
ANNALES DE L’I. H. P., SECTION C

STÉPHANE MISCHLER

BERNST WENNBERG
On the spatially homogeneous Boltzmann equation
Annales de l’I. H. P., section C, tome 16, no 4 (1999), p. 467-501
<http://www.numdam.org/item?id=AIHPC_1999__16_4_467_0>

© Gauthier-Villars, 1999, tous droits réservés.

L’accès aux archives de la revue « Annales de l’I. H. P., section C »
(http://www.elsevier.com/locate/anihpc) implique l’accord avec les condi-
tions générales d’utilisation (http://www.numdam.org/conditions). Toute uti-
lisation commerciale ou impression systématique est constitutive d’une
infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIHPC_1999__16_4_467_0
http://www.elsevier.com/locate/anihpc
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


On the spatially homogeneous Boltzmann equation

Stéphane MISCHLER
Laboratoire d’ Analyse Numerique, Universite Pierre et Marie Curie,
Tour 55-65, BC 187, 4, place Jussieu, 75252 Paris Cedex 05, France

et Departement de Mathematiques, Universite de Versailles-Saint-Quentin,
Batiment Fermat, 45, avenue des Etats-Unis, 78055 Versailles Cedex, France,

e-mail: mischler@math.uvsq.fr

Bernst WENNBERG

Department of Mathematics, Chalmers University of Technology,
S41296 Goteborg, Sweden,

e-mail: wennberg@math.chalmers.se

Ann. Inst. Henri Poincaré,

Vol. 16, n° 4, 1999, p. 467-501 Analyse non linéaire

ABSTRACT. - We consider the question of existence and uniqueness of
solutions to the spatially homogeneous Boltzmann equation. The main result
is that to any initial data with finite mass and energy, there exists a unique
solution for which the same two quantities are conserved. We also prove
that any solution which satisfies certain bounds on moments of order s  2

must necessarily also have bounded energy.
A second part of the paper is devoted to the time discretization of

the Boltzmann equation, the main results being estimates of the rate of
convergence for the explicit and implicit Euler schemes.
Two auxiliary results are of independent interest: a sharpened form of

the so called Povzner inequality, and a regularity result for an iterated gain
term. © Elsevier, Paris

RESUME. - Dans cet article nous nous interessons aux problemes
d’existence et d’ unicite pour 1’ equation de Boltzmann homogene. Nous
montrons que pour toute donnee initiale de masse et d’énergie bornees il

existe une unique solution qui conserve ces deux quantites. Nous montrons
aussi que si une solution possede certains moments d’ ordre s  2 alors

necessairement elle a une energie initiale bomee.
Dans un deuxieme temps nous montrons que les schemas d’ Euler explicite

et implicite de discretisation en temps de 1’ equation convergent et nous
donnons des taux de convergence.
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468 S. MISCHLER AND B. WENNBERG

Pour etablir ces resultats nous utilisons de nouvelles inegalites de Povzner,
ainsi qu’ un lemme de regularite pour le terme de gain itere. @ Elsevier, Paris

1. INTRODUCTION

This paper deals with the Spatially Homogeneous Boltzmann equation

where f(t, v) is a non negative function which describes the time evolution
of the distribution of particles which move with velocity v. In the right
hand side, Q ( f , f ) is the so-called collision operator,

Here f = f (v), f1 = f’ = f (v’) and f i = ~f (vl ), and v’ and vl
are the velocities after the elastic collision of two particles which had the
velocities v and vi before the encounter. One parameterization of these
velocities is

where cJ is a unit vector of the sphere S2 (see figure 1 below). In (1.2),
0 is the angle between v - vi and v’ - v. A different parameterization
is given by

With this parameterization, the collision operator still is of the form (1.2)
with dcv replaced by d03A9, except that now the kernel B takes the form

2B(B, ~v - vl () cos(8). This takes into account also that the second

parameterization implies a double covering of the sphere from the first

parameterization.
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469ON THE SPATIALLY HOMOGENEOUS BOLTZMANN EQUATION

The precise form of the kernel B depends on the physical properties of
the gas that is being studied. Here we consider the case of so-called hard

potentials, and therefore

In this case b is even and continuous in ] - ~r/2, ~r/2~. Furthermore,
we assume that b satisfies Grad’s angular cut-off condition, namely that

~r/2, ~-/2~ ). This obviously holds for the elastic spheres, but if
B is derived from the interaction by an inverse power law, the integrability
condition does not hold unless b is truncated in some way.

The main concern of this paper is the proof of the existence of a
unique solution to (1.1) with minimal assumptions on the initial data,

Vol. 16, n° 4-1999.



470 S. MISCHLER AND B. WENNBERG

and moreover of a convergence result for a suitable time discretization
of the equation. The condition that we must impose on the initial data is
0  + v ~ 2 ) E L 1 ( ~3 ) . No assumption of finite initial entropy is
necessary, which is important since no control of entropy can be expected
in the explicit Euler scheme.
A general reference for the Boltzmann equation is [3], or more

recently [4], both of which give many further references, and many
details on the development of the mathematical theory. The question of
existence and uniqueness of solutions to the Boltzmann equation (1.1)
was first addressed by Carleman [2], and the Ll-theory was developed by
Arkeryd [1]. Elmroth [7] proved that all moments that initially are bounded
remain bounded uniformly in time. Then Desvillettes [5] proved that if some
moment of the initial data of order s > 2 is bounded, then all moments of
the solution are bounded for any positive time. This result was extended
by Wennberg [13], [14], [15] who proved that the result by Desvillettes
holds also when only the energy of the initial data is bounded, and for very
general cross-sections, also without the assumption of angular cutoff.
The first main result of this paper is the following:
THEOREM 1.1. - Let f o (v ) be in L~(~). There exists a unique solution f

in C ( [0, -~ oo ) ; L2 ( 1~3 ) ) of the Boltzmann equation (l.1 ) which conserves
mass, momentum and energy; this solution also satisfies

Here and below, denotes the space of all functions f such that

is bounded.

The existence theory in L~ can be found already in Arkeryd’s paper [1] ]
from 1972, where two existence proofs are given under slightly stronger
hypothesis on the initial data. In one of the proofs the assumption is that
f o E with S  2, and fo log fa E L 1 ( f~3 ) . The proof is based on
a weak stability result and on the Povzner inequality, (see [1] ] and [7]).
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471ON THE SPATIALLY HOMOGENEOUS BOLTZMANN EQUATION

In the other case, f o E L4 { 1~3 ), and the proof depends on a monotonicity
argument. The solution constructed was known to satisfy ii) and iii), see
], [~], [14].
Also here, two proofs are presented. The first one (Section 4) relies on

a quite simple contraction argument and we show directly that a sequence
of solutions of a approximated problem is strongly convergent, under the
assumption that fo E LS {1~3), with s > 2. In the second one (Section 5),
we prove that the stability result of Arkeryd [1] also holds in the case

f o E L2 (~3 ) . In the proof, we use a refined Povzner inequality and the
regularity of the Q+ term.

Several authors have investigated the question of uniqueness for the
homogeneous Boltzmann equation, see [1], [6], [9], [13]. In Section 3,
uniqueness is proven under the sole assumption that the solution conserves
mass and energy. This is an improvement of the previous result in which
it was assumed at least that iii) holds for some s > 2. The proof is

based on a subtle use of the Povzner inequality which permits us to prove
the estimate i). Then uniqueness follows by a general result known as
Nagumo’s uniqueness criterion.
The Povzner inequality is reversed when moments of order lower than 2

are considered. This essentially implies that one can estimate moments of
the initial data in terms of moments at later times, and as a consequence
of this we are able to prove that if ( ~ f (t, ~ ) ~ ~ l,s E L1 ( ~0, T~ ), where s > /3,
then f o E L~.
The Section 5 is devoted to our second main result. It is an application

of the techniques introduced for Theorem 1.1 to the convergence of time
discrete scheme for the Boltzmann equation.

THEOREM 1.2. - Let fo(v) be in Ls ((~3), with s > 2. Then, the explicit
and implicit Euler schemes constructed from the initial data f o converge to
the unique solution of the Boltzmann equation, given by Theorem 1.1.
Under stronger hypothesis on the moments of the initial data, we can

also compute the convergence rate for these schemes. A different approach
to discretization in time has recently been considered by Gabetta et al. [8].

Note that the convergence of the explicit Euler scheme in Theorem 1.2
gives the existence part of Theorem 1.1 . This method was first used by
A.J. Povzner in [ 11 ], who proves that for a given f o E L2 ( ~3 ) there
exists a measure solution f of Boltzmann equation (1), with not increassing
energy, corresponding to the initiel data fa. The combining use of Pozvner
inequality (lemma 2.2) and of the regularity property of the gain term
(lemma 2.1) allow us to improve Povzner existence result: the energy of f
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472 S. MISCHLER AND B. WENNBERG

is conserved and f is a measurable function. Of course, if we only assume
that fo is a nonnegative measure with finite mass and energy, then the
approximate solution constructed by the explicit Euler scheme converges
to a measure solution of (1) which conseves mass and energy, and this
solution is unique.

2. ESTIMATES OF THE COLLISION OPERATOR

This section contains two technical lemmas, which are related to the

geometry of the velocities of two particles involved in a collision. The first
one will be used in Section 5, in order to give local equi-integrability of
solutions of an approximated problem, when we do not control the entropy.
It is a new regularity result for the gain term C~+, which is related to a
previous result by P.L. Lions [10]. However, while the’ result by Lions
relies on the deeper properties of the geometry, the one presented below
is quite elementary. 

’

LEMMA 2.1. - Let Q+ be the gain term with a kernel v1 ~ , 8 ) ==

Iv - where bounded. Let f, g, h E L~(U~3). Then

~+ ( ~+ ( f~ g) , h) is (locally) uniformly integrable. More precisely, for each
e > 0 there is a 6 > 0 such that if A is a set with Lebesgue measure

p(A)  ~, then

Here 6 depends only ,~, b(8) and on the norm in L~ of f , g and h. In the
case of hard spheres one can take 6 = 

Proof. - The calculations are slightly more explicit in the case of hard

spheres, and so we begin there. Recall that in this case B (B, ~ v - vl ( ) =
~v - vl ~. Let ~(~) G L°°; later it will be the indicator function of the set
A. Here we change variables in the usual way, by letting (v, vl ) - (v’, vl )
(see [2,3]). Since dv dvi = dv’ dvi, the iterated gain term can be written

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire



473ON THE SPATIALLY HOMOGENEOUS BOLTZMANN EQUATION

where (see figure 2)

Now let _ ~ vi : I ~ 2vi - v - vII-Iv - I  ~ ~, and let be

the characteristic function of That means that x~ approximates the
surface measure on the sphere covered by vi, and using the parametrization
(1.4), the expression within brackets in (2.1) is the limit 0 of

This is an integral which is very similar to the gain term itself, and it

is possible to carry out a change of variables just like when deriving the
Carleman form of the gain term (see [2]): Let r = ~v2 - v2 ~, and denote
by the plane that passes through v2 and is orthogonal to v2 - v2 (in
the usual Carleman representation of the gain term, one would have taken
the plane through v2 instead); denotes the surface measure on this

plane. Then dvi = and in polar coordinates, dv2 = r2dr d03A92.

Vol. 16, n ° 4-1999,



474 S. MISCHLER AND B. WENNBERG

That means that d03A92dv’1 == v2 - and therefore (again
taking into account that the O-parameterization of S2 implies a double
covering of the domain of integration), (2.2) equals

The measure of the intersection between and the thickened sphere
is approximately ~|03C5 - 03C51 ( (or 0 when there is no intersection), and

so the integral is bounded by 
’

Then the estimate of the lemma follows by estimating separately the integral
in v2 - v21  S 1 ~ 3 and in the remaining part; the first part is bounded
by 4~r ( ( ~ ( I ~ b2~3 and the latter one is bounded by ( ~ ~ ~ I 1 b 1 ~3, and one
concludes by taking § to be the characteristic function of a set with
Lebesgue measure smaller than 8.

In the more general case, the expression within square brackets in (2.1)
is replaced by

For Iv - vi ]  ~ 1, this is bounded by + + v2 ~ ~ ), with a
constant depending on b ( 8 ) and on /3. For Iv - vi > ~ 1, one can carry out
the change of variables just as above, to obtain a bound of the form

Now if cP is the characteristic function of a set A of measure 8, then the
same estimate as above can be carried out, and one gets, for arbitrary E 1, ~2,

and one can conclude by choosing in turn El, ~2 and 8 small enough to
make each of the terms smaller than c/3. D
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Remark. - Here we have assumed that b(0) is a bounded function, but
again, a slightly more careful analysis shows that the result is true also
in the locally bounded case. 

’

The second result of this section is a sharpened form of the so-called
Povzner inequality. This inequality relates the velocities before and after an
elastic collision between two particles. In its original form, it was proven
by Povzner [ 11 ], and more precise estimates were subsequently obtained
by Elmroth [7].

LEMMA 2.2. - Assume that b(B) is a bounded function. For a given
function W let .

Then one can write = G(v, vl ) - H(v, vl ), where

and b(8) = b(8) cos 8 sin 8. Let xl = 1 - (fl A denotes the
indicator function of the set A).

iii) Suppose that W is a positive convex function that can be written
= where ~ is concave, increasing to infinity, and such

that for any ~ > 0 and any a 1 [, it satisfies (03A6(x)-03A6(03B1x)) x~ ~
0o as x - ~. Then, for any ~ > 0,

Vol. 16, n° 4-1999.
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If in addition there is a constant such that  C/ ( 1 + x), then

 

Remark 1. - The constants in the lemma depend of W and ~. Whenever
necessary for clarity, will be denoted v1) or vl ),
and similarly for G and H.

Remark 2. - The inequalities are monotonous in W in the following
sense: if 0  Wi - W2 is convex, then J?~, - > 0. Similarly, if

Wi - W2 is concave, then the inequality is reversed. This is important
in the application of the lemma, where unbounded convex or concave
functions are replaced by truncated functions, and the result is obtained by
a limit procedure. For W convex (or concave) it is possible to construct a
sequence of truncated functions in such a way that the difference of
two subsequent functions is convex (or concave).

Proof. - For an integrable kernel b ( 8 ) , the four terms in (2.4) can be
considered separately, and for the last two terms, the integration is trivial.
The sphere S2 can then be parameterized -~r ~ ~p  7r,

0  03B8  03C0/2}, and dw = 4 sin 03B8 cos 03B8 d03B8 d03C6. The notation is described
in figure 1. Let r = lvi, r1 = lVII, r’ == Iv’l and rl = ~vi ~. If T = sin a
denotes the sine of the angle between the vectors v and VI, then

Then the first term in (2.4) can be written

The integral with respect to ~p is (we omit the argument 8 here)

and by integrating partially twice one gets

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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It remains to estimate the second of these terms, and to estimate

In this expression, the integrand in the right hand side has a fixed

sign, depending on whether W is convex or concave, and this is the main
idea behind the Povzner inequalities. Consider first W(z) = zl+’~. With
X = r2 ~r2 + , one can write the factor within brackets in (2.7) as

This term is non-negative if 7  0 and non-positive if 7 > 0, and it vanishes
for all 03B8 only if r = ri. Moreover, the integrand is 0(171), uniformly in
c  e  ~r/2 - ~ and max(r/ri,ri/r) > 2, and this yields the estimate
of H in i) and ii).
The estimate of G in i) and ii) can be obtained by an estimate of the

integrand in the second part of (2.6); this is

where Zo = Z/Y. It is integrable for all 7 > -3/2, uniformly in

Zo E ~-l, l~, and gives a contribution of the size

Hence, if 7  1, one can estimate G directly by as in the
lemma. On the other hand, if 7 > 1, then for (Z/ Y) sufficiently small, this
term is dominated by (2.8), and for larger values of ( Z/ Y ), the estimate
holds just like for 7  1.

Next we turn to the case of more slowly growing W (z) = as in iii),
and we begin by considering the 03C6-integral in (2.5). Since 03A6 is concave,
and since Y + TZ cos cp is non-negative, the integrand is smaller than

Vol. 16, n ° 4-1999.
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After integration in cp only two terms remain, and again because ~ is
concave, and since ~Z(B)~ I  F(9),

and Z cp’ (Y) can even be estimated by a constant if cp is growing more
slowly than logarithmically  C (1 + x) -1). It follows that the

integral in (2.5) is bounded by

where the second term in the integrand could be replaced by Const Z for
a sufficiently slowly growing function ~. Hence the estimate of the G,~
is ready, and the estimate of follows after collecting the terms not
involving cp, just as in the previous case. Since = we have

F(9) + Y(7r /2 - 0) - W(r2) - W(r12)  0. Moreover y(9) + Y(7r /2 - 6~)
takes its minimum at 0 = 7r /4, and is increasing with ]0 - ~r~4~. Hence the
integral is bounded from above by

For ri > 2r, this is bounded from above by

From the hypothesis on ~, ~(3r12/4)) /rl-~ - oo as rl - o0
and thus gives the negative term in iii), and in the second term, r2  rri/2,
which means that this term can be included in the previous estimate of G.

3. UNIQUENESS

This section is devoted to the proof of the uniqueness result in
Theorem 1.1. More precisely, we prove the following:
THEOREM 1.1/. - Under the assumptions of Theorem l.l, there exists at

most one solution f in C( ~0, Ll (1~3) ) of the Boltzmann equation (l.1 )
which conserves mass, energy and E 

Annales de l’Institut Henri Poincaré - Analyse non linéaire



479ON THE SPATIALLY HOMOGENEOUS BOLTZMANN EQUATION

Proof. - The proof is carried out in four steps. Since initially only
the energy, is bounded, the main problem lies in

controlling the behavior of JR3 f(t, v ) ( 1-~ ~ dv, which appears in the
collision term. In the first two steps it is shown that for any solution, and

any positive t, all moments of f are bounded. The existence of a solution
that satisfies this property has been known previously (see [5] and [14]),
but the proof here shows that this is a consequence of the conservation of

energy and not on the way in which a solution is constructed. The third step
gives an estimate of the blow-up of ~ ) ( ~ 1, 2+~ as t - 0. This estimate
is strong enough to prove the uniqueness result; this is done in Step 4.

Step 1. - We establish that there exists a convex function W (r) such that
- oo, which satisfies the conditions for iii) of Lemma 2.2, and

such that for some constants C, Ci and C2, and for all t > 0

That a function W exists such that (3.1) holds for the initial data fo
is established in the Appendix. We define for all n E N the first degree
polynomial Pn(x) == anx + bn = W’(n)x + ~(ra) - n W’ (n) and the convex
approximation of W with linear growth,

The sequence {03A8n}n~1 increases pointwise to W, and for all 
is convex. Using the conservation of mass and energy and the fact that the
function Wn - pn has compact support, we can compute

At this point we can use iii) from Lemma 2.2. With the notation

from Section 2, we have KWn = Hwn, and for a sufficiently

Vol. 16, n° 4-1999.
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slowly growing function ~, the estimate Clvllv11 ] holds

independently of n; without loss of generality one can assume that this is
the case. The lemma implies that is non-negative and because
of the convexity of Wn+1 - Wn, it is pointwise increasing with n, and
converges pointwise to Then

and we can pass to the limit in the right hand side thanks to Lebesgue’s
theorem because f E L~+1(1~3)) and in the left hand side
using Fatou’s lemma. We obtain

But from Lemma 2.2 we have

Expressing this with the notation _ ~ f(t, v) dv, which gives
~R3

Therefore using the conservation of mass and energy we bound Y2_,~l2,
Yl - ~ ~ 2 and Yl by and using Young’ s inequality we bound
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which prove the uper bound in (3.1), at least locally in time. The lower
bound in (3.1) just comes from the inequality 03A8(|v|2) ~ 1 and the

conservation of mass.

Step 2. - Next, using Povzner’s inequality once more, we prove that
for all f > 0, s’ > 2,

We proceed like in L. Desvillettes [5]. From (3.5) we can deduce that there
exists to > 0, as small as we wish, such that

Then we start from to and we take a sequence Wn which approximates
w(r) = rl+~~4. As in step 1, we obtain (3.4), with 

c2 ( ( v ( 1+a~2 ( vl ~ ~-- ~ vl ~ 1+~~2 ~ v ~ ), independently of n, and 

increases pointwise to H2+.,~~2. Then we can pass to the limit as before,
and we get

Using the estimate K2+03B2/2(v, v1) > c1|v|2+03B2/2 - c’2|v||v1|1+03B2/2 for the

left hand side, and using Young’s inequality to kill the dominant term in
the right hand side we get, for all t > to

Vol. 16, n° 4-1999.
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since f solves Boltzmann equation (1.1). In order to obtain (3.6), from what
the uniform upper bound in (3.1) follows, we make similar calculations
to thus previously executed and we obtain the following differentialble
inequality (where now, every term makes sense)

Step 3. - In this step we show that there is a function 8 ( t) - 0 as
t - 0, such that near t = 0

The preceding step implies that f belongs to C~( ]0, +oo[; Z~_~(R~)) and

Here it is important to note that the constants c and C depend only on the
mass and energy of the initial data f o, and on the kernel B but they do not
depend on the time. The first idea is to use Jensen’s inequality to estimate
~2~2~ in terms of Y2~,~ . Because of the lower bound in (3.1 ), one can write

The function = z is convex by construction, and we verify
without difficulty that T(z) - z2 ~(z) is a convex function and satisfies,
for all v E (~3,

Then Jensen’s inequality implies that

where Ci and C2 are the constants from (3.1), and we obtain a differential
inequality for Y2~,~ (t) . If Y2~,~ (t) does not explode in t = 0, this means
that  +00 and there is nothing to prove. Hence we can choose
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an interval 0, t ~ so small that the lower order terms in the right hand side
of (3.8) are dominated by the negative term, and thus

Now consider

Since ~ does not decrease,  1, and

which in turn implies that r(Y2+,(t)) > (2 t for t, and hence that

~(Y2+~)  2/(C2 t). Since t, ~-1(2~(CZ t)) - 8(t) tends to 0 when t

tends to 0, we get (3.6).

Step 4. - Next we turn to the uniqueness. The uniqueness result in [1] is

directly related to the construction of a solution by means of a monotonous

sequence. The calculation here follows more closely [9] or [6] (but a similar
calculation can be found also in [1], in the proof of energy conservation,
which in turn is essential for the proof of uniqueness).
Thus let f and g be two solutions corresponding to the same initial

data Let F(t, v) _ ~ If ( t, v) - 9 ( t, v ) [ and G(v, t) = f (t; v) + g(t,, v).
Then F and G satisfy the same estimates as do f and g, and in addition

F(0, v) = 0. Moreover

Vol . 16, nO 4-1999.
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Similarly

The estimate (3.11) ( and also (3.10) ) comes from the invariance of the
integrals under the change of variables - (v’, vl ), and the fact that

~v~~2 + ~vi~2.
With the notation Xl(t) _ ~~3 F(t, v) dv and X2(t) = J~3 F(t, v)(l +

~v~2) dv, and because ,~ E (0, 2~ we obtain the inequalities

By the estimates on F and G one knows that Xi, i = 1,2 are bounded
and that Xi (0) = 0. First, it follows from (3.12) that Xi  C t, and, since
the integral in the right hand side of (3.13) is bounded by 8 ( t) j t, that
X 2  C t. Next, using these previous bounds and succesively equations
(3.12) and (3.13), we get that Xi  C t2 and X2  C t2. Thus X2
is continuous, right differentiable at t = 0, and X2 (0) = 0. Now, by
integrating (3.13) one sees that for t sufficiently small

These are exactly the conditions for Nagumo’s uniqueness criterion, which
now implies that X2 - 0, i.e. that f == 9 in the considered interval. But this
estimate is needed only in an arbitrarily small interval, since for any positive
time, all moments of the solutions f are bounded, and hence uniqueness
follows directly by Gronwall lemma in (3.14), see [1]. To prove Nagumo’ s
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result one takes Z(t) = and using (3.13) one sees that
Z (t) /t is non-increasing. Since it is non-negative and zero at t = 0 it must
be identically zero, which implies the same for X2. This concludes the
proof of the uniqueness theorem. D

Remark 1. - When {3 E (0,1] the E L1 ( ~0, T ~ )
holds automatically because of the conservation of mass and energy. In
fact, when 1  /3  2, we prove in Theorem 4.3 that this condition is
also a consequence of the boundedness of mass and energy. But, when
/3 = 2, we need to do this additional hypothesis to prove the uniqueness,
(or at least, E and use Theorem 4.3).
Nevertheless, the solutions built in the sections 4 and 5 satisfy always

~)II1,2+~-v E L1(~O, T]), for all v > 0 and T > 0. Furthermore, we
only use in the present proof that the energy is noincreasing (or least,
that the energy at any time is smaller than the initial energy). As a
matter of fact, under this weaker asumption we get an inequality in (3.3)
instead of an equality (remind that an = ~’ (n) > 0) and the sequel of
the proof is unchanged. But, it not really improve the asumption of the
Theorem 3.1 since in this case the energy is automatically conserved thanks
to Theorem 4.3.

Remark 2. - When /3 > 2 we do not know if Theorem 1.1’ still holds,
because (3.14) fails, but we can proof bounds i), ii) and iii) of Theorem 1.1.
To get (3.1) we proceed in the same way that in Step 1, using now the

bound by below > ci Iv13/2 - c~ I v 13~4 Ivl 13~4.
In Step 2 we take to > 0 such that ~~3 f (to, v) dv  +-oo and

we define W(r) = rs/2 for s e]2,4[. We obtain (3.3) with 
C and increases pointwise to Hs > 0, satisfying
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The term Y~+s~2 can be bounded thanksto Young’s inequality by
For the last term we use Holder’s inequality:

then

Taking 6- small enough it follows

Again, (3.5) is proved by induction. When  +00 we can choose
to = 0 and we get iii) of Theorem 1.1.

Remark 3. - Let just present an alternative simpler proof of Theorem 3.1,
where Step 3 and 4 are modified. From (3.8) and Holder’s inequality
Y2+~ _ y21/2 ~-~ one gets on a small interval ]0j] the differentiable
inequality

which clearly implies Y2+,~ (t)  ~ on ]0, f]. This bound is weaker
than (3.8) but is strong enough to conclude in Step 4. Indeed, using the
trick described after formula (3.13) one gets by an iterative argument,
that, for all n E N, is continuous, right differential at t = 0, and
( X 2 ~t~ ) t-o = 0, and so do Z(t). Then, taking m > Co and using (3.14)
one proves that is non-increasing, thus is identically zero.

4. EXISTENCE

In this section we deal with the problem of the existence of solution
to the Boltzmann equation. Essentially we prove the existence part of
Theorem 1.1 in a slightly less general case because we assume that f o E Ls
with s > 2. We prove the following.
THEOREM 1.2’. - Let fo(v) be in with s > 2. There exists a

solution f in C( ~0, L2 ( (~3 ) ) of the Boltzmann equation (l.1 ) which
conserves mass, momentum and energy.
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The proof that we present here holds only for initial data f o in Ls (p~3 ),
with s > 2, but, using an argument of weak compactness in L2(1~3) we
will prove the existence result only assuming that fo belongs to L2 ((~3), as
in Theorem 1.1. This is done in Section 5.

For every integer n we introduce the truncated cross section Bn (z, B) _
where a A b = min(a, b), and we denote by Qn the kernel

associated to Bn. Then, we consider the solution fn E C([0, -~-c~o~; L2((~3))
of the truncated Boltzmann equation

for which one can prove existence and uniqueness by a contraction

argument, see [ 1 ] . We proceed by showing that {fn}n is a Cauchy sequence
in Ls .
THEOREM 4.1. - Let fo(v) be in with s > 2. Then for all fixed

T > 0, there exists a constant CT such that

With this theorem at hand, it is not difficult to pass to the limit in

equation (4.1) and to show that the limit f is a solution of (1.1). This proves
the existence part of Theorem 1.1 for this particular case. Furthermore, one
obtains the estimate .

For the proof of Theorem 4.1 we need a technical lemma.

LEMMA 4.2. - There exist constants M and C, depending only on f o,
s and ,~, such that for all n > M the solutions f n satisfy

Proof of Lemma 4.2. - In order to simplify the notation, we denote by ~
the solution fn and set Y~ = J~g dv. First, if 2  5  3, we set
~y = /?, 1). We have
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with the notation from Lemma 2.2. Then the Povzner inequality and Young’ s
inequality imply that

Then, for all c > 0, there exists C~ such that

and for all n > M

and we obtain

We conclude by using Gronwall’s lemma, taking c small enough and M
large enough.

Next, if s > 3, we take 7 = 1 and we perform the same calculations
taking in mind the fact that we already know that supt>0 Y3(t) is bounded.D

Proof of Theorem 4.1. - Let f n and fm be two solutions of the

equation (4.1) corresponding to n and m respectively. Similarly to (3.10)
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we can compute

Thus, we get

But = 0 and by Lemma 4.2, hn,m is uniformly bounded in

+00), and hence we get (4.2) by Gronwall’s lemma. D

Next one would like to know whether solutions can exist also if the
initial energy is not bounded. We do not know of any result on existence
or non-existence in this case, but the proposition below is a partial result
in this direction. The reversed Povzner inequality, Lemma 2.2 ii) is used to
prove that if certain moments of order s  2 remain bounded in an interval

~0, T~, then necessarily the energy is bounded in a closed interval [0, Tl~
with T1  T. The proof actually shows that the energy is non-decreasing.
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THEOREM 4.3. - Let f be a non-negative solution of the Boltzmann
equation, and suppose that there are ~ > 0 and T > 0 such that

Then, for all 03B4 > 0 and T1 C T,

and the energy of f is non-decreasing on ~0, T].
Proof. - Let remark that the asumption make on f implies that the

collisional term Q ( f , f ) lies in L 1 ( ~0, T ~ ; L 1 ( (~3 ) ) and thus equation (1.1)
make sense in the distributional sense. We carry out this proof in three steps.

Step 1. - be a sequence of concave bounded functions, which
converges pointwise to ~(r) _ ~r~l-~r, with 1 - 7 = (c + ,~)/2).
Then multiply the Boltzmann equation and integrate to find

For almost every t E [0, T~,

and in the left hand side, ( is bounded by 
uniformly in n, and in the right hand side -H03A8n increases pointwise to

> + + the estimates
can be found in Lemma 2.2. Hence, with calculations like in Section 3 of
Theorem l.l’, we find

for some constants C and C’. Observe that the hypothesis on f implies that
the mass is conserved, and therefore one can deduce that for all T’  T,
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Step 2. - This step consists in iterating the previous step. After a finite
number of steps one has

and it is possible to take Ti  T, and v > 0 arbitrarily. Note that since
2 + ,~ - v > 2, the energy must be bounded for almost every t E [0, Ti].

Step 3. - Again we return to Step 1, now converging to
~ . P’~, and here the intention is to 0. Let chose t2 in such a

way that Y2 (t2 )  oo, then, using Lemma 2.2 and passing to the limit
n - +00 in (4.5)

In the left hand side, the integral is bounded by

Hence it is possible to pass to the limit 7 ---+ 0, and to conclude that

5. TIME DISCRETIZATION OF THE BOLTZMANN EQUATION

In this section, some of the estimates from the previous sections are used
in order to obtain some results on the convergence of a time discretization
of the Boltzmann equation. As a byproduct we find an existence theorem
for the continuous equation in the case where only the energy is assumed
to be bounded.

Let A > 0 be the step size in a time discretization. We first consider
the explicit Euler scheme for the truncated Boltzmann equation, and define
the sequence f ’~ = f o,n recursively:
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First, if we multiply the previous equation with the collision invariants 1,
v and and integrate, we find

Next, we write equation (5.1) as

where we have used the notation

Since

we see that if

the algorithm (5.1) defines a nonnegative sequence f ’~ > 0, and from which
a piecewise constant function [0,T] - L2 can be constructed (tk = 

This function is an approximation of the solution of ( 1.1 ).

THEOREM 5.1. - Let 0 tend to 0 and n to infinity, in such a way that the
stability condition (5.4) holds, and assume that f o E L2 ~~3 ). The family 
converges in L°° ( ~0, T~; L2 (~3 ) ) to the unique solution f of the Boltzmann
equation (l.1 ).
With a stronger moment condition, it is possible to estimate the rate

of convergence:

THEOREM 5.2. - Let fo belong to with s > 2 and T > 0 be

fixed. Then, there exist positive constants aT and CT such that if 0 tends
to 0 and n tends to infinity with n = ((- In 1~~, (this is stronger
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than (5.4)), then the family fa = f o,n converges in T ~ ; L2 ( U~3 ) ) to
the unique solution f of the Boltzmann equation (l.1 ), and

Proof of Theorem 5.1. - We perform the proof in two steps.

Step 1. - We start by proving that the sequence lies in a weakly
compact set of L 1 ( ~0, T ~ ; L2 ( II~ 3 ) ) . To this end we multiply the equation
(5.1) by Ivl ( and we integrate to find

Then we use the reverse Povzner inequality ii) of lemma 2.2 which, thanks
to Young inequality, writes ~1/2 ~ + ~i~) 2014 and the

elementary inequality  ~~ A?~+ ~~ A n, and we obtain

Proceding like in lemma 4.2 and using conservation of mass and energy (5.2)
one gets .

which in turn implies

Next, we can choose a function W with ~(r)/r 2014~ +00 when r - +00
and J~3 fo(v) dv  +cxJ, and we proceed just like in Step 1

Theorem 1.1’; using (5.6) we get

Moreover,
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from what it follows by iteration

and therefore we get

/

Lemma 2.1 implies that for all e > 0 and T > 0 there exists ~ such that if
A is a Borel set with measure  ~, then for all t  T,

The Dunford-Pettis lemma together with (5.7) and (5.8) imply that the
sequence is weakly compact in L 1 ( ~0, T ~ ; L2 ( 1~3 ) ) .

Step 2. - We wish to pass to the limit in equation (5.1). We next note
that for all test functions ~ E L°°((~3),

is a bounded measure on [0, T~, and therefore f~3 fo,n(t, v) dv is
bounded in T~), for all T; hence it converges almost everywhere.
Furthermore, (5.7) implies that the same holds for every measurable
function such  C (1 + Iv12) almost everwhere. The collision
operator is essentially a convolution operator, in which the kernel B
is not growing faster than (1 + v ~ 2 ), and therefore on can pass to

the limit with Qn( fo,n, fo,n), and prove that the limit f is a solution
to the Boltzmann equation (1.1) for the initial data fOe Moreover, the
bound (5.7) implies that f belongs to C ( ~0, T ~ , L2 ( 1~3 ) ), that f conserves
mass, momentum and energy, that (5.7) holds for f, and from (5.6) that

+00)). By Theorem 3.1 this solution is the unique
solution of the Boltzmann equation (1.1) and therefore the full sequence

converges to f weakly in L1 ( ~0, T~ ; L2 (~3 ) ) . In order to prove the
strong convergence we write
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The sequence satisfies

The regularity property of the Q+ term, see [10], shows that Qn ( fn,o, fn,o)
converges strongly to Q+ ( f , f ) . Therefore the right hand side of the

equation (5.9) converges almost everywhere to

We have obtained the strong convergence of to f in L1 ( ~0, T~ x R~)
and we obtain the strong convergence in L°° ( ~0, T ~ ; L 1 ( ~3 ) ) using
estimate (3.10). D

Remark 1. - In particular, we have proved that the existence part of
Theorem 1.1 holds in the general case f o E L2 (1~3 ) and {3 e]0,2]. In

fact, estimates (5.6) and (5.7) still hold when /3 > 2. Furthermore, in

Remark 2 following Theorem 1.1’ we proved that the bounds ii) and iii)
of Theorem 1.1 can also be generalized to the case {3 > 2. Therefore,
we are able to prove that for all {3 > 2 and f o E L2 ( I~3 ) there exists a
distributional solution f E C(~0, -f-oo); L2(L~3)) n -f-oo; L~+1(1~3))
of equation (1.1) conserving mass and energy, which furthermore satisfies

properties i), ii), iii) of Theorem 1.1 . (One has to observe that the above
a priori bounds on f imply that Q ( f , f ) E Li ~ ( ~~, +00); L1 (~3 ) ) .)
Remark 2. - We would like to emphasize that the proof can be notably

simplified when 0  {3  2. In this case, with only the conservation of mass
and energy at hand, but without estimates (5.6) and (5.7), we can pass to the
limit in equation (5.1) and get a solution f of the Boltzmann equation (1.1).
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At this stage we have lost the conservation of energy, however by Fatou’s

lemma, we have JR3 ~~3 fo,n (t, dv _
dv. Then f satisfies the conditions of Theorem 4.3, and

therefore also JIR3 f (t, v) dv 2:: f 0 ( v ) dv. We conclude that f conserves
mass and energy and it is the unique solution of Theorem 1.1’.

Proof of Theorem 5.2. - Here, the result essentially follows from
estimate (4.2). Let eK = fn(tK) - fK, where fn is the solution of the
Boltzmann equation (4.1) and fK = the solution of the Euler
scheme (5.1 ): 

The exact solution is continuous in t, and can be computed at t = tk :

where Ak is given by

Similarly

In (5.10),

and taking the calculation one step further gives

Hence

and then
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which implies

Therefore the result follows by a combination of

and estimate (4.2).
We now consider the implicit Euler scheme,

and as before we set = f ’~ for t E ~t,~, t,~+1 ~. In order to see
that the scheme is well defined, we introduce the map T from L+ ( p~3 )
into itself, defined by

and

then T has a unique fix point, which is the solution of (5.11 ), and which will
be denoted f ’~+1. We note that (5.12) is a stability condition similar to (5.4).

In the following theorem, the main interest is the convergence rate of the

implicit Euler scheme. We get a better rate of convergence by requiring
an extra moment condition. However to prove only convergence, one can

proceed as in Theorem 5.1 with initial data f o E L2 .
THEOREM 5.3. - Let 0 tend to 0 and n to infinity in such a way that (5.12)

is satisfied, and assume that f o E with s > 2 + 2,C~. Then the

family converges in T ~ ; L2 ( ~3 ) ) to the unique solution f of the
Boltzmann equation (l.1 ), and

Proof. - We start with a priori bounds. In the same way as for the

explicit scheme, we see that the mass and the energy are conserved. An
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adaptation of Lemma 4.1 shows that there exists a constant C such that
for all n, A and all time t > 0

Then, we set e’~ = f (t,~ ) - fK" where f is the solution of the Boltzmann
equation (1.1) and let fK, = the solution of the Euler scheme (5.11 ).
We can write 

and

where

and

Keeping the notation from the proof of Theorem 5.2, we have

Then, multiplying by sgn ( f (t,~+1 ) - f "+1 ) and integrating we get

Gronwall lemma together with (5.14) give the error control (5.13). D

APPENDIX

In this Appendix we construct a function ~ that satisfies all properties
needed in Sections 2 and 3. The existence of such a function is probably
a classical result, but we have not found any general reference for such a
construction, and in any case, the result seems not to be very well known.
However, similar constructions have previously been used in kinetic theory
[12].

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire



499ON THE SPATIALLY HOMOGENEOUS BOLTZMANN EQUATION

PROPOSITION A1. - Let f = f (v) be a function such that (1 + E

L1(11~3~. There exists a concave function depending on f, such that

03A6(r) ~ oo as r ~ ~, r03A6(r) is convex, and such that for all e > 0
and a 1(, ~~(r) - oo as r ~ and such that

~1 + E L1(~3).
Proof. - There is no loss of generality in assuming that f is positive, and

that f~3 (1 + dv = 1. Take 0 = ro  rl  ...  rn... such that

Since the theorem is trivial if f is compactly supported, it is only necessary
to consider the case where rj - oo as j - oo . Let 03A61 be linear in each
interval [ and such that cp1 (r j) = j. Clearly cp1 (r) is increasing
to infinity with r, and

Clearly ~i is concave if rj is an increasing sequence, and

one can always assume that this holds. For if that were not the case,
one could replace the sequence rj by a new sequence fj given by

= fj + (fj - fj-1)), and take ~ 1 as above, but defined by
the sequence fj. Then ~ 1 is also increasing to infinity (because fj is finite
for each finite ~), concave and pointwise bounded Finally we take

in order to make rcp(r) convex. Since ~i is concave and increasing to
infinity, the same holds for ~. And

and therefore

Remark A.1. - Note that 1 - (log(e + r ) ) -1 was added to 03A61 only in
order to obtain the lower bound without having to be too

Vol. 16,n° 4-1999.



500 S. MISCHLER AND B. WENNBERG

careful with in the construction of the sequence r j. Clearly cp (r) - cp ( ar )
decays more slowly than any power of r.

Remark A.2. - Let W be the function constructed above, and let

i.e., Wn is not growing faster than linearly, and it is converging pointwise
monotonically to W as n - oo. The point to note is that is
still a convex function. Similarly it is possible to construct a sequence of
bounded, concave functions which converge pointwise to 4J, and such
that cp n are concave. For example, if cp is twice differentiable,
then a possible choice is
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