of the latter theorem).
In this case we propose a proof based on the integral representation of the
metric p and Proposition 4.5. This proof admits far-reaching extensions,
see [47]. Then we extend the result to the general (nonhomogeneous) case
utilizing construction in the proof of Theorem 3 from [44].

THEOREM 4.6. - Let L : Rn’n --~ R be a continuous function satisfying
the estimates

Then there exists a function which is the greatest among all

quasiconvex functions minorizing L. This function is given by the formula

where GMp (A) is the set of all gradient p-Young measures with the center of
mass at A. Moreover Lq~ is continuous and satisfies the same estimates as L.

There are proofs of this theorem not involving Young measures (see [ 14],
[15]). In this case is defined first as

Then the result follows from the corollary of Theorem 4.2. We propose
here a proof which can easily be extended to the case of dependence of
L on the lower order terms (see the proof of Theorem 1.2 in §5), but
involves Theorem 2.1.

Proof - Consider first the case p > 1.

By Theorem 3.7 and Proposition 4.5 the infimum of I(v) :=

L ( v ) d v over G Mp (A) is attained. Let V ( A) denote the set of

minimizers of this problem.
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If A as k - oo and vk e V(Ak) then for a subsequence vj
we have .

where v is automatically a gradient p-Young measure with the center of mass
at A (cf. Proposition 4.5). By Theorem 3.7 > I (v). Thus,
lim > i.e. Lq~ is lower semicontinuous at A.

To prove upper semicontinuity notice that if v e V ( A) then the measures
v o Ak are gradient p-Young measures centered at Ak, respectively, and

Therefore Lq~ is continuous.

Since each function § E can be approximated in W1,~-
norm by piecewise affine ones, to establish quasiconvexity it is enough to

prove the inequality

for piecewise affine functions § E Fix such a ~. Let

SZ~ ( j = l, ... ,1~) be a finite collection of subdomains of H on which
has constant values respectively. Let vj e V(Aj),

j E ~l, ... ,1~~.
By Proposition 4.4 there exist functions uj e such that
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The first term in the right-hand side of the inequality exceeds 
since 

where E GMp(A) by Theorem 4.2. The second term tends
to zero as I~ -~ oo. Because E > 0 may be chosen arbitrary small we
obtain that

This proves quasiconvexity of Lq~.
By the construction Lq~ is the greatest function among quasiconvex ones

minorizing L. Indeed, if F is a quasiconvex function minorizing L then
for any v e V(A) we have

where the last inequality follows from the corollary of Theorem 4.2. Hence
> Al + while the estimate A2 + > L(v) > 

is obvious.

The theorem is proved in the case p > 1.

Consider the remaining case p = 1. To treat this case consider a

family of auxiliary integrands L,~ ( ~ ) := L(.) + > 0, and their
quasiconvexifications L~~. For any fixed v e the values 
decrease to L(v) as p - 0. Because L~~ are continuous functions bounded
below by Bi the function L is upper semicontinuous and is bounded below
by Bl.

Because the inequality

holds for any § E Co (SZ; and A E the same holds for the
integrand L by monotone convergence theorem and then L is quasiconvex.
To establish continuity of L it is enough to prove lower semicontinuity.

The latter follows from quasiconvexity of L. In fact if A then there
exist functions ~~ E lA + Co (SZ; such that meas~x E SZ : 
A~ ~ -~ 0 and  c  oo. Then
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Since the second term exceeds we infer that

L(A).
Therefore L(A) is a continuous quasiconvex function. By the Dini

convergence theorem L~~ +0 locally uniformly. Because

L~~ are the greatest functions among quasiconvex ones minorizing the

integrands L ( ~ ) -I-- ~c ~ ~ ~ 2 the function L is the greatest among quasiconvex
ones minorizing the original integrand L.

In order to prove

notice that by Corollary of Theorem 4.2 the following holds

This completes the proof of Theorem 4.6. QED

Proof of Theorem 4.3. - Necessity of the conditions (i)-(iii) follows from
Theorem 3.7, Theorem 4.2 and its corollary. To prove their sufficiency we
will prove first the theorem in the homogeneous case. In this case the result
follows from the integral representation for the metric p. The result will be
then extended to the general case following the construction in the proof
of Theorem 3 from [44].

In the homogeneous case does not depend on x (we will denote
this measure as v). Recall that GMp (A) denotes the set of all homogeneous
gradient p-Young measures with the center of mass at A.
We prove first that GMp(A) is a convex set. Let vl, v2 e GMp(A),

A E] 0,1 [. Let O2 be disjoint open subsets of H such that 
meas(~03A92) = 0 and measoi = Ameaso, meas02 = (1 - 
By Proposition 4.4 there exist sequences E lA + 
u2 e R’n ) generating v 1 and v2 as gradient p-Young measures
respectively. Hence the measure, which equals vl on Hi, v2 on SZ2,
is a gradient p-Young measure. By Theorem 4.2 its average, which is
~vl + (1 2014 À )v2, is also a gradient p-Young measure. This proves convexity
of GMp(A).

Let 03A60 = (1 + | . |p). To prove the inclusion v E it is enough
to prove existence of a sequence e such that
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In fact, the convergence of the first term to zero means that vk generates v.
Then, by Proposition 4.5 convergence of the second term to zero implies
v e GMp(A).
We will prove (4.1) by contradiction. Recall that

where the sequence {03A6i} is dense in 

If (4.1 ) does not hold, then for a sufficiently large and an E > 0 we have

Then, the subset of given by the vectors

is convex in view of convexity of GMp(A), and the vector generated by
v does not belong to its closure. Hence, there exists a vector c E Rl+1
such that

Then

Note that the coefficient co can not be negative - otherwise the value
at the left-hand side is -oo. In the case co = 0 we can replace L by
L + and (4.3) still holds for ~ > 0 sufficiently small. Note now that
this integrand L satisfies conditions of Theorem 4.6 and that the left-hand
side in (4.3) is equal to Since L > Lq~ everywhere we infer that

> v) + 8, that contradicts the assumption (ii) of the theorem.
The above contradiction proves that v e G Mp ( A). Hence the theorem

is proved in the homogeneous case.
Let v be a homogeneous gradient p-Young measure with the center of

mass at A and let ~ be an open subset of S2 such that = 0.
The Young measure is also a gradient p-Young measure.
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Indeed, if v is generated by wi E 1 A + Co as a gradient p-Young
measure then ( v is generated by gradients of the sequence
w2 - l A + uo . Because wi - l A E Co ( SZ; the measure, which equals

for x E SZ and for other x E SZ, is gradient p-Young one.

By Proposition 2.3 we can prove also that if SZ1, ... , SZl are disjoint
measurable subsets of H, are homogeneous p-Young measures
with the centers of mass at respectively then the measure

which equals Vi o for x E Oi (z = 1,..., l), for

other x E (H B is also a gradient p-Young measure. To prove this
notice first that if Oi are open sets with meas(~03A9i) = 0 then the claim
follows from the result of the previous paragraph. If SZZ are compact sets
then the claim follows from Proposition 2.3 and Lemma 2.2. In the general
case the same arguments let us prove the claim by approximating Oi with
compact subsets.

Consider now the general case of nonhomogeneous measure 
For each kEN there exists a compact subset SZ~ of S2 such that

 1/k, the restrictions of uo, ~u0 and Rnm (1+|v|p)dv(.) to

S2~ are continuous, the restriction of v : SZ -~ (I~1, p) to SZ~ is continuous,
and for each x e SZ~ the measure vx satisfies the condition (ii) of the
theorem.

We will prove that the measure defined as vx for x E and

as for x E (SZ B is a gradient p-Young measure. By the second
part of Proposition 4.5 this result will be enough to complete the proof of
the theorem. Indeed, in this case -, * Kl ) and

satisfies conditions of the second assertion of Proposition 4.5.

Fix kEN. Suppose that C = [-a, a[n contains SZ~ and let C~
(j = 1,...,2") be quadrants of C. For each i > 1 decompose C~
( j = l, ... , 2ni ) in 2n cubes of equal size in the similar way. Let

Bj - Cj (i e N; j E ~l, ... , 2n2~). Fix i e N. Let xj e Bj,
let be equal to v(Xj) o for x e Bj, j e {1,..., 2ni ~, and to

otherwise. Then is a gradient p-Young measure by the
claim proved above.

Because the restriction of v~ : SZ -~ (Ki, p) to SZ~ is continuous in

p metric we obtain that -* as i --~ oo (cf. Lemma
3.4). Moreover, the sequence i E N, satisfies the requirements
of the second claim of Proposition 4.5 - tightness with the integrand
1 -f- ~ ~ ~p. To prove this notice that because of continuity of the restrictions
of Vuo, ( 1 + to SZ~ the family of homogeneous measures

.- vx o where x, y E satisfies the tightness requirement:
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+ -~ 0 as lt~l --~ oo uniformly with respect to
x, y E Actually, the family {vx : x E satisfies this requirement
in view of continuity of the restriction of ( 1 + to SZ~ and
Theorem 3.7. Because supy~03A9k |~u0(y) ]  oo we obtain that the whole

family satisfies this requirement.
By the second assertion of Proposition 4.5 is a gradient p-Young

measure for each kEN.

This completes the proof of the theorem. QED

5. OPTIMAL RESULTS ON RELAXATION
AND CONVERGENCE IN ENERGY

In this section we prove Theorems 1.2 and 1.4 stated in the introduction.

Before proving these theorems we will first prove a version of lower

semicontinuity theorem from [1] for completeness. The proof follows
arguments from [29], [30], [39].

THEOREM 5.1. - Let x R’n x -~ R be a Caratheodory integrand
such that IL(x, u, v) ]  + B, uo E p E [l, oo[.

1) If the function L(x, uo (x) , .) is quasiconvex at for a.a. x E ~
then lim infk~~ I(uk) ~ I (uo) for any sequence uo in Rm )
such that the negative parts of L(x, are equi-integrable.

2) Conversely, if > I (uo) for any uk - uo in

such that the sequence is equi-integrable then for
a.e. x E H the function L(x, uo(x), .) is quasiconvex at 

Proof - Without loss of generality we may assume that ~uk generates a
gradient p-Young measure and (uk , generates Young measure

( lSuo ( ~ ) ® By Theorem 3.7

By Proposition 4.4 and the Localization principle (see Theorem 4.2) for
almost all x e H the measure vx is a homogeneous gradient p-Young
measure. In view of quasiconvexity at appropriate points we have

for a.e. x E 0 (cf. Corollary to Theorem 4.2). This proves the first part
of the theorem.
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We will prove the second one by contradiction. Let S2k C S2 be an

increasing sequence of compact sets such that meas(03A9 B S2k)  1/k, the
restrictions of uo , Vuo to S2~ and the restrictions of L to S2~ x R~ x R""‘
are continuous. Suppose that for a Lebesgue point xo of S2~ the function
L(xo, uo(xo),.) is not quasiconvex at Vuo(xo). By Corollary to Theorem
4.2 there exists a v E GMp(Vuo(xo)) and e > 0 such that

The same is true for all x E SZ~ sufficiently close to xo and vx obtained from
v by exchanging the center of mass from to A Young
measure, which equals vx for such x and for other x E H, is a

gradient p-Young measure due to Theorem 4.3. By the last inequality lower
semicontinuity fails along a sequence associated with this Young measure.
The proof of the theorem is completed. QED

Proof of the Theorem 1.2. - Let SZ~ C SZ be a sequence of compact
sets such that and the restrictions of L to

SZ~ x x Rn’n are continuous. By Theorem 4.6 for each (x, u) E Ok x Rm
the function

is continuous and quasiconvex. Moreover it satisfies the estimates

and is the greatest function among quasiconvex functions minorizing the
original one.

Let V(x, u, A) be the set of all solutions to the problem

By Theorem 3.7 and the first assertion of Proposition 4.5 V (x, u, A) is a
nonempty compact set in the metric space (I~1, p) (see ~3). We will prove
continuity of the restriction of Lq~ to SZ~ x x Rn’n by arguments from
the proof of Theorem 4.6.
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Moreover, for a subsequence vj of vh we have

By the first assertion of Proposition 4.5 vo E GMp(vo). By Theorem 3.7

This proves lower semicontinuity of the restriction of to S~~ x R"~ x 
at 

In order to prove upper semicontinuity notice that if vo e V(xo, uo, vo)
then v0  vh ~ GMp(vh) and 1+|.|p;v0~ as h ~ oo.

By Theorem 3.7 this implies convergence

Therefore

This proves upper semicontinuity of the restriction of Lq~ at (xo, uo, vo).
Thus, we have proved continuity of the restriction of Lq~ to SZ~ x R Tn x Rn’n
for every k.

Fix U E and consider compact sets k C 03A9k such that

meas(03A9k B k)  and the restrictions of u, ~u to k are continuous.
Consider the multivalued mapping W : x V(x, uo(x), 

Let x be such that the function L(x, ~co(x), ~) : -~ R is continuous.

Then V(Vuo(x)) is a nonempty compact set in the metric p introduced
in §3 in view of Theorem 3.7 and the first part of Proposition 4.5.

Thus W (x) is closed for a.e. x E SZ. Because of continuity of the

restriction of to Ok the restriction of W to S~~ is

upper semicontinuous: if vk E and v) -~ 0 (this is
the same as vk -,* v) then v E W (x). Thus, W is measurable in S2.
By Theorem 3.5 there exists a measurable selection of W. By theorems

3.3, 4.3 this selection is a gradient p-Young measure. For a sequence ~c~
associated with (vx)x~03A9 we have that the sequence generates
the Young measure and the functions are equi-
integrable. Hence Theorem 3.7 yields
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By the corollary of Theorem 4.2 the identity

holds for a. a. x E 0 and all u e 

By Theorem 5.1 the functional Iq~ is lower semicontinuous:

> for uo in It is obvious

also that I(u) > E 

This completes the proof. QED

Remark 1. - The growth conditions from the theorem may be dropped
if one considers more special class of integrands. Let x R

be a Caratheodory integrand such that 0  L(x, v)  + B, p > l.

Then, the sequential weak lower semicontinuous envelope of the functional
I (u), defined as

is an integral functional with the integrand This can be proved through
approximation of the original functional by ones satisfying standard growth
conditions.

Consider first the case of continuous L and compact SZ. As in the

proof of Theorem 4.6 consider a family of auxiliary integrands L~, where
v) = L(x, v) + ~c > 0, and their quasiconvexifications L~ ,

for which all conclusions of Theorem 1.2 hold. Hence (z E N) is

a sequence of continuous functions quasiconvex in v and decreasing to a
function L such that 0  L(x, v)  B.

By the arguments from the proof of Theorem 4.6 (proposed for the
case p = 1) we obtain that L is quasiconvex and continuous in v and
upper semicontinuous in x. Then L is a Caratheodory integrand that

implies existence of a sequence of compact subsets Ok of S2 such that
meas(03A9 B 03A9k) ~ 0 as k ~ oo and the restrictions of L to 03A9k x are

continuous. Note that by the Dini convergence theorem the sequence Li/i
converges to L locally uniformly in each compact subset of SZ~ x 

For Caratheodory integrands L and general Q we may reduce the

considerations to the particular case treated above. This proves that L
is always of Caratheodory type. The rest is a straightforward consequence
of the construction.
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Remark 2. - It follows from the proof of Theorem 1.2 that L~’G
is continuous for continuous and coercive L (here coercivity means

 L  > 0). In the case of non coercive
L the function can have discontinuities. To construct a desired example
notice that there exists a continuous integrand L(x, v) : ~0, 1] x R --~ ~0, oo~
such that L(o, v) > v2 and L(x, v) = 0 for x ~v~ > M(x) (here

oo as x --~ 0). Then v) = 0 for ~x~ # 0, v) > v2.

Proof of the Theorem 1.4. - Without loss of generality we may suppose
that generates a Young measure and the sequence

converges as k - oc. By Theorem 3.7

Moreover, equality holds if and only if the functions L(x, (x) , ~uk (x))
are equi-integrable. By the Localization principle v,r is a gradient p-
Young measure for a.a. x~ E n. Because L( ~ ; uo (x) , ~ ) is strictly closed
p-quasiconvex at for a.e. x E f2 the inequality

holds for all such ~, where the equality holds if and only if Vx = 
Hence the convergence -~ I (uo ) holds if uo in 
and the functions L ( ~, u~ ( ~ ) , ~u~ ( . ) ) are equi-integrable, cf. Theorem 3.7
and Proposition 3.8. This proves the first claim of the theorem.
To prove the second claim consider an increasing sequence of compact

subsets SZ~ of the interior of 0 such that the restrictions of uo, Vuo to Ok
are continuous, the restrictions of L to Ok x Rm x Rn’n are continuous and

0 as 1~ -~ oo. Let us establish first that either L (x, uo (x ) ; ~ )
or -L(x, uo(x), ~) is quasiconvex at Vuo (x) for a.a. x e SZ. Otherwise there
exists kEN, Lebesgue points of SZ~ and gradient p-Young measures
vl, v2 with the centers of mass at respectively such that
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We can isolate neighborhoods Vi, V2 of ~l, x2 in S~~ such that

By Theorem 4.3 a Young measure which equals v 1  ~u0 on

VI, v2 0 Vuo on V2, and for other x E SZ, is a nontrivial gradient
p-Young measure with the centers of mass at H. Moreover,
the weak-strong convergence property fails for a sequence associated with
this measure (cf. Proposition 4.4). This contradiction proves that either

L(x, uo(~), ~) or -L(x, uo(x), ~) is quasiconvex at for a.a. x E Q.

Therefore we may assume without loss of generality that L(x, uo (x), .)
is quasiconvex at for a.e. x E SZ.

For a fixed ~ E N consider the set Ki (7 is a natural number) consisting
of all x E Ok such that there exists a gradient p-Young measure v with the
center of mass at for which the following holds:

We will prove that measKl ~ 0 as l ~ oo by contradiction. This fact is
enough to establish the second claim of the theorem.
The sets Ki are open in Actually, if (5.1)-(5.3) hold for a measure

v e and a point Xo E Kl then the same holds for any
z E Ok sufficiently close to xo with v o instead of v.

Since we have assumed that measKl > 280 > 0 and Kl+l C Kl
we obtain meas(nlKl) > 2 bo . Let K c ~lKl be a compact set such that
measK > 80.
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Fix l E N. Then for each x E K we can find a ball B with the center at
this point and such that for each point z e B n K inequalities (5.1 )-(5 .3) hold
with v o where v e GMp(Vuo(x)). Let Ei) (i = 1,..., I’)
be a finite cover of K by such balls and let E be
measures associated with the centres of these balls. Let oi = B(xl, 
SZ2 = (B(x2, E2) ~ E1)) n K. For other z > 2 define as

n K. Consider also compact subsets Oi
of oi such that meas(~ili) = 80.
The measure which equals v(xi) o for x E ni

(i = l, ... , l’), bo.u,o(~~ - otherwise, is a gradient p-Young measure. Actually,
if we replace ni by disjoint open sets then the claim follows from Lemma
2.2 and Proposition 4.4. By Proposition 2.3 we can approximate SZZ by such
open sets, that leads to the desired result again through Lemma 2.2.

By the compactness theorem there exists a subsequence (not
relabeled) converging weakly* in Lw ( SZ; to Because (5.3)
holds for any x E uini (with vlx instead of v) and meas(~ili) > 03B40 > 0
for each l E N the Young measure is not trivial.

For each l E N there exists a sequence E uo + E N,
generating as a gradient p-Young measure (cf. Proposition 4.4).
We can isolate a sequence ~c~(l~, lEN, such that

Then u~ ~l~ -, uo in and the weak-strong convergence

property fails along the sequence u~ ~l~ in view of nontriviality of 
(cf. Proposition 3.8).

This contradiction proves that measKl ~ 0 as l ~ oo, and, as a

consequence, that the set of all x E Ok for which L(x, uo(x), .) is not

strictly p-quasiconvex at has zero measure.

The proof of the theorem is completed. QED

Remark. - If the function L(x, uo (x), .) is quasiconvex at ~u0 (x) for a.e.
x E 0 and L is bounded from below a simpler proof for the second part of
the theorem is available (see [45, §3]). Moreover, in this case it is enough
to restrict considerations to sequences uk with equi-integrable 

In this case we may consider the set consisting of all x E for

each of which there exists a gradient p-Young measure v with the center
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of mass at and such that

This defines a multivalued mapping V : -~ where

V(.) consists of elements of GMp(’) satisfying (5.4)-(5.6). Because of
boundedness of L from below it is not hard to prove that this mapping is
closed and upper semicontinuous in p metric (see §3 of [45]). By Theorems
3.3 and 3.5 there exists a selection Kl ) , which
automatically satisfies conditions (i)-(iii) of Theorem 4.3. Let vx = /1x for
x E and vx = for x e 0 B Then is a gradient
p-Young measure by Theorem 4.3. Hence, if meas03A9j,k > 0 then the weak-
strong convergence property fails along the sequence of Sobolev functions
associated with This proves that meas03A9j,k = 0 for any j, kEN.
Therefore L(x, uo(x), ’) is strictly p-quasiconvex at for a.e. x E Q.

In the situation of Theorem 1.4 one may consider analogous multi-valued

mapping V, but growth conditions do not suffice to prove closedness and

upper semicontinuity of V in p metric. These properties hold with respect to
convergence in the metric /1) := p(v, ~c) + (1--~ ~ ’ (p; v) - (1 + 
but both V and GMp (A) are not complete in this metric. Probably more
subtle theorems on measurable selections (see e.g. [12]) can be helpful here
in order to utilize selection arguments and, as a consequence, to restrict the
class of sequences uk to ones with equi-integrable ~p .
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After submission of the first version [48] of this paper a book [40]
appeared. The author of [40] also suggests to use Young measure techniques
to prove the relaxation theorem, see [40, p.65]. He proposes to use the
formula
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which was first established in [29], to construct a gradient p-Young measure
with the property

One of the aims of this our work was to develop Young measure calculus
up to the level which let one make similar arguments rigorous.
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