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ABSTRACT. - We study the time-dependent Ginzburg-Landau model for
type I superconductivity in a cylindrically symmetric setting. We show
that under appropriate monotonicity properties for the initial data, the

singular limit (as the penetration depth tends to zero and the Ginzburg-
Landau parameter is kept fixed) is a classical one-phase Stefan problem
for the magnetic field H. We combine energy methods with monotonicity
properties obtained via maximum principles. © Elsevier, Paris

RESUME. - Nous montrons, sous I’hypothèse de symetrie cylindrique,
que le champ magnetique H satisfait le probleme de Stefan a une phase,
en prenant la limite singuliere des equations de Ginzburg-Landau non
stationnaire qui modelisent la supraconductivite de type I. Nous supposons
que les conditions initiales sont « monotones » et nous nous servons de
methodes d’énergie combinees avec des proprietes de monotonicite obtenues
via des principes du maximum. © Elsevier, Paris

’ This work was partially supported by an NSERC Canadian grant and by the DFG through
the SFB256.
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372 L. BRONSARD AND B. STOTH

SECTION 1

In this paper, we study asymptotic behaviour of the dimensionless time
dependent Ginzburg-Landau equations for superconductivity,

Here ~ is a complex order parameter, whose squared modulus measures the
density of superconducting electrons, A is the magnetic vector potential and
~ the electric scalar potential. From Maxwell’s equation it follows that the
potentials determine the magnetic field H and the electric field E through

The coefficients cx, A, and ~ are positive material constants. The parameter A
is called the penetration depth while the parameter ~ is the coherence length,
and both parameters are small. The ratio of these length scales ~ _ ~ is

called the Ginzburg-Landau parameter. We shall consider the asymptotic
behaviour a -~ 0 while keeping ~ fixed and prove, in a cylindrically
symmetric case, convergence to a classical one-phase Stefan problem for
the magnetic field H.

Next we briefly describe certain aspects of the Ginzburg-Landau theory
of superconductivity. We refer to the overview papers [CHO: 1992, DGP:
1992] and the reference therein for a broader introduction to this theory.
Ginzburg and Landau, in their fundamental paper of 1950 [GL: 1950],
introduced a phenomenological theory for (steady-state) superconductivity
based on the Ginzburg-Landau energy density

where the typical _ ~ ( 1 - ~ ~ ~ 2 ~ 2, and Happl is the applied
magnetic field on the boundary of the superconducting device. Their theory
was largely accepted when Gor’kov [G:1959] showed formally that the
Ginzburg-Landau theory can be derived in the limit of the microscopic
BCS theory [BCS: 1957].

Later, the time dependent Ginzburg-Landau equations were written

down by Gor’kov and Eliashberg [GE: 1968] using an averaging of the
microscopic BCS theory. These equations are not obtained directly as the
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373THE GINZBURG-LANDAU EQUATIONS

gradient flow for the Ginzburg-Landau energy of superconductivity because
they must satisfy gauge invariance, due to the coupling with Maxwell’s
equations. This means that if ’ljJ, A and ~ are solutions to the above

equations, then

lead to the same evolution for the electromagnetic fields E, H and electron
density 11/;12. By choosing different gauges, Chen, Hoffman and Liang [CHL:
1993], Du [D:1994] and Elliott and Tang [ET] have proven independently
the well-posedness of the time dependent Ginzburg-Landau equations using
different methods.

Quite different asymptotic behaviour (for small A) is expected for different
values of the Ginzburg-Landau parameter ~. In type II superconductors
(~ > ~ ), one expects that vortices of "normal phase" penetrate the
superconducting matrix as the strength of the applied magnetic field

is increased through some critical value. In contrast, for type
I superconductors (r~  ~ ), one expects a region of normal phase to
penetrate the superconducting device as |Happl| exceeds the critical value
He == ~, and that a smooth interface separates the two regions. Keller
[K: 1958] studied superconducting materials of "cylindrical" form, 0 x R
where 0 is a bounded set in R2, with the applied magnetic field parallel to
the cylinder. Using physical reasoning based on Maxwell’s equations, he
predicted that the interface separating the normal from the superconducting
regions should evolve according to a classical one-phase Stefan problem
for the magnetic field H. In the general case in R~, Chapman [C] used
asymptotic expansion to show formally that 0 and for |Happl| bigger
than He, the time dependent Ginzburg-Landau equations approximate the
following "vectorial" one-phase Stefan problem

in the normal region,
in the superconducting region,
on the interface r,
on r,

where r is the interface separating the superconducting and the normal
phases. Here n is the unit normal to F (which we choose to point towards
the normal region) and vn is the normal velocity to r (negative when
the superconductor region is shrinking). We note that in a superconducting
material the electric field E = 0 and the magnetic field is expelled, i. e.

H = 0; this later fact is known as the Meissner effect [MO: 1933]. This
vectorial Stefan problem can also be derived from Maxwell’s equations

Vol. 15, n° 3-1998.



374 L. BRONSARD AND B. STOTH

(see [CHO: 1992]) and reduces to the classical one-phase Stefan problem
derived by Keller in the "cylindrical" case. The existence, uniqueness and
long-time behaviour for this system has been studied by Friedman and Hu
[FH: 1991] under the assumption that H depends on one variable or that
it satisfies radial symmetry.

In this paper, we present a rigorous justification of Chapman’s
asymptotics in the cylindrically symmetric case, that is we prove

convergence of the time dependent Ginzburg-Landau equations to the

classical one-phase Stefan problem derived by Keller. We assume that

the superconducting device is an infinite round wire (i. e. of the form

Bl (0) x R with Bi(0) the open unit ball in R2), that the external applied
field is constant and parallel to the wire, and we impose appropriate
monotone initial data (see (Al) to (A5) of Section 4). This monotonicity
assumption ensures that the one-phase Stefan problem is well-posed, or
stable, in the sense that the normal region expends into the superconducting
region (see e.g. [M]). In particular, our result shows rigorously that the time
dependent Ginzburg-Landau equations are in fact a valid approximation of
the well established free boundary model for type I superconductors.
To our knowledge there are few methods available at the present time to

prove convergence of systems in general settings. However, energy methods
have been quite successful in studying systems in radially symmetric
settings. These methods have the important advantages that they are direct,
give clear explanation and rigorous justification for the formal asymptotic
results in special settings. Some examples are vector-valued singular
perturbation problems with potentials vanishing on concentric circles [BS]
or the phase-field equations [S]. In these papers, energy estimates are

combined with error estimates on the approximation by the first order

terms in the asymptotic expansion. Here, the method is even more direct
since it only relies on energy estimates and maximum principles. More
precisely, the major difference to those results obtained in [BS] and [S]
is that compactness cannot be obtained by energy bounds, but has to be
derived from structural properties such as monotonicity. This reflects the
fact that the surface tension is of order A for the present system of equations
and thus vanishes in the limit. We combine the energy bounds with the

monotonicity properties to directly pass to the limit in the equations. In
particular, we do this without using the first order expansion and thus the
arguments are less technical.

In Section 2, we implement the gauge transformation originally done
in [C] (cf [CHO: 1992]) in which the time dependent Ginzburg-Landau
equations admit a Lyapunov functional. In this gauge, we obtain coupled
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375THE GINZBURG-LANDAU EQUATIONS

equations with real coefficients for some new vector potential Q, some new
scalar potential ~ and for f = ~ ~ f . We then derive the equations we shall
study in the cylindrical symmetric setting.

In Section 3, we derive the energy estimates (cf Lemma 3.6 to 3.8)
and using maximum principle and invariant region arguments, we prove
that the solutions stay monotone for all time (cf Lemma 3.1 to 3.5). In

particular, this means that the system of Ginzburg-Landau equations has
the same stability properties as the well-posed Stefan problem. As a first
by-product of our energy estimates and monotonicity properties, we show
that the radial problem (GL) of Section 3 is well-posed.

In Section 4, we prove the convergence to the classical one-phase Stefan
problem (cf Proposition 4.1, 4.2 and Theorem 4.9). In particular, we must
show that there is no "indetermined region": that is a normal region where
the limiting magnetic field is zero (cf Propositions 4.6 and 4.8).

Finally, we note that our results hold true even when ~ > ~ (type II
superconductor). This reflects our assumptions of cylindrical symmetry and
monotonicity. Indeed, in the radial case, vortices can only be at the origin,
which we rule out by the monotonicity assumptions on the initial data. We
note however that even for type II superconductors, phase transformation
has numerically been observed, when a very strong field is applied to
a superconducting device. At the beginning of the process a normally
conducting phase develops at the boundary, penetrates into the wire, and
eventually decomposes into the mixed state.

SECTION 2: THE RADIAL EQUATIONS
OF SUPERCONDUCTIVITY

If 0 we may write ~ = feix, and following [C: 1992] and
[CHO: 1992], we let Q = A - + so that the

time-dependent Ginzburg-Landau equations become

Here W ( f ) _ ~ ( 1- f 2 ) 2 , so that W’ ( f ) = f3 - f and W ( ~ ) > 0. Suitable
boundary conditions are:

Vol. 15, n° 3-1998.



376 L. BRONSARD AND B. STOTH

As we saw in the introduction, this is a well-posed problem for f , &#x26; and

~, if suitable initial values are imposed. From these quantities the physical
fields E and H may be calculated, since we have 11 = curl A = curl Q
and E = -9,A - ~~ _ ~~ _ ~~.

In this paper we assume that the domain is an infinite wire

and that the external field jH~ is parallel to the wire. In this situation

we seek a solution of the form (/,Q,~)(~,~?/) = (/,Q,~)(~~), with
B

-~ ~

Q == ~~) ~L ~ and / == ~~). We put r = ~~ and denote
B 0 ~

differentiation with respect to x and r by V and , respectively. Due to this
choice of gauge we find ~ = 0 and Q and / solve

( ~ (rQ)’~’ _ Q" ~- ~~-, ~’ - /2 Q. We choose the boundary values (see Section
3 (BC) and the explanation below)

where HD > ~ = Hc. In this case the associated energy is given by

Our method applies as well to the following one-dimensional problem
corresponding to an infinite wall:

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire



377THE GINZBURG-LANDAU EQUATIONS

0

If all quantities only depend on x and Q - Q ( t, x ) 1 , then ~ - 0

0
and Q and f solve

and The boundary values are

SECTION 3: THE RADIAL EQUATION; EXISTENCE,
MAXIMUM PRINCIPLES, ENERGY BOUNDS

In the situation of an infinite wire we study the solution of the radial
Ginzburg-Landau system

for r E (0,1) and t E (0, T), together with the boundary conditions

We will refer to the last boundary condition as the mixed condition. This
choice of boundary values is good for the following reason: we want the
magnetic field H = ~~-, (rQ)’ = Q’ ~- r Q to be a smooth radial function. Thus
H may attain a nonzero value at the origin, but its derivative has to vanish.
Once H is given, any representation of H in terms of Q is unique up to the
addition of a term ;. If we impose Q (0) = 0, we render this representation
unique and at the same time, through the differential equation, we impose
that H’ = Q" -~- ~ C~’ - ;2 Q vanishes at the origin. In addition Q is bounded,
but its derivative at the origin does not vanish necessarily.
We show that a solution of this type exists by the following approximation

procedure. For some fixed p > 0 we solve the system of differential

Vol. 15, n° 3-1998.



378 L. BRONSARD AND B. STOTH

equations (GL) in ( p,1 ) . This corresponds to solving (GL) in an annular
domain. We impose the boundary data

For any C~-initial data that satisfy the compatibility conditions we obtain a
C°°-solution of this evolution problem. We will prove the following energy
relation and maximum principles:

If the initial data satisfy 0  f  1 and 0  Q  HD, then the same
remains true for all positive times. If furthermore the initial data satisfy
f’  0 and Q’ > 0, then the same remains true for all positive times. Finally,
if in addition the initial data satisfy 8tQ = Q" + ; Q’ - r12 Q - ~~ f 2Q > 0
and a8t f = r + ~ f~ - ~2 (yY’(f ) + a~ f ~2)  0, then 8tQ > 0 and
8t f  0 for all positive times. Using these facts, we may pass to the limit

0 and obtain a solution of the system (GL), subject to the boundary
conditions (BC).
We now proceed with this program. 

MAXIMUM PRINCIPLES

LEMMA 3.1. - Assume that ( f , Q) is a C~-solution of the radial Ginzburg-
Landau equations in ( p, 1 ). Assume that initially f and Q are nonnegative.
Then f and Q remain nonnegative for all positive times.

Proof. - Assume that Q attains a negative minimum at (to, ro). Since
> 0 at r = 1, we find r0  1. Since Q = 0 at r = 03C1, we find

ro > p. Thus c~t Q - C.~" - ,~ (~’ -~- ~ Q  0 at the minimal point and  0.

This contradicts the differential equation for Q and consequently Q > 0.
For f we proceed as follows. Choose tc > , and assume that

v := assumes a negative minimum -b at some point (to, ro)-
Then a8tv-v" - ;v’  0 and uQ2  0 at (to , ro ), and thus the differential
equation for f implies that 03BB2 03BA2 03B1 03B4. Since
W’(f) = f 3 - f, this implies that -03B42exp(2 t0) > 1 > 0 by
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379THE GINZBURG-LANDAU EQUATIONS

the choice of p. This is a contradiction and consequently v > 0 which
implies f > 0.

LEMMA 3.2. - Assume that ( f , Q) is a C~-solution of the radial

Ginzburg-Landau equations in ( p,1 ). Assume that initially 0  f  1

and 0  Q  HD. Then f  1 and Q  HD for all positive times.

Proof - Since f is nonnegative by Lemma 3.1, f is a sub solution of the
differential equation ~2 (a8t f - f" - ) f’) + W’ ( f ) = 0. Since W’ ( f ) > 0
whenever f > l, the classical maximum principle implies f  1.

Since Q remains nonnegative by Lemma 3.1, we have

~t ~ - Q" - r Q’  0. Thus the maximum principle implies that Q  Q,
where Q is a solution of ~tC~ - Q" - r ~?’ = 0 with Q(t, p) = 0 and
with the mixed condition at r = 1 and the same initial data as Q. But Q
attains its maximum on the boundary r = l, and thus at the maximum

point Q’ > 0. Thus the mixed boundary condition implies that the maximal
value of Q is less than HD. This implies the lemma.

LEMMA 3.3. - Assume that ( f , Q) is a C~-solution of the radial Ginzburg-
Landau equations in ( p,1 ). Assume that initially f is strictly positive and

H2 ~~
0  Q  HD. Then f (t, r) > minf(O,r) exp (- ~~a t).

Proof - By Lemma 3.1 and Lemma 3.2 we have 0  Q  HD and
0  f  1, and thus W’ ( f )  0. Consequently az cx~~ f - f " - 1 f’) +
1 03BB2 f H2D > 0. By the maximum principle f > f , where f is a spatially
constant function with 03BB2 03BA2 03B103B4tf + 1 03BB2 f HD = 0 and 0  f(O)  min f(O, r).
LEMMA 3.4. - Assume that ( f , Q) is a C~-solution of the radial Ginzburg-

Landau equations in ( p,1 ). Assume that initially f and Q are nonnegative
and that Q  HD. Furthermore assume that initially f’ is nonpositive and
Q’ is nonnegative. Then this remains true for all positive times.

Proof - We show that ~(t, r) : f’(t, r)  0, Q’(t,r) > 0~ is an

invariant region. First we differentiate the equations (GL) with respect to
r and find

Next we define w :== and v .- for
some positive number Then (w, v) satisfies the same system of
differential equations as ( f’, Q’), with the right hand side substituted

Vol. 15, n° 3-1998.



380 L. BRONSARD AND B. STOTH

and respectively. We show that for any 6 > 0 the
set {( t, r) : w(t, r)  8, v(t, r) > -b~ is an invariant region. Initially and
on the boundary r = p or r = 1 the pair (w, v) lies strictly in this set. Thus,
if (w, v) leaves the region under consideration, then either w = b with

and w  8. In the first case the differential equation for w implies that

-W" ( f ) + > and in the second case the differential equation
for v implies that ~, f Q > ~c. This implies a contradiction if we choose
tc = HD, ~, /~) big enough. Thus we conclude that w  b and v > 2014~
for all times. Letting 8 converge to zero, we conclude that v > 0 and
w  0, which is the assertion of this Lemma.

LEMMA 3.5. - Assume that (f, Q ) is a C~-solution ofthe radial Ginzburg-
Landau equations in ( p,1 ). Assume that initially f and Q are nonnegative.
Furthermore assume that initially 8t f is nonpositive and 8tQ is nonnegative.
Then this remains true for all positive times.

Proof - We differentiate the system of differential equations with respect
to time and obtain 

’

In addition we have the mixed condition 8t Q + = 0 on the boundary
r = 1, and the Dirichlet condition 8tQ = 0 on the boundary r = p. For
8t f we have a Neumann condition on the boundary. This implies that

 0, 8tQ > 0 ~ is an invariant region, following the lines of the proof
of Lemma 3.4.

ENERGY ESTIMATES

LEMMA 3.6. - Assume that ( f , Q) is a C~-solution of the radial

Ginzburg-Landau equations in ( p, 1 ). Then

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Proof. - The result follows by multiplying the equation for f by 
and the equation for Q by r8tQ and integration by parts.

LEMMA 3.7. - Assume that ( f , Q) is a C~-solution of the radial Ginzburg-
Landau equations in ( p,1 ). Assume that 0  f  1 and 0  Q  HD
initially. Then

Proof - We multiply the differential equation for f by - (r f’)’ and the
differential equation for Q integrate over r E (p,l) and
add the results. This implies that

Since f  1 and Q  HD and max(-W") = 1, this proves the assertion
in combining the first integral term of the right hand side with the

corresponding term of the left hand side.

Vol. 15, n° 3-1998.
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DEFINITION. - In view o, f’Lemma 3.7 we define the weighted Sobolev-spaces

and

Remark. - Any ( f , Q) E V necessarily satisfies Q E CI~2 (0,1) with
Q (0) = 0.

LEMMA 3 .8. - Assume that ( f , Q ) is a C~-solution of the radial Ginzburg-
Landau equations in ( p,1 ). Assume that f, Q > 0, ~tf  0 and 8tQ > 0
initially. Then (Q’ -i- r Q)’ = Q" -~- ~~-. Q’ - r Q > 0 and

Proof - By Lemma 3.1 and Lemma 3.5 both and Q remain

nonnegative. Thus the differential equation for Q implies that (Q’ -f- 1 r Q)’ _
Q" + - > 0. Thus + = (Q’ + r~)~~ _
HD - Q’(t, p). Since Q attains its minimum at r = p, we have > 0,
which implies the result.

LEMMA 3.9. - Assume that ( f , Q) is a C~-solution of the radial Ginzburg-
Landau equations in ( p,1 ). Assume that f, Q > 0, 8t f  0 and 8tQ > 0
initially. Then

Proof. - By Lemma 3.I and Lemma 3.5 both Q and 8tQ remain
positive. We integrate the differential equation for Q in space and find

j/ ~tQdr + § j/ f2Qdr = HD - Q’(t,p)  HD .

PROPOSITION 3. 1 0. - For any initial data e V with 0  fzn  I

and 0  Qin  HD there exists a solution

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire



383THE GINZBURG-LANDAU EQUATIONS

with

of the radial Ginzburg-Landau equations (GL) satisfying the boundary
conditions (BC).
The claim follows from the estimates of Lemma 3.6 and Lemma 3.7.

Remark. - Via approximation all the preceding Lemmata hold true in the
limit p -~ 0 under the weaker regularity properties given in Proposition
3.10. The hypothesises and the assertions have then to be satisfied or are
then true, respectively, in the almost everywhere sense.

Remark. - The physical situation we have in mind is the following: an
external magnetic field HD is applied, and a normally conducting
region penetrates the originally superconducting wire.
We may construct initial data as follows: choose a real number ,~ with

2~;)  ,~  oo and a smooth, increasing function h on the real
axis with h(z) = 0 for all z  0 and hoo := limz~~ h(z) E (0, oo). Then
define for 0  r  1 the initial data

where := (r - ro)/ À with some fixed 0  ro  1, and where ( fo, Qo)
solves the system of ordinary differential equations

on the real axis with fo (o) = 1 and Qo(0) = 0.
Such a solution exists and has the following properties: fo(z) = 1 and

Qo(z) = 0 for all z  0, fo(z) > 0 for all z (since once Qo is locally
given, f o solves an ODE with a Lipschitz continuous right hand side which
has 0 as equilibrium value), Qo (z), > 0 and  o for all z.

In addition Qo ( z ) > Joz h (~) dg > 0 for all z in the nonempty interior of
the support of h. Next we find that fo(z) = 0, since otherwise fo
would be strictly negative for large z, and thus f o would attain negative
values. Using this, we may determine limz~~ Q’0(z) = 1 203B2 + The
main point is now that 

by the assumptions on the parameter ~3 and on the function h.
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384 L. BRONSARD AND B. STOTH

As a consequence of these properties of f o and Qo and by definition,
( f , Q) satisfies

In the last inequality, we have used that Q" (r) _ ~ C~o (z) > 0 and that for
some ~ E (ro, r), we have ~,?‘(r) - r C~(r) _ ~ (r~’(r) - (r - ro)~’(~)) >
~’ (r) - Q’ (~) >- 0.

Concerning the boundary data we find by this construction that

exponentially small as A 2014~ 0.

Since hoo may be arbitrarily small and 2 - ro may be arbitrarily close to 1,
the range of boundary data HD that may be attained using this construction
is given by 2~ID > ,~3, and is thus restricted by the conditions on (3. In
addition we remark that the Neumann condition for f at r = 1 is only
attained up to an exponentially small negative term. We may remove this
defect by adding an exponentially small term to f with support only close to
the fixed boundary. In addition we point out that Lemmata 3.1 to 3.5 remain
true if constant negative Neumann data are imposed for all times at r = 1.
We finally mention that the energy of these initial data is uniformly

bounded in A and that Q attains some nontrivial limit as A tends to 0. For
this last claim we point out that

for some ~ E (0, z). Thus Q attains a pointwise limit, which is nontrivial
as long as 0.

SECTION 4: PASSAGE TO THE LIMIT

We assume that is a solution of the radial Ginzburg-Landau
equations (GL) with r ranging in (0,1), with time t ranging in [0, T] and
with the boundary conditions (BC) in the sense of Proposition 3.10.
We recall that we use x for the spatial variable ranging in Bl (0) C R2

and r for the radial variable ranging in (0, 1), and that we denote
differentiation with respect to x and r with V and ’, respectively.

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire



385THE GINZBURG-LANDAU EQUATIONS

We assume that the initial values satisfy the following:

and

(A4) there exists a constant Co such that for all A the initial energy
satisfies Qa){o)  Co.

In addition we assume that as A - 0 
’

(AS) Qa(0, ~) --~ Qo in L1(B1(0)) with Qo ~0 and Ho := div(Qg II) E
L1 (Bl {0)).
Remark. - We say that a constant only depends on the data if it can be

determined a priori from the above constant Co, the Dirichlet value HD,
the time T as well as the parameters ~ and a and is independent of A.

PROPOSITION 4.1. - There exists a subsequence a = 0 (n ~ oo)
and some Qo E H1~2{(0, T) X B1(0)) such that C7a ~ Qo weakly in
H~ ~2 ( (0, T ) x Bi(0)) and almost everywhere in (0, T ) x B1 {o).
Furthermore Qa --~ Qo strongly in LP (0, T; C° ( [0, 1])) for all

1  p  00 and Q~ --7 strongly in L2 ( (0, T) x (0, 1 ) ) and almost
everywhere in (0, T) x B1 (0).

In addition Qo E and (Qo + ;Qo)’ E
with 0 + HD and (Qo + >_ 0

as well as 0 in the distributional sense.

Proof - The energy estimate of Lemma 3.6 and assumption (A4) imply
that Qa is uniformly bounded in H1~2 ( (0, T) x Bi (4)), and therefore a
subsequence is precompact in the weak topology of H1~2 ( {0, T) X B~ (0) ) .
We denote its limit by Qo. Lemma 3.8 together with the assumptions (Al)
and (A3) imply that = (Qa -~- ~ Qa)’ > 0. Thus Q~ + r Qa
is increasing and thus bounded by the boundary data HD . Since both Q~
and Qx are positive by Lemma 3.1 and 3.4 and the assumptions (Al) and
(A2), this implies that HD. By Lemma 3.2 and assumption (Al) we
have as well that  HD. Thus Q a is bounded in H 1 ~ x ( 4, 1 ) ) .
Now we apply the following compactness result (cf Lions [L]): if a

reflexive Banach space Bo is compactly embedded into a Banach space
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386 L. BRONSARD AND B. STOTH

B, which is itself embedded into another reflexive Banach space Bi, then
the embedding from W : _ ~ v E 8tv E into

LP° (0, T; B) is compact for all 1  po, pl  00.

We choose Bo = with q > 2, and B = C° (B1 (0))
and Bi = L2 (B1 (o)). These spaces satisfy the assumptions. We choose
pi = 2 and 1  p = po  oo can be arbitrary. Since (~a is bounded in

~1,2 ( (~~ T) ~ and L°° (o, T; Hi,°° (B1 (0) ) ), the compactness result
implies strong convergence in 

By Lemma 3.8 together with the assumptions (Al) and (A3)
we know that (Q~ is bounded in L°° (o, T; L1 (0,1)) C

T; s C° ( ~0,1~ ) ) ) ~ . Since T ; C° ( ~0,11 ) ) is separable, this implies
that (Q~ ~ ~~-, Qa )’ converges to some p in the weak * topology
of (Lp (o, T; C° ( ~0, 1~ ) ) ) ~ . Since Q~ and Qx converge weakly in

L2 ( (0, T ) x (o, 1)), we obtain that ~c is the distributional derivative

of  ~, ~c for all ( E

T; C°(~0,1~)) n L2(0, T; H1,2(~,1)). Thus we may calculate

for all smooth ( -with compact support in [0, T~ x (o,1). Since Qa is

uniformly bounded we can derive the same result for ( = 1, and thus the
L2-norm of Q~ converges to the L2-norm of Qo. This together with the
weak convergence in L2 implies the strong convergence.

PROPOSITION 4.2. - There exists a further subsequence a = --~ 0

(n’ -~ oo) and some T) x (o,1)) n L°°((o, T) x (o, y)~ such
that f~ ~ fo in the weak * topology of BY( (o, T) x (o,1 ) ) and f a ---~ fo
strongly in Lp ( (o, T) x (o, 1 ) ) for any 1  p C oo and almost everywhere
in (o, T) x (o,1 ).
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Furthermore 03BB~f03BB converges to 0 in L2 ( (o, T ) x B1 (o) ) and 03BB20394f03BB
converges to 0 weakly in L2 ( (o, T) x Bl (o) ).

In addition 8t fo, f o  0 in the distributional sense.

Proof - By Lemma 3.1, 3.2, 3.4 and 3.5 and the assumptions (Al), (A2)
and (A3), the sequence f03BB is bounded in T) x (0,1)) and  0

and f(  0, so that is bounded in BTl ( (0, T ) x (0,1)). Hence f03BB is

compact in the weak * topology of x (0,1)) and compact in
T) x (o,1)).

The first equation of (GL) together with Lemmata 3.6 and 3.7 and

assumption (A4) imply that is bounded in L2 ( (o, T ) x B1 (o) ) .
Thus a subsequence of has a weak limit go in L2 ( (o, T ) x Bl (o) ) .
But for any smooth ( with compact support in the unit ball

f o ~2~~a~ - - ~o 0 
~ 0, since ~~ is bounded

x B1 (o)) by the energy estimate of Lemma 3.6. This implies
that go vanishes. Now we may calculate

since ~a --~ f o strongly in L2 ( ( 0, T ) x Bi(0)).

Remark. - We restrict all further discussions to the subsequence selected
in Propositions 4.1 and 4.2.

LEMMA 4.3. - There exists a constant C, that only depends on the data,
such that
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Proof - We estimate  2 ds +
ds. Integration in time and the Holder inequality then implies

Now, since  

dt, the energy estimate of Lemma 3.6 and the

estimate of Lemma 3.7 imply the first assertion.

The differential equation for implies that f’‘ ~’~ _ with

The energy estimate of Lemma 3.6 and the bound of Lemma 3.7 imply
that hx is bounded in L2 ( (0, T ) x B1(0)). We estimate 

Jo1 f ~ a Q~ dr. We apply Lemma 3.9 and the first part of this
lemma to obtain the last result of this lemma.

PROPOSITION 4.4. - The limit f o attains the values ~ or 1 almost everywhere
in (0, T) x (0,1).

Proof - The sequence f03BB converges to f o pointwise and thus for

all c > 0 there exists Ag C (0, T) x B1(0) such that converges

uniformly to f o in A~ and (o, T ) x  ~. For any positive
number c we consider the set :== > c~. We integrate
the differential equation for over this set. Since is bounded in

L2 ( (0, T) x B1 (0) ) by the energy estimate of Lemma 3.6, and since 
converges weakly in L2 ( (0, T ) x B1 (0) ) to zero by Proposition 4.2, we
find that the terms involving time or spatial derivatives of f03BB converge
to 0. Since converges uniformly in the W’ term converges to

W’(fo)r dr. We estimate the remaining term: we have > 2 in B,
and thus ~B f03BBQ203BB 03BB2 dx ~ 4 c2 ~B f303BBQ203BB 03BB2 dx, which converges to 0 by Lemma
4.3. Consequently f B W’ ( f o ) dx = 0, and thus f o = 1 almost everywhere
in Letting c converge to 0 implies that fo = 1 almost everywhere in

> 0 ~ . Letting ~ tend to zero implies f o = 1 almost everywhere
in ~ fo > 0~.

PROPOSITION 4.5. - The limit foQo vanishes identically and in addition
converges to Q in L2((~, T) x Bl(0)) 0.
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Proof - The energy bound of Lemma 3.6 implies that converges

to 0 in L2 ( (o, T ) x B1 (o) ) . Since by Propositions 4.1 and 4.2 both f a and
Qx converge pointwise to their respective limits, the first result is obvious.
Next we multiply the differential equation for f a by f a and integrate

over (0, T) x Bi(0). This implies + 03BB2 03BA2 ~T0 ~~f03BB|2 dx dt +

= 0. Since fa  1, and

W’ (fo) fo = 0 in L1((OsT) X B1(~)) and 0

in by Propositions 4.2 and 4.4, this implies

DEFINITION. - We define the free boundary ro : ~o, T] ~ ~0, l~ by
ro(t) := ess sup {r E [0,1] : Qo(t, r) = 0~ and its extinction time by
T * .- [0, T] : 0~.
Remark. - Since 8tQo > 0 (cf (A3) and Proposition 4.1), the free

boundary ro is decreasing in time, lim~t rO(7) = ra(t), and ro (t) = 0
for all t > T * . Since 0 (cf (A3) and Proposition 4.1), we have
Qo(t, r) = 0 for r  ro(t) and Qo(t, r) > 0 for r > ro(t).
We may as well define the free boundary for f o by so (t) := ess sup {r E

[0,1] : fo (t, r) = 1} and its extinction time by t* = inf{t E [0, T] : so (t) =
0~. Following Proposition 4.4 and 4.5, we always have so(t)  ro(t) and
t*  T*. We will show later that they agree.

PROPOSITION 4.6. - For almost all t E (0, t*) we have so (t) = ra(t)
and there exists a constant C only depending on the data and a function
D E L2 (o, T), such that

for almost all t E (0, t* ) and r > ro (t) , and

for almost all t E (t*, T * ) and r > ro (t) .

Proof - We multiply the differential equation for f~a by ~a and the
differential equation for fx by f ~, integrate over p E (s, r) ~ (0, 1) and
add the results. This yields
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According to Propositions 4.1, 4.2 and 4.5, ( Q~ ~ 2 -~ ( Qo ~ 2 and ---~

W ( f o ) for almost all (t, r), and possibly selecting a further subsequence
A’ we may assume that ( ~’ ) 2 ~ f a~ ~ 2 ~ 0 and (~1 )~ f ~, Q~, -~ 0 for almost
all ( t, r ) , as well as f r ( ~’ ) 2 c~t f a ~ f ~,, d p -~ 0 and ~’~ ( ~’ ) 2 ~ ~ f ~, ( 2 dp ~ 0 for
almost all t and all r, s . In addition, since Q~ and Q a are bounded by HD

We now choose a further subsequence A" of A’, which might depend on
the time t, such that

By lower semicontinuity and the energy bound of Lemma 3.6 we have
that D E L2(0, T).
Now passage to the limit A" -~ 0 in (*) implies

Now assume that t*  t  T*. Then by the definition of t* and Proposition
4.4 we have f o - 0 and hence (**) implies

We now choose a sequence of points sn (t)  ro (t) with sn (t) -~ ro (t) and
use that = 0 by the definition of ro (t), to prove the second
claim of this proposition.
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Next assume that 0  t  t* and that so(t)  ro(t). Then we
choose two sequences of points 0  sn(t)  so(t)  rn(t)  ro(t)
with rn (t) - sn(t) - 0. Since = 0 and = 0 as

well as fo(t, sn(t)) = 1 and fo(t, rn(t)) = 0 we conclude from (**) that

~ = 0. Since this is impossible we find that ro and so agree in {0, t* ) .
To finish the proof, we now choose a sequence of points sn (t) --~ ro (t)

with sn(t)  ro(t) = so(t). Since then (-W( fo) -~ 2 ~C~o~2) (t, sn(t)) = 0,
the identity (**) implies the first claim of this proposition.

PROPOSITION 4.7. - The free boundary ro is locally Hölder-continuous of

exponent 3 in ~t ~ [ 0  ro(t)  1 ~ n [o, t*].

Proof - We choose t* > t > T and use the identity Qo(t, r)r dr =

r° ~T) Qo (T, r)r dr + ~’t ~r° (T) 8tQo( a, r)r dr da. Since ro is decreasing,

0. Since ~tQ0r ~ L2 ( (o, T ) x (0,1)), the bulk
i

integral of the right hand side is estimated by 
|1 2 r0(t)1 2. Since (;(rQo)’)’ > 0 by Proposition 4.1 and = 1 2
by Proposition 4.6, it follows that (Qo(t, r)r)’ > 
for r > ro (t) . Thus for r > ro (t) integration yields Qo (t, r) r >
’~° (t) (r - ro (t) ). Hence the integral of the left hand side is bounded below
by ro (T) )2 . This implies the assertion.

PROPOSITION 4.8. - The limit Qo statisfies the differential equation

in the open set

together with the (natural) mixed boundary condition

and the Dirichlet condition

The initial data are given by Qo(0, .) - Qo.
In addition t* = T* and s0 ~ ro.

Furthermore the limit Qo is analytic in the open set 
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Proof - For t E [0, T] we define the c-level-sets r c : [0, T] - [0, 1] of
Qo by Qo (t, rc(t)) = c, if such an re(t) exists, or else by = 1. Since

Qo is nonnegative this is well defined. In addition, since Qo is continous
for almost all t, we have -~ ro (t) almost everywhere as c -~ 0.
We now prove that fo -~ 0 for a subsequence

~ ---~ 0. According to Proposition 4.5, ~ we know that for a subsequence
(n" ~ oo), the integral ~01 1 03BB2 f203BBQ203BB(t,r)dr ~ 0 for almost all t.

(This is a further subsequence of the subsequence An, selected in

Proposition 4.2. Choosing this further subsequence does not alter the

limit but helps to identify the limit equation.) Since Qa is increasing we
have and according to

Proposition 4.1, rc(t)) ~ Qo(t, rc(t)) for almost all t, and thus

fo ~2 f ~ Qa (t, r) 0 for almost all t. But Lemma 3.9 implies a uniform
bound for Jo1 and the Dominant Convergence Theorem
implies the assertion.

We now consider the set (0, t*]. Arguments similar to those in the proof of
Proposition 4.7 imply that 0  ro (t)  Thus re(t) converges
uniformly to ro (t) for t E [0, t*~ as c --~ 0. Now we choose a smooth test
function ( with compact support E (0, t*~, ro (t)  r  1 ~ .
Then due to the uniform convergence of r~ as c -~ 0 we may conclude that

(0, T*),  r  1 ~ for some positive c. We use
( as a test function in the differential equation for Qa, integrate by parts
and pass to the limit, making use of the strong convergence of Qx and Qa
and the weak convergence of 8tQx. The limit of the nonlinear part of the
equation is 0, as shown in the first step of this proof. We obtain

Thus we have obtained a weak formulation of the differential equation for
Qo in the E (o, t*~, ro (t)  r  1 ~ and the mixed boundary
condition at r = 1.

Next we assume that t*  T* and derive a contradiction. We define 
to be a continuous cut-off function with
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We choose a smooth test function ( with compact support in ~t* , T*] x (0,1]
and use as a test function in the differential equation for Qx , integrate
by parts and pass to the limit as above and obtain

Now, since r~ converges to ro as c -~ 0 in any LP, we may substitute c

by 0 in the above equality.
By Proposition 4.6 we know that = 0 in [t*,T*),

and due to the Holder-type estimate for Qo of Proposition 4.6,
we may let 6 converge to zero. For this we note that supp( C
[t*,T*] x [co, 1] for some positive co, and thus the most difficult

term ~T0 ~10 Q’0~’S,0 dr dt = ~0T ~0(t)+03B40(t) 1 03B4Q’003B6 dr dt is estimated b

!!~!!oo + b1~4 D(t)r°~ ~1/4 dt and converges to zero.
Since 8t Qo and Qo vanish almost everywhere in r  ro(t), we finally obtain

This implies that Qo satisfies a regular parabolic differential equation in
the strip ~t* , T * ~ x (0,1]. Then the strong maximum principle implies that
Qo is strictly positive in the interior of this strip. This in return implies
that ro (t) = 0 for all t in ~t* , T * ~, and thus t* = T * . This in particular
implies that So - ro.

In the time interval t > T*, we proceed in a similar way to obtain the
differential equation and the mixed boundary condition at r = 1.
Thus we have shown the first part of this Proposition. We have found that

Qo is a weak solution in the open set of a differential equation with
analytic coefficients. Thus due to parabolic regularity theory Qo is itself

analytic in this open set and is a strong solution of the differential equation.
In addition Qo satisfies the weak equation up to the fixed boundary, and
is thus regular up to the fixed boundary.

Obviously _ 0, since Qa converges to Qo in

Since ~tQ03BB is bounded in L2 ( (0, T ) x B1(0)) and Q03BB(0, .) ~ Q00 in

Ll (B1 (0) ) by assumption (A5), the attainment of initial data is immediate.
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Remark. - We have derived two conditions on the free boundary,
namely Q o ( t, ro ( t ) ) = 0 and _ ~ . Formally differentiating
the first equation with respect to time, and then substituting the second
relation, implies 8tQo(t, ro(t)) + = 0. Formally assuming that the
differential equation for Qo holds up to the boundary ro (t) implies that

( r (rQ)’)’(t, ro(t)). We recall that ) (rol’ = H, and we have
thus formally derived

Differentiating the differential equation for Qo implies in addition, that

We now turn this formal argument into a rigorous proof.

THEOREM 4.9. - Let f03BB and Qa be the solution of the radial Ginzburg-
Landau equations with boundary condition (BC) in the sense of Proposition
3.10. Assume (A1 ) - (A5) for the initial data. Then converges to

(fo, Qo ) in the topology of Proposition 4.1 and Proposition 4.2. In addition
we may define the limit magnetic field Ho .- f~o ~- ~ C.~o = div Qo I~I and
the limit order parameter po = 1 - f o. With = H0 - 1 203C60 we have

and ~co = 0 in ~ (t, x) : c,po (t, x) = 4~ and ~co > 0 in ~ (t, x) : c,po (t, x) = 1 ~.
In addition the pair (uo, is the unique distributional solution of

with Dirichlet condition uo(t, = HD - 1 2 for almost all t and
initial values u0 + 1 203C60 = Hf. Moreover 03C60(0,.) is the characteristic

function of > 0).
Remark. - The above Theorem implies that ~co is the solution of the

classical one-phase Stefan problem. In terms of Ho it implies that Ho = 0
in the superconducting region, and that 8tHo - 0394H0 = 0 in the normal
region, with interfacial condition Ho and v on the

interface separating normal and superconducting regions. Here v denotes
the normal to the interface pointing into the normal region, and V is the
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normal velocity of the interface. The boundary data for Ho are given by
HD and the initial data by Ho (see (A5)).

Proof - Under the hypothesis of this theorem we may select a

subsequencs 0 and a limit order paramater f o and a limit magnetic
potential Qo such that converge to ( fo, Qo) in the topology
made precise in Proposition 4.1 and Proposition 4.2. In addition the whole
analysis of this section applies to this subsequence and these limits.

In particular, by Proposition 4.1 we have 0  H 0  HD . In addition
Ho = 0 in ~ (t, r) : r  ro (t) ~ and Ho = 8tQo in ~ (t, r) : cpo (t, r) = 1 ~
by Proposition 4.8 and by Proposition 4.6 for almost
all t E (0, T * ) . Now we may calculate

for all smooth test functions ( with compact support in (0, T) x (0, 1).
Thus ~u0 ~ L2((0, T) X B1(0)) and ~u0 = Next we calculate

for any smooth test function with compact support in [0, T) x 
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In addition uo attains the boundary data HD - ~ following Proposition 4.8.
This is the distributional formulation of the assertion. Uniqueness follows
by the weak maximum principle for the one-phase Stefan problem (cf [O]).

Thus ~co and are uniquely given. In return Ho and f o are uniquely
given. Again as a consequence Qo is uniquely given via the differential
equation by Ho = Qo -f- ~ Qo if we impose in addition that Q is bounded
and that Qo(t,O) = 0. Thus the limit ( fo, Qo) is uniquely given. But this
in return implies that the whole sequence converges to this limit in the
topology of Proposition 4.1 and Proposition 4.2. This finishes the proof.

5. CONCLUSION

We have shown that the solutions of the radial Ginzburg-Landau equations
in R2 approximate the solution of the classical one-phase Stefan problem, as
the penetration depth converges to 0 and the Ginzburg-Landau parameter ~
is kept fixed. We have shown this in the stable situation of a normal region
growing into a superconducting wire. We have established energy-type a
priori estimates and used invariant region principles to obtain compactness
and suitable bounds. To deduce the free boundary problem we have shown
that the system of equations behaves to leading order like a Hamiltonian
system.
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