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ABSTRACT. - In this paper we study the structure of certain level set

of the Ginzburg-Landau functional which has similar topology with the
configuration space. As an application, we generalize Almeida-Bethuel’s
result on multiplicity of solutions for the Ginzburg-Landau equation.
© Elsevier, Paris
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RESUME. - On etudie la structure de certains ensembles de niveau de la
fonctionnelle du type Ginzburg-Landau qui ont des topologies similaires a
celles de l’espace de configuration. Comme application, on generalise le
resultat d’Almeida-Bethuel sur la multiplicite des solutions des equations
de G-L. © Elsevier, Paris

1. INTRODUCTION

Let f2 C C be a smooth, bounded and simply connected domain. Let
g : prescribed smooth map with Ig( x) = 1, for all x E 
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256 F. ZHOU AND Q. ZHOU

The Ginzburg-Landau functional, for any c > 0, is given by

which is defined on the Hilbert space

It is easy to verify that E~ is a positive, C2-functional satisfying the
Palais-Smale condition. So

is achieved by some u~ E C) and these minimizers satisfy the

following Ginzburg-Landau equation:

The Ginzburg-Landau equation (1.2) has been extensively studied by F.
Bethuel, H. Brezis and F. Helein [BBHI, 2] and many others. A complete
characterization of asymptotic behavior -~ 0+) for minimizing
solutions of (1.2) is given. It has been shown that the degree of g, denoted
by k = deg(g, ~SZ), plays a crucial role in the asymptotic analysis of the
minimizers. Without loss of generality, we will always assume k  0
throughout this paper.

In this paper, we will study the multiplicity of the solutions for the
Ginzburg-Landau equation (1.2), many such results have been given for
special domains and/or boundary values (see for instance Almeida and
Bethuel [AB 1], Felmer and Del Pino [FP], F.H. Lin [Li]). The motivation
of our paper comes from the recent work of Almeida-Bethuel [AB2, 3]
concerning the existence of non-minimizing solutions of (1.2). They showed
that if 1~ > 2, the Ginzburg-Landau equation (1.2) has at least three distinct
solutions, among which at least one is not minimizing. Based on topological
arguments directly inspired by Almeida-Bethuel’s work, we obtain our main
result as follows

THEOREM 1. - Assume that I~ > 2, there is some ~o > 0 (depending
on H only) such that if ~  ~o, the equation (l. 2) has at least k + 1
distinct solutions.
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257SOLUTIONS FOR THE G-L EQUATION

To prove Theorem 1, we will apply the standard Ljusternik-Schnirelman
theory to a suitable covering space of a level set

for an a of the form

where A is a fixed positive constant to be determined later. The proof
is strongly related to the topological similarities between E~ and the

configuration space ~~ (SZ) of k distinct points in Q. As in [AB3], we need
to use a map ~ from E~ into ~~(SZ). More precisely, We may assign
to each function u in E~, a set of k distinct points ~al ; ... , called
the vortices of u, where each vortex has the topological degree + 1. The
map ~ : Eg - ~~ (SZ) is not continuous. However this difficulty can been
overcome by applying the notion of rj-almost continuity given in [AB3].
The topological similarity between Eg allows us to define a

covering space Ea of Eg corresponding to the covering ~~ (SZ),
where Fk (n) is the configuration space of ordered k distinct points in SZ.

Again we have topological similarity between these two spaces, and we than
can prove that the category of E~ is at least k. The Ljusternik-Schnirelman
minimax theorem concludes that the functional Ec on E~, which is the

composition of E~ and the covering projection either has at least k distinct
critical values or the dimension of the critical set is at least 1. These

imply that E~ has at least k critical points on E. Finally, the fact that
Ex = H9 (SZ, ~) is an affine space guarantee that Eg has at least another
critical point outside of E~, 2.

This paper is organized as follows: In the next section we will recall
some preliminary results about the configuration space and the construction
of the map 03A6 in [AB3] and Theorem 1 will been proved in Section 3.

2. PRELIMINARIES

Our proof of Theorem 1 relies essentially on the properties of the map
~ : E) - ~ ~ ( SZ ) described by Almeida and Bethuel [AB3]. With a such
map, they showed that the fundamental group is non trivial for some
suitable value a of the form (1.3) when c is sufficiently small. We review
here some basic facts about the configuration space and the construction
of the map P .
Vol. 16, n° 2-1999.



258 F. ZHOU AND Q. ZHOU

We study the configuration space and renormalized energy first. Let the
metric on Ck be defined by the following norm

The configuration space of the ordered k distinct points in 03A9

with the inherited metric (2.1) on ~~ is a smooth manifold. The

cohomology ring = of the space has
been determined by Arnol’d in 1969 (see [Ar]), which is generated by
elements Wij E H 1 ( F~ ( SZ ) ) ,1  i  j  k and subject to the following
defining relations

Arnol’d also showed that the pth Betti number Bp of F~ ((Z) is the coefficent
of tp in the polynomial

In particular, = (k - 1 ) ! ~ 0, and this concludes that

LEMMA 2. - The cuplength of is 1~ - l.

The cuplength of a space X is the largest integer n such that there are n
elements 03C6j E > 0 ; 1  j  n and 03C61 U ... U ~ 0.
The symmetric group Sk on ~ 1; ... , I~~ acts isometrically on Fk (n) by

permuting coordinates, i.e., for all 03C3 E Sk,

This action is free, and the quotient space called the

configuration space of k distinct point in 03A9 and it will be denoted by
~~ (~).

we have a natural metric such that the quotient map 7r :

F~ ( SZ ) -~ ~ ~ ( SZ ) is a Riemannian regular covering. This metric 
is the same as the length of minimal connection introduced by Brezis, Coron
and Lieb in [BCL], i.e., for a = ~al, ... , c~~ ~, a’ _ ~ai, ... , a~ ~ E ~~ (SZ),

Annales de l’Institut Henri Poincaré - Analyse non linéaire



259SOLUTIONS FOR THE G-L EQUATION

We now define the renormalized energy Wg on £k (Q) which is introduced
by Bethuel-Brezis-Hélein in [BBH2] as follows, for a = (ai , ... , ak) e
£k ( Ql ’

. where § is the solution of

Here v denotes the unit outer normal to ~03A9 and T is unit tangent to ~03A9
oriented so that v x T = 1. And the function R is the regular part of §, i.e.,

It is clear that W9 (a) ~ +00 if 0 for some i or if

I -~ 0 for some i ~ j . It has been proved in [BBH2] that, as

~ ~ 0, we have

where o( 1 ) ~ 0 as c 2014~ 0, vo is a universal constant, and (ai , ... , ak) is
a global minimum of the function W~. 

-

Next we will turn to the construction of the map &#x26;. We will use a

regularization technique, that is, for any u E E~, we can associate a map
uh, which is a minimizer (not necessarily to be unique) of the following
minimization problem

where h = ~ 4~+1 > 0. We denote uh = T(u) where T : 
C). Clearly we have ~c~ E E~ and it satisfies an equation similar to

the Ginzburg-Landau equation (1.2). One of the main observations in [AB3]

Vol. 16, n° 2-1999.
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is that we can describe the "vortex structure" not only for the solutions
of the Ginzburg-Landau equation, but also for such maps To be more

precise, let us collect some of results of [AB3].

THEOREM 3 [AB3]. - Assume that a is of the form (1.3) for some constant
~ > 0. Then there is a constant 0  ~o  1 depending only on Q, g and
03BB, such that if ~  ~’0, then for u E |u|  1 on Q, there is a point
a = ~cxl, ... , in ~~; (SZ) such that

where p satisfies p  for some constants x, x 1 ~ independent
of ~.

Moreover, there exists some constant ,~ > 0 depending only on Q, g and
A such that for all 1 ~ i  1~ and a~ ( > ,~3, for

Thus we can see that the properties of maps uh are very close to

that of minimizers of ( 1.2) as in [BBH], and it allows us to define vorties
~ al , ... , for uh and each of the vortices has topological degree + 1. That
defines a map W from Im(T(P(E))) to ~~(S2), by ~(~c~) _ ~al, ... , 
where the map P : H9 ( SZ, ~ ) ~ defined by

is continuous. Composing P, T and W, we define : ~~ (SZ);

As already noticed in [AB3], the minimizer uh to the problem (2.2) may
not be unique and moving slightly the points a’i’ s, the new positions would
still match the requirements of Theorem 2. Hence the assignment of uh
and the vortices for uh require some choices, so we can not expect the
map 03A6 to be continuous. However the freedom in these choices are not
too wild, and we can say that /$ is "almost" a continuous map from Ea

More precisely, we have

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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PROPOSITION 4 [AB3]. - Assume that a, ~o, x are as in Theorem 3. Then
for all ~  ~’0, u, v E Ea~ we have

where Ci is a constant depending only on 03A9 and g.

Remark. - In [AB3], Almeida-Bethuel studied the more general
configuration space corresponding to the "vortices" of the map uh for
u E E~ , where a is of the form

and the map 03A6 from Ea~ to the configuration space. We refer reader to
[AB3] for the details.

Here is the notion of 1]-almost continuity introduced in [AB3]: A map
~ : X -~ Y from a metric space X to a metric space Y is said to be

1]-almost continuous, if for all x E X and ~ > 0, there is a 8, such
that for all x’ with d~ (x, ~’)  8, we have dY(~(x), ~(x’))  r~ -~- ~.
Proposition 4 says that the map 03A6 is actually 1]-almost equi-continuous for
~ = 

By Theorem 3, the image of /$ lies in the set

_ ~ ~al, ... , a~ ~ E ~,~ (SZ); dist(ai, fl, and (ai - ,C~ for i ~ j ~

which is compact in ~~. So we have

PROPOSITION 5 [AB3]. - We have an r~o which only depends on fl, such that
for ~0 and compact set W E H9 (Q, C), if 03A6 is ~-almost continuous
and 03A6(W) c 03A3k,03B2(03A9), then there exists a continuous map 03A6 : W ~ 03A3k(03A9)
such that

3. PROOF OF THEOREM 1

In this section, we are going to prove Theorem 1 which is stated in §1.
Let K c ~~ (SZ) be a compact core, i.e., K is compact and the natural

inclusion i : J~ 2014~ ~~ (S~) is a homotopy equivalence. Actually, ~~,~ (SZ)
Vol. 16, n° 2-1999.
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is a compact core for sufficently small /3. We start with a construction of
E~.

LEMMA 6. - There are constants ~"0 > 0, 03BB and C2 such that for all ~  ~"0,
we can Ea~, where a = k03C0|log ~| + 03BB such that

on K, where r~ is given by

Proof. - Since K is compact, we can pick 1]K > 0 such that for any
{a1,...,ak} E K, the balls ~ 03A9 and are pairwise disjoint.
Now once ~  41]K, we can construct a map Ie : ~~ (SZ) ~ H9 (SZ, ~) as
follows: for any a = ~al, ... , a~~ E ~~(SZ), let

then on Ie(a) is defined by

where the function is defined on S2 by the following equation

Notice that for a given a the map is uniquely defined, up to an
integer multiple of 27r. In fact, we can choose this constant such that the
map a 2014~ is continuous by the standard lifting argument. On each
B(ai, ~), Ie( a) is defined by

It is then easy to check that f ~ is a continuous map to H9 ( SZ, C).
Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire
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Moreover we can estimate the energy Using the same analysis
as in [Section I, BBH2], we have a constant C which depends on nand
g only, such that

Let

it is finite by the compactness of K. So

Hence there is an E1 > 0 such that for fe( a) E E~, for
a = ~c~ + A provided A is chosen large enough (but independent of ~).
Now suppose that ~  ~"0 = and denote fe(a) by 

for simplicity. Let a = ..., be given in K, and a’ _ ..., a~ ~
be the vortices for i.e., ~( f~,~,) _ ~ai, ... , a~~. According to

Theorem 3, on = SZ B p), we have

where ~x  03C1  ~x. We may therefore consider on SZ = 

B(ai, ~), the map 03B6 = f-1~,a. 03B6 takes its values in S1 and satisfies
ç == 1 on Moreover we have

This yields

for some constant C depending only on g, K and H.
On the other hand, for any 1 ~ i we have

So for any regular value y E of ~ 1, ~-1 (~) is a connection
between balls and p). By the definition of length of minimal
connection L given in (2.2), we get

Vol. 16, nO 2-1999.
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Let

and take A = ~-1 (N), using the coarea formula of Federer-Fleming, we
obtain

By (3.1), we have

On the other hand

Together with (3.2) we get that

that is the conclusion we required. D

For any a E K, the ball with radius 4r~x , where rih
is the constant in the proof of Lemma 6, is in fact isometric to a standard
ball in To see this, let k = ~r-1 (K) C which is also a compact
core of and for any a E ~r-1 (a), the condition that B(ai, 4rix )’s
are pairwise disjoint implies that the ball B(a, 4rix ) c ~~ is contained in

entirely, and is isometric to B ( a, 4riK ) .
LEMMA 7. - There is an ~o, such that for any ~  ~o, the map f~ induces

an injection

where a is chosen by Lemma 6.

Proof. - The constant ~o is chosen such that

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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where Ci is as in Proposition 4, r~o as in Proposition 5 and ~o , C2 and
r~x as in Lemma 6.

For each element c~ E ~rl (K), we can choose a closed path c : K

which representing 03B1. Now for ~  ~0, if c : Sl -+ Ea~ is null

homotopic, we get a map f : D2 -+ Ea~, such that f|~D2 = fe . c.

By Proposition 5, on the compact set /(D~) C E~, we can define a
continuous map I> : f (D2) ~ ~~(S~), such that for any u E j(D2),
~~~(~) - ~(~)~)  3~1K. The _ ~ . ~~ . c : ,S’1 -~ ~,~(SZ) is

null homotopic. On the other hand, by Lemma 6,

( ( ~ ’ .~~ ~ c(t) - c(t) ~ ~ C ~ 1  °

Then we can find a unique minimum geodesic in ~~ (SZ) connecting
~ ’ c(t) and c(t). This implies c is homotopic to c. So
c~ is a trivial element in 7r1 (K), and this means that fe* is injective. D

Since ~-* : ~rl (K) -~ and f~* : ~rl (K) ~ are

injective, so is .7r* : : --~ ~rl (E~ ). Consider a covering space
p : E~ -~ E~ corresponding to the group ~ - N~r* (~rl (K)) C ~rl (E~ ), the
map 7r : k - E~ can be lift to a map / : K -~ E~ such that the
following diagram commutes

LEMMA 8. - The map f induces maps f * : HP (K) -~ Hp(E) on the
homology groups which are injective for all p.

Proof. - The argument here goes in the same fashion as the proof of
Lemma 7. Consider a singular cycle c E Zp (K) such that f * ( ~c~ ) = 0
in Hp(E~ ). This means that we have a p + 1-chain c’ E Cp+1(E~ ) and
ac’ = f * ( c) . The set W = /(K) U support(c’) is compact in E~ . Then we
define a continues p ( W ) -~ ~ ~ ( SZ ) such that for any u E p(W),

~(~) ~~  
Notice that ( ~ ~ 1 ~ id ( ~  4r~K, as before, we have ~ 1 * ~ fe* = id. This

implies that C f~* ~ ~* (~1 (I~)) _ ~r* (~rl (K)). So we
can lift p : W -~ ~~ (SZ) to ~1 : W -~ Fk (S2).

In fact, we can make ~ ~ ~ 1 ~  4r~K . Since ~ ~ ~ 1 ~ p ~ f - ~r ~ ~  
there is a homotopy Ht such that Ho = 7r and Hi = ~ 1 ~ p ~ f. Lift this
homotopy to a homotopy Ht with (  41]K and Ho = idk.
Define ~2 : f (K) ~ by ~2 ( f (a) ) = Hl (a) . Note that

Vol. 16, n ° 2-1999.
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~2 and differ by a deck transformation, i.e., there is an elements
cr E S k, such that

Replace ~ 1 which is also a lifting p : W --~ ~ ~ ( SZ ) and
~ ~ ~ ’ ~ 1 ’ / - id ~ ~  The new lifting will still denoted 
Now 03A61 maps the chain c’ into a chain in and

~~1 (c’) _ ~1 (~c’) _ ~1 ’ f* (c). We get that ~l ’ f* (c) is a boundary
in On the other hand, ~ 1 ’ / is homotopic to the natural
inclusion i : K. -+ So c is homologous to 41 . f * ( c) , and c is null
homologous as well. This shows that f * is injective. D
The lemma allows us to estimate the category of E~.
COROLLARY 9. - The category cat(E~ ) of E~ is at least k.
Proof - By Lemma 8, the map f * : H * ( E~ ) -~ H * ( K ) between

cohomology rings are surjective, and this implies that the cuplength of E~
is at least the cuplength of I~, which is the same as the cuplength of 
By Lemma 2, the cuplength of E~ is at least k - 1. Finally, according to
[BG], the category cat(E~ ) of E~ is at least the cuplength of E~ plus one.
This completes the proof. D
Now we are in the position to complete the proof of Theorem 1. The

Lusternik-Schnirelman minimax theorem we will use is the following
THEOREM 10. - Suppose F is a C2 non-negative functional defined on a

smooth Hilbert manifold M such that

i) the backwards gradient flow is complete;
satisfies the following weak Palais-Smale condition: if we have a

sequence {un} in M such that F(un) - c 0 as
n -~ oo, then c is a critical value;

iii) catM = k.

Then we have either F has at least k distinct critical values in ~0, a] or
the dimension of the critical set of F is at least 1.

The proof is standard, we refer reader to [Pa].

Proof of Theorem l. - Now we want to apply Theorem 10 to the positive
functional Ee = Ee . p : E~ -~ f~ . Notice that Ee and Ee have the
same critical values and critical sets of the two functionals have the same
dimension. If all three conditions in the theorem hold, both conclusions
will imply that E~ has at least k critical points on E~.
We now check the three conditions in Theorem 10. First, the backwards

gradient flow of Ee is a lift of the backwards flow of E~, so it is

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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complete. Second, let be a sequence in E~ such that E~ (un ) ---~ c and
-~ 0 as n ~ oo, then --~ c and ~ 0.

We know that E~ satisfies Palais-Smale condition, so has a

subsequence converges to a critical point. This shows that c is a critical
value of E~ and then it is a critical value of E~ as well. Finally, catE~ > k
is the conculsion of Corollary 9. So we now can conclude that E~ has at
least k critical points on E~.

Outside of Ea, E~ has at least another critical point, since C) is
contractible, but E~ is not (if 1~ > 2). So totally E~ will have at least k + 1
critical points on H9 (~2, C). D
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