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ABSTRACT. - In this paper, we consider the Cauchy problem of wave
maps from 1 +2 dimensional Minkowski space into a compact, homogeneous
Riemannian manifold. We construct a finite energy global weak solution by
a "vanishing viscosity" method. @ Elsevier, Paris

RESUME. - Dans ce travail nous construisons une solution globale faible
avec energie finie, du probleme de Cauchy pour des "application d’ondes"
de l’espace de Minkowski a valeurs dans une variete compacte homogene
riemannienne. © Elsevier, Paris 

1. MAIN RESULT

Given a compact Riemannian manifold N, isometrically embedded in Rn
for some n, wave maps of 1 +2 dimensional Minkowski space into N are

solutions u = (ul, ~ ~ ~ , un) : R x R2 ~ N c Rn of the following system
of semilinear wave equations
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and the coefficients depend smoothly on u.
We are interested in constructing a global weak solution to equation (1.1)

with the following Cauchy data:

where uo(x) E N, ui (x) E Here TuN denotes the tangent space
to N at the point u.

J. Shatah [10] showed the existence of a finite energy global weak
solution by penalty method in case N = Sn-1, the sphere. Recently,
A. Freire [2] has been able to generalize Shatah’s argument to prove the
existence of global weak solution for certain compact homogeneous spaces
N. In this paper, we shall establish the existence of global weak solution
in the case that N is any compact homogeneous space. We construct our
solution by a "vanishing viscosity" method. After the first version of this
paper was completed, S. Muller &#x26; M. Struwe [7] were able to combine the

compactness result of A. Freire, S. Muller &#x26; M. Struwe [3] with our viscous

approximation method to show the global existence of weak solution for
any compact manifold N.

Recall that the nonlinear term in (1.1) satisfies

We shall regularize the equation by asking

where é > 0 is a small parameter. In section 2, we shall prove that the

regularized equation has the form

where T(u) denotes the projection to TuN.
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We approximate uo, t6i by UOe and u1~ such that

and

strongly in 

strongly in L2. Without loss of generality, we assume moreover

We consider the following Cauchy problem for the regularized
equation (1.7):

The following proposition was proved by S. Muller &#x26; M. Struwe [7]:

PROPOSITION 1.1. - Let N be a compact Riemannian manifold then there
exists a global smooth solution to the Cauchy problem (l. 7), (1.14), provided
that the initial data satisfy (1.8)(1.9).
The global smooth solution to the regularized equation satisfies the

following energy equality:

We shall prove that as ~ ~ 0 ,the solution of the regularized equation
weakly converges to a global weak solution of (1.1). For that purpose, we
make use of a geometric idea of Helein as well as a variant of the well
known div-curl Lemma of Murat [8] and Tartar [11]. We shall use the

Vol. 16, n° 4-1999.
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assumption that N is a homogeneous Riemannnian manifold at this point.
By this, we mean that the group of isometries of N acts transitively on N,
i.e. for any two points p, q E N, there exists an isometry of N that maps p
to q. The group of isometries of N is a Lie group, which we denote by r.
We assume that its Lie algebra ~y has some Euclidean structure and consider
an orthonormal basis ( e 1, ~ ~ ~ , ep) of q. We denote by p the representation
of ~y in the set of smooth sections of the tangent bundle of N. By Lemma
2 of Helein [5], we know that there exist p smooth tangent vector fields
Y1, ~ ~ ~ , Yp of N such that for any tangent vector V E TuN, we have

In section 2, we shall prove that the identities

and

hold for any u with Du E and u(t, x) E N By
(1.16),(1.17), the regularized equation becomes

We now use the energy equality along with a variant of div-curl Lemma to
pass to the weak limit. We shall establish the following

THEOREM 1.2. - There exits a global finite energy weak solution to the
Cauchy problem (l.1 ), (1.3) of 1 +2 dimensional wave maps into a compact,
homogeneous Riemannian manifold, provided that the initial energy is

bounded. The weak solution satisfies (l.1 ), (1.3) in the sense of distributions,
that is for any test function ~ = (~1, ~ ~ ~ , ~n) E Co (R3), there holds

Moreover, the energy inequality is satisfied
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415GLOBAL WEAK SOLUTIONS OF WAVE MAPS

2. REGULARIZED EQUATION

We first write down the regularized nonlinear equation. Let T denote the
projector to the tangent space and let P denote the projector to the normal
space. Then, for any tangent vector Y, we have .

Thus

so the regularized equation is

We now make use of the assumption that N is a homogeneous space. We
denote the group of isometries of N by r, and its Lie algebra by q. Let
ei,’ " , 6p be an orthonormal basis of 03B3 and let 03C1(e1)(u),...,03C1(ep)(u) be
its reprensetation in the set of smooth section of tangent bundle of N. By
Lemma 2 of Helein [5], we know that there exist p smooth tangent vector
fields Yl , ~ ~ ~ , Yp of N such that for any tangent vector V E we have

In the following,we shall prove that the identities

We first prove that (2.4) holds for any smooth function u and smooth
vector field V. Noting that is a Killing vector field, we know that
its covariant derivatives vanish, namely

Vol. 16, nO 4-1999.
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By (2.3), we have

and

Thus, (2.4) holds for smooth u and V.

Next, we prove that (2.4) hold for any u and V with

We regularize them by u,~ == and Y,~ = T ( u,~ ) J,~ Y , where
~ = J,~ (t) is the Friedrich’s mollifier and 7r denotes the nearest

point projection to N. We shall prove that Du,~ --~ Du strongly in
x R2 ) , V,~ ~ V strongly in L o~ ( (o, T) x R2 ) and

It is quite easy to show strong convergence in L2 once we established
(2.8). We have

Thus, (2.8) hold. Passing to the limit in

we get (2.4).

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Finally, we prove (2.4) for Du, V E L°° ( (0, T), L2 (R2 ) ). We regularize
them by Ue = and V~ = T(ue)JeV , where J~ = Je(x) is
the Friedrich’s mollifier. We shall prove that Du strongly in

x R2 ) , Tl~ -~ V strongly in x R2 ) . For that purpose,
we denote by Q a compact set in R2 and define

where Be is a ball of radius é in R2 centered at x. By Schoen &#x26;
Uhlenbeck [9], section 4, Ge(t) converges to zero as ~ goes to zero

for any fixed t. Moreover

Thus

We have

so by dominant convergence theorem, we get

By (2.15), it it very easy to prove strong convergence Du in L2,
Y~ -~ V in L2. By the the conclusion of the last step, we have

Passing to the limit, we get (2.4). Identities (1.16) and (1.17) are easy
consequences of (2.4).
We end this section by writting down the term explicitly. For

that purpose, it is convenient to assume that N is parallelizable. However,

Vol. 16, n° 4-1999.
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we emphasis that the explicit expression of will never be used in
our proofs. Therefore, we do not assume N is parallelizable in our theorems.
We have

and

To calculate = (P4lu)t - we make use of the

assumption that N is parallelizable. Then there exists a complete set of
orthonormal tangent vector fields Zl (u), ~ ~ ~ , ZK (u). We thus get

Therefore,

where

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire
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3. WEAK LIMIT

In this section, we shall prove Theorem 1.2. By proposition 1.1, there
exists a global smooth solution Ue to the Cauchy problem (1.7),(1.14) of the
regularized equation. The smooth solution satisfies the energy inequality

so there exists a subsequence, still denoted by Ue for convenience, and a
function u such that Vu, - ut weakly in L°° ( ~0, T~, L2 (R2 ) )
and Ue -~ ~c weakly * in LX>(R+ x R2).By passing to the weak limit, u
still satisfies the energy inequality

It remains to prove that u satisfies (1.1) in the sense of distributions. For
that purpose, we recall equation (1.18)

We test the equation by smooth functions § = (~1, ~ ~ ~ , ~n ) supported in
~-T, T~ x R2 and then integrate by parts to get

We first prove that 0 in the sense of distributions. In fact,
we have .

Vol. 16, n° 4-1999.
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Noting that

and using the energy inequality, we immediately get

We now prove

in the sense of distributions. For that purpose, we use the following variant

of div-curl Lemma of Murat [8] and Tartar [ 11 ] .

LEMMA 2.1. - Let SZ be an open set in Rd and let u~ ~ u weakly in

u~ 
-~ u weakly * in L°°(S2) and v~ -~ v weakly in 

Suppose that

where f ~ - 0 strongly in H ~ 1 and g~ --~ 0 strongly in then

in the sense of distributions.

Noting (2.5), we have

By the energy equality, the term

is uniformly bounded in L2loc and the term

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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is uniformly bounded in x R2 ), so the conditions of Lemma 2.1
is verified. Therefore, we proved that u satisfied

By (1.16) and (1.17), we thus complete the proof of Theorem 1.3.

It remains to prove Lemma 2.1. Let § E Co (0) be a test function, then

The second term tends to 0 in view of weak convergence. Integrating by
parts in the first term yields

The first term in the above expression tends to 0 because ~(u~ - u) is

bounded in H 1 while f ~ ~ 0 strongly in the second term in the

above expression tends to 0 because ~(u~ - u) is bounded in L°° while

ge - 0 strongly in and the third term tends to 0 because u~ - u ~ 0

strongly in Lfoc by Rellich’s compactness theorem. Thus, we finished the
proof of Lemma 2.1.
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