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ABSTRACT. - In this article we prove new results concerning the long-
time behavior of random fields that are almost surely solutions to a class of
stochastic parabolic Neumann problems defined on open bounded connected
subsets of Under appropriate ellipticity and regularity hypotheses, we
first prove that every such random field stabilizes almost surely in a suitable
topology around a spatially homogeneous random process whose statistical
properties are entirely determined by those of the given coefficients in the
equations. In addition, when the coefficients of the lower-order terms in
the equations are stationary random processes, the nature of the equations
that we investigate leads us to consider two complementary situations

according to whether the average of those processes is zero or not. If their
average is different from zero and if the processes are ergodic, we prove
that every random field stabilizes almost surely and exponentially rapidly
in the uniform topology around a spatially and temporally homogeneous
asymptotic state, which depends only on the sign of the average. In this
case we can also determine the corresponding Liapunov exponents exactly.
In contrast, if the average of the processes is equal to zero we need more
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structure to identify the asymptotic states properly. The cases where the
coefficients of the lower-order terms in the equations are either stationary
random processes whose statistics are governed by the central limit theorem,
or Gaussian processes that share some of the features of the Ornstein-
Uhlenbeck process, are of special interest and we investigate them in

detail. In all cases we can also provide estimates for the average time that
the random fields spend in small neighborhoods of the asymptotic states.
Our methods of proof rest chiefly upon the use of parabolic comparison
principles. © Elsevier, Paris

RESUME. - Dans cet article nous demontrons de nouveaux resultats
concernant le comportement asymptotique en temps de certains champs
aleatoires possedant la particularite d’ être presque surement solutions d’ une
classe de problemes de Neumann paraboliques stochastiques definis sur
des ouverts bornes connexes de A l’aide d’hypotheses d’ellipticite
et de régularité convenables nous prouvons tout d’ abord que ces champs
aleatoires se stabilisent presque surement, relativement a une topologie
appropriee, vers un processus stochastique dont les proprietes statistiques
sont entierement determinees par celles des coefficients des equations.
Nous analysons ensuite le cas ou les coefficients des termes d’ordre
inferieur des equations sont des processus stationnaires. Ceci nous conduit
a considerer deux situations complementaires suivant que la moyenne de
ces processus stationnaires est differente de zero ou non. Dans le premier
cas, si nous supposons en plus que les processus sont ergodiques, nous
demontrons que tout champ aleatoire se stabilise presque surement et

exponentiellement rapidement, relativement a la topologie uniforme, vers un
etat asymptotique ne dependant que du signe de la moyenne de ces processus
ergodiques ; dans ce cas nous parvenons egalement a determiner exactement
les exposants de Liapounov correspondants. Dans le second cas, nous avons
besoin d’ hypotheses legerement differentes pour pouvoir identifier les etats
asymptotiques. Les cas ou les coefficients des termes d’ ordre inferieur des
equations sont soit des processus stationnaires satisfaisant aux hypotheses
du theoreme limite central, soit des processus gaussiens possedant certaines
particularites du processus d’Omstein-Uhlenbeck, presentent un interet

particulier et nous les analysons en detail. Dans tous les cas nous sommes
egalement en mesure d’estimer les temps moyens de sejour des champs
aleatoires dans des voisinages arbitrairement petits des etats asymptotiques.
Nos methodes de demonstration reposent essentiellement sur 1’ existence de

principes de comparaison paraboliques. © Elsevier, Paris
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1. INTRODUCTION AND OUTLINE

Let ( X, .~’, ~ ) be a complete probability space with a-algebra 0 and
probability measure P. In this article we investigate the long-time behavior
of real-valued random fields on (X, .~’, P) that are P-almost surely classical
solutions to quasilinear parabolic Neumann problems of the form

In relations denotes an open bounded connected subset of I~ N
with a sufficiently regular boundary uo,i E !R with Uo  ui,

cp is a smooth random field such that ~ -~ and

cp(x, c.v) E (uo, ul) hold P-almost surely, and the third equation in (1.1)
stands for the conormal derivative associated with the matrix-valued random

field = We also assume that p satisfies

the conormal boundary condition. Moreover, the random field k, the

random process s and the nonlinearity g satisfy the following hypotheses,
respectively :
(K) ] 

is a matrix-valued random field on

(X, .~’, ~) with real-valued entries such that

holds P-almost surely for every 2, j E ~ l, ~ ~ ~ , N~ . In addition, all partial
derivatives of the functions with respect to (~, t, u) are P-almost surely
bounded as functions of (x, t, u, w). Finally, there exist positive constants
k, k G (0, oo) such that the uniform ellipticity condition

holds P-almost surely for every (x, t, ~c, q) x R+ x [uo, x In

relation (1.2), ( ., . ) ~ N stands for the usual Euclidean scalar product in 
(S) is a real-valued random process on (X, P) such that the
Holder continuity of the trajectories t -~ s(t, w) E holds P-almost

surely for some ~c E (0,1].
Vol. 15. n’ 2-1998.
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(G) We have g E x with = 0) = 0 and
g(u, 0) > 0 for every ~c E zcl). Moreover, there exists a constant

c E (0, eX)) such that the inequality

holds for every ( ~c, q ) E ] x 
There have been several recent works devoted to the investigation of

the long-time behavior of solutions to semilinear and non-random versions
of problems of the form (1.1) when s is periodic, almost-periodic or

possesses more general recurrence properties ([3], [4], [6], [11]-[13], [16],
[17], [24]-[28]). One of the reasons for this is that such problems have
played an increasingly important role in the mathematical treatment of

many phenomena in various areas of science, ranging from theoretical
physics to population dynamics, including the theory of heat diffusion, of
nerve pulse propagation and of population genetics ([2]). In this paper,
our primary purpose is to investigate the stabilization properties of random
fields on (X, F, P) that are P-almost surely classical solutions to Problem
(1.1) when hypotheses (K), (S) and (G) hold. Hypotheses (K) and (S)
generalize the models considered thus far in at least two important ways.
On the one hand, the structure of the second-order differential operator that

appears in the principal part to (1.1) allows one to encode space -and time-
dependent random diffusions into the theory. On the other hand, the fact that

is a random process makes it possible to consider processes with
strong mixing and Markov properties such as Ornstein-Uhlenbeck processes,
rather than just nearly deterministic processes such as the almost-periodic
ones. With some additional conditions on and g when g depends
explicitly on Vu, we then prove that the solution to (1.1) stabilizes P-almost
surely in a suitable topology around a spatially homogeneous random
process whose statistical properties are entirely determined by those of the
given data. In addition, when the random process (s(t, is stationary
the nature of Problem (1.1) leads us to consider two complementary
situations according to whether the average of (s(t, .))tE~ is zero or not. If
the average is different from zero and if the process is ergodic, we prove that
the solution to (1.1) stabilizes P-almost surely and exponentially rapidly
in the uniform topology around a spatially and temporally homogeneous
asymptotic state, which depends only on the sign of the average. In this

. case we can also determine the corresponding Liapunov exponents exactly.
In contrast, if the average of is equal to zero we need a slightly
different structure to identify the asymptotic states properly. The cases
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where (s( t, .) )tE is either a random process whose statistics are governed
by the central limit theorem or a Gaussian process are of special interest
and we analyze them in detail. In all cases we can also provide estimates for
the average time that the solution of (1.1) spends in small neighborhoods
of the asymptotic states. Our main results are stated precisely and further
discussed in Section 2. The corresponding proofs are carried out in Section
3. Our methods of proof there rest upon the use of parabolic maximum
principles and upon the existence of exponential dichotomies for a family
of random evolution operators associated with the principal part of (1.1).
Finally, we devote Section 4 to some concluding remarks and we refer the
reader to [7] for a short announcement of the results.

Our work was primarily motivated by the desire to understand the long-
time behavior of generalized random fields that are solutions in some sense
to semilinear stochastic problems of the form

In the first equation (1.4), (B(t, stands for the standard one-

dimensional Brownian motion starting at the origin and odB (t, . ) denotes
Stratonovitch’s differential. Problems of the form (1.4) define a class

of semilinear parabolic problems subjected to homogeneous white noise.
Though the theorems of this article do not apply to the solutions of (1.4)
directly, it turns out that the analysis of the solutions to (1.4) can be
reduced to that developed in the present paper through the combination
of a suitable regularization of the Brownian motion with an appropriate
limiting procedure. We defer the presentation of the corresponding results
to separate publications ([8], [9]).

2. STATEMENTS AND DISCUSSION OF THE MAIN THEOREMS

When hypotheses (K), (S) and (G) hold, the standard existence -and
regularity theory for parabolic equations implies that there exists a unique
random field ~c~ which satisfies Problem (1.1) P-almost surely in a classical
sense ([20]). It also follows from the classical parabolic maximum principle

Vol. is. nO 2-1998.
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that E (uo, u1 ) P-almost surely for every (x,t) E SZ x I~+

([15]). Our primary objective here is to investigate the behavior of u~
when t ---~ oo. In this respect, hypotheses (K), (S) and (G) are quite general
and the trade-off for this degree of generality is that our first convergence
result holds with respect to relatively weak topologies. We illustrate this
point first, by showing that u~ homogeneizes P-almost surely over the
region 0 in the Lp(03A9)-topology for any p e 1, oo ) . For this we need the
following additional hypothesis for the nonlinearity g.
(QG) There exists a bounded function c : ~ f~+ such that the

inequality

holds for every ~c E [uo, and every q E 

We also write E for the mathematical expectation functional on (X, .,~’, ~)
for the usual We then have the following.

THEOREM 2.1. - Assume that hypotheses (K), (S), (G) and (QG) hold.
Assume also that there exists c E (0, o) such that the inequality is(t, cv) (  c

holds ~-almost surely for every t E Then there exists a unique
x-independent random process (u(t, on (X, .~’, such that the

relation

holds P-almost surely for every p ~ ~l, o). Moreover, we have

for every p, r E 

Remarks.

1. We note that both conditions (1.3) and (2.1) hold trivially when g
does not depend on q. In this case, the proof of Theorem 2.1 in

Section 3 reveals that the boundedness is not necessary
for relations (2.2) and (2.3) to hold. Thus, in case g does not depend
on q, the three conditions (K), (G), (S) alone are sufficient to imply
both conclusions of Theorem 2.1.

2. The random process of Theorem 2.1 turns out to be an

x-independent and P-almost sure solution to Problem (1.1) (compare
with the proof of Theorem 2.1 in Section 3). From this, it follows

that is necessarily of the form

Annales de I’Institut Henri Poincaré - Analyse non linéaire
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where G : stands for any primitive of the function
~c --~ 0), G-1 denotes the monotone inverse of G and c~ is

the corresponding initial condition. Theorem 2.1 can thus be viewed
as an existence statement for the random variable ~p that generates

through relation (2.4). The fact that the random process
.))teR admits the explicit representation (2.4) will be important

below, particularly when (s(t, .))~E~ has statistical properties governed
by the central limit theorem or when it is a Gaussian process.

Now let H1,P(fl) be the usual Sobolev space of functions on 03A9 whose
norm we denote by It is natural to ask whether we can replace

in Theorem 2.1. Equivalently, we want to know whether
we can have ~~u03C6(., t, 03C9)~p ~ 0 P-almost surely as t ~ o. A necessary
condition for this is that the relation

holds P-almost surely for every 03B3 E (0, oo), which we prove in Lemma 3.5
of Section 3. Condition (2.5) is, however, not sufficient in general to

ensure the homogeneization of ~c~ with respect to the strong topology of
unless more is known about the matrix-valued random field k.

There is a natural requirement that allows one to dispose of this question
readily. Write momentarily (t, w ) (., t, cv ) ~ ) for the family
of random linear differential operators that are P-almost surely self-adjoint
and positive as operators in L2 (SZ), when realized on the time - dependent
domain (t, w)) = (~) ; here we write for the

vector subspace of L2 (SZ) that consists of all functions of H2~2 which

satisfy the conormal boundary condition in (1.1). For every T E (0, (0) we
consider the linear evolution problem

in L2(03A9). We then introduce the following hypothesis of unique and global
solvability of Problem (2.6), in which ] ] . ] ] stands for the uniform norm of
the linear bounded operators on L 2 ( fl ) .
(LEO) There exists a family of random linear evolution operators
(U(t, T, c.v))t>T in associated with Problem (2.6) such that, for every
T E (0, x), there exists a constant (0, oo) such that the estimate

Vol. 15. n~ 2-1998.
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holds P-almost surely for every t E (T, T + T].
By a family of random linear evolution operators in L2 (S~) we mean a

family of linear bounded operators in L 2 ( S~ ) which satisfy
all the conditions of definition (5.3) in Chapter 5 of [22]. Then there
are well-known sufficient conditions that one can impose on the operators
Au03C6 (t, w) for estimate (2.7) to hold ([ 18), [19], [22]). Estimate (2.7) holds,
for instance, whenever 1~.~ does not depend on t and u, in which case

the family (U(t, T, cv))t>T reduces to a linear random semigroup. Writing
for the uniform norm of continuous functions on Q, we then obtain

the following result.

THEOREM 2.2. - Assume that all hypotheses of Theorem 2.1 hold. In

addition, assume that hypothesis (LEO) holds. Then there exists a unique
x-independent random process (t(t, of the form (2.4) on (X, .~’, U~)
such that the relation

holds fP-almost surely for every p E ~1~ o). In particular, we have 8~-almost
surely

Moreover, we have

and hence

for every p, r E ~1, oo~.
Remark. - It is worth mentioning that with such a degree of generality,

the preceding theorems are, to the best of our knowledge, new even in
the deterministic case.

We shall now investigate the stabilization properties of more closely,
by keeping the random field ku quite general while imposing conditions
of statistical nature on the random process We describe a first

important case in the following hypothesis.
(ES) The process (s(t, .))teR is a stationary, ergodic random process on
(~~..~. ~) such that

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Recall that such a process can be associated to any periodic or almost-
periodic continuous function s in a very natural way ([14]).. But the

notion of ergodicity also encompasses random processes with exponentially
mixing and Markov properties such as Omstein-Uhlenbeck processes. For
this reason, hypothesis (ES) is natural in that it bridges the gap between
problems of the form (1.1) where s is periodic or almost-periodic and those
where s has strong stochastic properties. Let s> denote the average of the
process (s(t, .))tE~. Because of hypothesis (ES) and the Birkhoff-Khintchin
pointwise ergodic theorem we have

for every t E ~, where the last equality holds P-almost surely. We
begin by investigating the case where  s > ~ 0, for which we have the
following result.

THEOREM 2.3. - Assume that hypotheses (K), (S), (G) and (ES) hold. Then
the following statements are valid :

holds IP -almost surely.

holds IP -almost surely.

Remarks. 
’

I. The information provided by relations (2.14) and (2.15) is ut-

most precise in that it provides both upper and lower exponen-
tial decay estimates For instance, for

every ce (0, 0)) there exists > ~ such that the

inequalities

hold P-almost surely for every t E (c.~), oc). In a completely similar
way we have P-almost surely the inequalities

Vol. 15, n° 2-1998.
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for every c E (0, s> ~g’(~cl, 0)~) and for every t E Of

course, the Liapunov exponents given by relations (2.14) and (2.15)
are non-random as a consequence of hypothesis (ES).

2. In the form of relations (2.14) and (2.15), the results of Theorem 2.3
are new also in the deterministic case. In particular, they complete
and improve the results of [27] obtained by geometric methods when
s is almost-periodic.

3. Obviously, the conclusions of Theorem 2.3 must be consistent with
those of Theorems 2.1 and 2.2 when the appropriate hypotheses hold.
What this means is that the homogeneous random process 
also converges to Uo when  s >  0 and g’ (~co ; o) > 0, or to ml
when  s > > 0 and g’ (ul , 0)  0. Of course, the statements can be

directly verified from the explicit form (2.4) by using the Birkhoff-
Khintchin ergodic theorem. The very existence of homogeneous
random processes of the form (2.4) that satisfy the above properties
is one of the key ingredients in the proof of Theorem 2.3 below.

As a very simple application of Theorem 2.3, we can determine the
average time that ~c~ spends in a small neighborhood of Uo and ui when
t --~ oo. Let T* E (0, oo) be given. If s>  0 and if g’ (uo, 0) > 0, define

for every ~ E ~t, t + T*] and for every c E (0, 0)). Similarily,
if  s > > 0 and if g’ (2.c1; 0)  0 we define

for every ~ E ~t, t + T*] and for every é E (0, s> o)i). Evidently,
the sets and are 0-measurable ; let and

the corresponding indicator functions. It is clear that the

random variables Lj 2014~ 1 (~, w) measure the fraction of the
available time lapse T* that the random field u, spends in the corresponding
neighborhood determined by (2.18) or (2.19). We then have the following
result.

COROLLARY 2.4. - The hypotheses are exactly the same as in Theorem 2.3.
Then the f’ollowing statements hold : .- .

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Remark. - In either case the interpretation of Corollary 2.4 is clear :

on the average the random field ~c~ spends the entire available time lapse
T* in an arbitrarily small neighborhood of the appropriate asymptotic state
when t -~ oo. We shall see below that the situation is quite different when
 s >= 0.

As already noticed, when s>= 0 we need a slightly different structure
to identify the asymptotic states properly. The cases where the statistics
of (s( t, .) )tE are governed by the central limit theorem or by Gaussian
distributions are of special interest. We begin with the case of the central
limit theorem. We say that the statistics of the random process (s(t, .) )tE
obey the central limit theorem if the following hypothesis holds :
(CLS) We have 03C9 ~ s(o, cv) E _L2(X, (s(t, is stationary and
the limit

exists ; in addition we have

for every a* E ff~ 

Recall now that G : (uo, --~ f~ stands for any primitive of the
function u ~ 1/g{u, 0) (compare with Remark 2 following the statement
of Theorem 2.1). Our main result concerning the long-time behavior of
u; is then the following

Vol. 15. n° 2-1998.



202 1. D. CHUESHOV AND P.-A. VUILLERMOT

THEOREM 2.5. - Assume that hypotheses (K), (S), (G) and (CLS) hold.
Assume also that the initial datum p is not random, that is the function

is ~-almost surely constant for every x E S~. Then the

following statements are valid .-

( 1 ) For any function a : R+ ~ (uo, such that the limit

exists (with a* _ ±~ allowed), we have

(2) For any function b : I~+ -~ (uo, such that the limit

exists (with b* _ allowed), we have

We note that both statements of Theorem 2.5 concern the convergence
of probabilities, in contrast to all preceding theorems whose convergence
statements hold almost surely. While this is in the nature of things because
of relation (2.23), the trade-off is that Theorem 2.5 allows for alot of

flexibility in the discussion of the asymptotic behavior since the functions
a and b are essentially arbitrary. A typical example is the following result,
which turns out to be related to Theorem 2.5.

THEOREM 2.6. - The hypotheses are exactly the same as in Theorem 2.5.
R+ ~ R+ be any continuous function such that = x.

Then the following statements hold :

(1) 0 and if the limit

Annales de l’Institut Henri Poincar-e - Analvse non lineaire
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exists (with a~ _ allowed), we have

for every c E (0, o).
(2) and if the limit

exists (with b’~ _ ~ oo allowed), we have

A glance at relations (2.29) and (2.31) shows that the

asymptotic probabilities depend exclusively on the rate function ~, on some
features of the nonlinearity g and on the average of the random process

We also stress the fact that explicit expressions such as (2.28)
and (2.30) are possible because of the existence of x-independent random
processes of the form (2.4), and because of the validity of certain parabolic
comparison principles (compare with the methods of proof of Section 3).

In contrast to Theorem 2.3, Theorem 2.6 allows for a detailed analysis
of the case s>= 0. In fact, we shall see in Section 3 that suitable choices
of 03A6 lead to the following.

COROLLARY 2.7. - The hypotheses are exactly the same as in Theorem 2.5.
Then the following conclusions hold : .-

( 1 )  0 and if 0) > 0, we have

Vol. 15. n ’ 2-1998.
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(3) If  s > = 0, > ~~ g’ (y ~ ~)  ~~ and if ~, ~ * : (f
R+ are any two continuous functions such that _

~* (t) = = oo, we have simultaneously

and

Of course, with statements (1) and (2) of the preceding corollary, we retrieve
a weaker variant of Theorem 2.3, or equivalently of relations (2.16) and
(2.17). But the most interesting conclusion is evidently statement (3),
whereby the random field u, stabilizes about Uo and ~c1 equiprobably.
We observe here that the value one-half of the asymptotic probabilities
(2.34) and (2.35) cannot be exceeded by virtue of relations (2.28) and
(2.30) : while relation (2.28) implies that a* E [-00,0] when  s > = 0
and g’(uo, 0) > 0, relation (2.30) implies that b* E ~0, oo~ when s>= 0
and ~’(~l, o)  0.

The fact that u~ stabilizes equiprobably around Uo and ~cl when s>== 0
can be interpreted as an oscillation phenomenon of ~c~ between uo and

In order to see this we proceed as in the considerations preceding
Corollary 2.4. Let T* E (0, oo) be given and let ~, ~* : R+ - !R+ be the
same functions as in Corollary 2.7. For every ç E ~t, t + T * ~ and every
c E ( o, oc ) , consider the events

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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and

Let xuo (03BE,.) and ~u1 (03BE, .) be the corresponding indicator functions. Again,
it is clear that the random variables (~, c~) measure the
fraction of the available time lapse T* that ~c~ spends in the corresponding
neighborhood of ~co and ~c1 determined by (2.36) and (2.37). The precise
result concerning the average times is then the following.

COROLLARY 2.8. - The hypotheses are exactly the same as in Theorem 2.5.
Assume that s>= 0, 0) > 0, g’(u1, 0)  0 and let ~, ~* : (F~+ ~ (~+
be any two continuous functions such that (t) = limtt~~ 03A8* (t) _

t 03A8(t) = ~. Then we have simultaneously

and

The conclusion is that on the average and for every T* E (0,oo),
the random field u~ spends half of the available time lapse T* in an

arbitrarily small neighborhood of uo and the other half in an arbitrarily
small neighborhood of ul, so that an oscillation pattern sets in. Of course,
the preceding results do not describe the possible large deviations from the
above average behavior. 

’

We conclude our analysis of the central limit theorem case by observing
that both Corollaries 2.4 and 2.8 are special cases of a more general
result. Our point of departure here is the statement of Theorem 2.6. Let

T* E (0, oc) be given and let ~ : ~+ -~ R+ be the same function as in
that theorem. For every ç E ~t, t + T*] and every c E (0, define

and

Vol. 15, n° 2-1998.
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Again, these two sets are 0-measurable and let (~, . ) and (~, . )
be their indicator functions. Clearly, the meaning of the random variables
cv -~ (~, cv) is the same as before and we get the following
result.

THEOREM 2.9. - The hypotheses are exactly the same as in Theorem 2.5.
~+ --3 p~+ be any continuous function such that ~(t) = oc.

Then the following statements hold:

( 1 ) If g’ (uo, 0) ~ 0 and if the limit

exists (with a* _ allowed), we have

exists (with b* _ allowed), we have

Remark. - The conclusions of Theorems 2.5, 2.6, 2.9 and their corollaries
hold for an important class of Gaussian processes. Thus, assume that

~s(t, .))tE~ is a stationary Gaussian random process on (X, 0, P) of average
s> and continuous two-point correlation function p such that hypothesis
(S) holds. Let a : !~ --~ R+ be the function defined by

and assume that a* > 0. Then it is clear that hypothesis
(CLS) holds, for we have

Annales de l’Institut Henri Poincare - Analyse non linéaire
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and

for every a* E R U ~ ~ oo ~ as t -~ 00. It is interesting to note here that the
class of Gaussian processes just described includes the Ornstein-Uhlenbeck
process for which  s >= 0 and p(t) = E(s(t, .)s(0, .)) = in

which case we get a(t) = 0(t) as t - oo. This process is, of course, not
only ergodic but also exponentially mixing and Markovian ([10] , [14],
[23]). Thus, if (s(t, is an Ornstein-Uhlenbeck process the oscillation

pattern of ~c~ between the two stationary states Uo and ~c~ sets in.
The preceding remark makes it natural to ask whether similar results

obtain when the statistics of the random process (s(t, are governed
by normal distributions in such a way that the condition limt~~
(J* > 0 does not hold. We shall now see that this is indeed the case, which is

hardly a surprise since normal distributions already lurk in relation (2.23).
The precise conditions are stated in the following hypothesis.
(NS) The random process (s(t, .))teR is a stationary Gaussian process on
(X, .~’, ~ ) of average  s > and continuous two-point correlation function
p such that limt~~ a(t) = oo.
The following results also play an important role in our analysis of the

homogeneous multiplicative white noise in [9]. We begin with

THEOREM 2.10. - Assume that hypotheses (K), (S), (G) and (NS) hold.
Assume also that the initial datum cp is non-random. Then the following
statements are valid :

(1) For any function a : (uo, such that the limit

exists (with a* _ allowed), we have
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(2) For any function b : R+ - (uo, ul ) such that the limit

exists (with b* _ allowed), we have

Our next result allows us to get the asymptotic probabilities of

stabilization for u~ around the stationary states uo and ul.

THEOREM 2.11. - The hypotheses are exactly the same as in Theorem 2.10.
Let 03A6 : R+ ~ R+ be any continuous function such that = oc.

Then the following statements hold :

(1) If g’(uo, 0) ~ 0 and if the limit

exists (with a* _ ~ oo allowed), we have

(2) If g’ (~cl , 0) ~ 0 and if the limit

exists (with b* _ allowed), we have

Finally, our general result concerning the average times is the following.
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THEOREM 2.12. - The hypotheses are exactly the same as in Theorem 2.10.
If~+ --~ be any continuous function such that = oo,

and let (~, .) and (~, .) be the indicator functions of the sets
(~) and (~) as defined by relations (2.40) and (2.41).. Then the

following statements hold :

(~) If g’(uo, 0) ~ 0 and if the limit

exists (with a* _ ~ oo allowed), we have

(2) If g’ (ul , 0) ~ 0 and if the limit

exists (with b* _ allowed), we have

The implication of the preceding three theorems is that results similar to
Corollaries 2.4, 2.7 and 2.8 hold in the Gaussian case as well. In particular,
the oscillation patterns of the random field ~c~ also take place in the Gaussian
case when  s > = 0, > 0, g’ ( ~c 1, ~ )  0. Evidently, the condition

a(t) - oo implies that the integrated process (~o d~s(~, .))tE~ cannot be P-
almost surely bounded in time. Oscillation patterns such as those described
above are therefore related to the unboundedness of t --~ J; d ~s (~, . ) in

an essential way.
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Relnarks.

1. A glance at the proofs given in Section 3 shows that the statements
of the last eight theorems and corollaries still hold for random initial
conditions cp, provided that there exists a constant c such that the
inequalities Uo + c  w)  c hold This last condition

is, however, somewhat artificial.

2. The random process (s(t, and all the indicator functions

introduced above are continuous in probability. In the first case this
property follows from hypothesis (S). In the second case it follows

from the continuity of the fonction iF. As is usual, we may therefore
assume that those random processes are jointly measurable in (t, c~)
and make no further mention of the matter ([14]). This will justify all
our subsequent applications of Fubini’s theorem.

The complete proofs of all results will be given in the next section.

3. PROOF OF THE MAIN RESULTS

We begin by outlining briefly our strategy regarding the proof of
Theorem 2.1. Our analysis rests upon the introduction of a one-parameter
family of auxiliary random fields x (~~ x .X -~ R+ indexed by
a real parameter a, which satisfy P-almost surely a parabolic differential
inequality when |03B1| is sufficiently large. To show what kind of random
fields we are looking for we first recall that every x-independent random
process that solves Problem (1.1) P-almost surely is necessarily
of the form (2.4). Since G is strictly monotone, we next observe that for
any a E fR/{0}, we can rewrite relation (2.4) as

for some random variable v*03B1 : X ~ R+ and for some  E (uo, Then,

given ~c~ that solves Problem (1.1) P-almost surely, we define the iy s
as the random fields whose relationship to ~c~, is formally identical to the
relationship between v*03B1 and in (3.1). This gives
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or equivalently

We then proceed by showing that va stabilizes P-almost surely around
some random variable v~ : X 2014~ R+ in L1(f2) as t -~ o~. Of course, this
will determine va uniquely, which in turn will determine the unique random
process (u(t, of Theorem 2.1 by means of relation (3.1). From this
we shall easily infer both statements of Theorem 2.1.
The derivation of a parabolic differential inequality for va requires the

control of the dependence of g on This is accomplished by using
the quadratic growth estimate of hypothesis (QG). The precise result is

the following.

LEMMA 3.1. - Given the random field let va be the random field
given by relation (3.3) where a E and ,~ E (uo, Then for ~~~
sufficiently large we have I? -almost surely

Proof - We first note that

so that va satisfies P-almost surely the homogeneous conormal boundary
condition in (3.4) since ~~ does. In order to prove that the differential
inequality in (3.4) holds P-almost surely, we calculate each term separately
from relation (3.3) by making use of the first equation in (1.1). After
regrouping the various contributions we obtain P-almost surely

Vol. 15. n~ 2-1998.



212 1. D. CHUESHOV AND P.-A. VUILLERMOT

Since va is positive, we see that the right-hand side of (3.6) is P-almost

surely non-negative if, and only if, the inequality

holds P-almost surely. In order to prove inequality (3.7) for sufficiently
large, we now have to distinguish the case a > 0 from the case a  0. If

a > 0, then relation (3.7) holds if, and only if, the inequality

holds P-almost surely. In order to prove this last inequality for ex > 0

sufficiently large, we construct a lower bound for the left-hand side and an
upper bound for the right-hand side of (3.8) which still satisfy the above
inequality for a > 0 large enough. Let m = ~u (~c, 0) and
choose ex E R+ n (m, oo); on the one hand, by invoking the first inequality
in (1.2) we obtain

P-almost surely. On the other hand, owing to the boundedness of

~c -~ g(u, 0), that of the random process (s(t, .))tE~ and by using hypothesis
(QG) we get

P-almost surely for some c E (Q, Inequality (3.9) together with
the right-hand side inequality (3.10) then prove relation (3.8) for
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a E R+ n [m + cl~-1, Now if a  0, then relation (3.7) holds if,
and only if, the inequality

holds P-almost surely. In order to prove this inequality for a  0 small

enough, we construct an upper bound for the left-hand side and a lower
bound for the right-hand side of (3.11) which still satisfy the above

inequality for ~x  0 sufficiently small. Let m = ~u (~, 0) and
choose a E 0~- n (-oo, m); on the one hand, by invoking the ellipticity
condition of the random field k once again we obtain

P-almost surely. Inequality (3.12) and the left-hand side inequality (3.10)
then prove relation (3.11 ) for a E n (-00, m - ck-1]. The preceding
considerations show that there exists ao > 0 such that inequality (3.7)
holds P-almost surely for every a E with lal > ao. D

Remark. - A glance at relation (3.7) shows that if the nonlinearity g
does not depend on Vu, then the first relation in (3.4) holds if, and only
if, the inequality

holds P-almost surely. The important point here is that the left-hand side of
(3.13) does not depend explicitly on the random process so that

inequality (3.13) is true for lal ( sufficiently large without any boundedness
condition on (s(t, .))tER. Thus, in this case the parabolic inequality (3.4)
holds for all random processes with P-almost surely Holder continuous
trajectories. 

-

In order to prove that v~ stabilizes around some positive random variable
v: : ~~ --~ R+ in Ll (S~), we need a few more preparatory results. The first
one is an easy consequence of Lemma 3.1.
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LEMMA 3.2. - There exist two random variables v±03B1 : X - R+ such
that the inequalities

hold I? -almost surely for a > 0 sufficiently large and for every t E R+.

Proof - Let ao > 0 be the positive constant in the proof of Lemma 3.1.
For > ao , define the random variable = then

for every (x, t) E rl x R+ we have v03B1(x, t, 03C9) ~ va (c,v)  oo P-almost

surely by the parabolic maximum principle applied to Problem (3.4). If

a > ao, this implies that t, w) _ t, cv))-1  P-

almost surely because of relation (3.3), which means that there exists a
random variable va : X -~ R+ such that the inequalities 0  va (cv) 
v~ (x, t, w) hold P-almost surely for every (x, t) E ~ x f~+ ; in fact, it is

sufficient to choose v-03B1 = (v+-03B1)-1. D

The next result is also critical to our proof of convergence. It involves
yet another auxiliary random field for which we can prove a property
of exponential dichotomy in L2(rl) by means of a simple version of
the Poincare-Wirtinger inequality. We write I for the identity operator in
L2 (S’Z), ~ ~ . ~ (2 for the usual L2-norm and Q for the orthogonal projection
operator onto the constant functions, that is Q f = for

every f E 

LEMMA 3.3. - Given the random field let va be the random field
given by relation (3.3). Let T > 0 and let v be the random field that solves
IP-almost surely the linear initial-boundary value problem

Then the following statements hold : .-

( 1 ) We have va ( . , t, cv )  v ( . , t, cv ) P -almost surely for ] sufficiently
large and for every t E [T, 

(2) The equality Qv(., t, cv) = Qv03B1 (., T, cv) holds P-almost surely for
every 03B1 E and for every t E 

(3) Let k be the ellipticity constant in relation (1.2) and let ~~ be the
largest negative eigenvalue of the L2(03A9)-realization of Laplace ’s
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operator on HN2. Then the inequality

Proof - Statement (1) is an immediate consequence of relations (3.4),
(3.15) and of the parabolic maximum principle applied to the difference
va ( . , t, c,~ ) - v ( . , t, w ) . As for statement (2), the second relation in (3.15)
implies that Qv(., T, c.vj = T, w) so that it is sufficient to prove the
relation Q v ( . , t, w ) == Qv(., , 03C9) P-almost surely for every t E [r, (0). But
this relation is clearly satisfied since from the first and third equations in
(3.15) and owing to the definition of Q we get

P-almost surely by invoking Gauss’ divergence theorem. We now prove
statement (3). We first notice that the projected random field (I - Q ) v ( . , t, w )
satisfies the same linear initial-boundary value problem as v does since Q
commutes with the differential operator in (3.15). This means that we have
P-almost surely

By using successively relations (3.18), integration by parts and the first

inequality in (1.2) we then get P-almost surely .
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for every t E (T, oo ) . Now since the operator I - Q amounts to subtracting
off the spatial average of the function, an L2 (Q)-version of the Poincaré-
Wirtinger inequality gives

P-almost surely for every t E ~T, oo~ (see for instance [5] and [21] for a
discussion of the general Poincare-Wirtinger inequality). The substitution
of relation (3.20) into relation (3.19) then leads to

for every t E (T, oo), which immediately implies relation (3.16) because
of the initial condition in (3.15). 0

The preceding results now allow us to give the following.

Proof of Theorem 2.1. - According to the general strategy outlined above
we first prove that for ex > 0 sufficiently large, there exists a random
variable X -~ I~+ such that --~ ~ P-almost

surely as t -3 00. We first note that the operator Q is positivity preserving.
Then the application of Q on both sides of the differential inequality (3.4)
along with the boundary condition in (3.4) imply that 0

P-almost surely. Consequently, the function t ~ is mono-
tone decreasing on (0, oo) and we define the random variable v~
by v*03B1(03C9) = inft~R+0 Qv03B1(., t, 03C9) = We then have

P-almost surely the estimates

where ( v~ ( . , t , c,v ) - denotes the positive and the negative
part of v~ ( .. t. c.~ ) - respectively. The last equality in (3.22)
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follows from the fact that

Now by definition of the random variable va, the second term of (3.22)
converges to zero P-almost surely as t -~ oo. It remains to show that the first
term of (3.22) converges to zero as well. For every t E [r, oo ), define the set
S2t (03C9) of those x ~ 03A9 such that the inequality va (x, t, cv) - Qv03B1 (., t, cv) > 0
holds. Using successively the first two statements of Lemma 3.3, Schwarz
inequality and the third statement of Lemma 3.3, we obtain P-almost surely

for every t E ~T, oo ) . Since T > 0 is arbitrary in the first place, we can
choose T = t/2 and invoke the upper bound of Lemma 3.2 along with
the fact that t --~ Qva (., t, w) is monotone decreasing. From relation (3.23)
we get P-almost surely

which implies the desired result as t -~ oo. Now from relations (3.14) of
Lemma 3.2 we infer that the inequalities
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and

hold P-almost surely. From relations (3.1), (3.2), (3.25), (3.26), the fact
that G-1 has a uniformly bounded derivative on R, we then conclude that

P-almost surely as t -~ oo, so that ~c~(., t, c,.v) - ic(t, cv) -~ 0 P-almost
surely strongly in Since E ic(t, cv) E 
P-almost surely for any t E we have

P-almost surely for some c E (0, oo), so that relation (2.2) holds for

every p E [1, oo). Relation (2.3) then follows immediately from dominated
convergence. D

Remark. - A glance at all the preceding proofs shows that the

boundedness of the random process (s(t, is required only in Lemma
3.I. This observation and the remark following the proof of Lemma 3.1
then lead to the conclusion of Remark (1) following the statement of

Theorem 2.1.

We now turn to the proof of Theorem 2.2, for which we need additional
preparatory results. We begin by stating the existence of some uniform
bounds that pertain to the random field 

LEMMA 3.4. - There exists a constant c E (0, oc) such that the two
estimates

hold P-almost surely.
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Proof. - Since we have E P-almost surely
for every (x, t) E S~ x R+, there exists cf E (0, oo) such that

 c holds P-almost surely. The fact that

inequality (3.27) holds then follows from the standard a priori estimates
for quasilinear parabolic equations [20]. The second inequality (3.28) is an
immediate consequence of (1.3) and (3.27). D

Our next preparatory result provides a proof of condition (2.5).

LEMMA 3.5. - For every ~y G ( 0, oo ) and every p E we have

P-almost surely

Proof - We first notice that the projected random field (I - cv)
satisfies P-almost surely the initial-boundary value problem

By using successively relations (3.30), integration by parts, the first

inequality in (1.2), the boundedness of (s(t, along with inequality
(3.28), we obtain P-almost surely
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for some c E (0, oc). For E (0, oo) we now integrate inequality (3.31)
over the interval [t, t + -yJ ; we then get P-almost surely the estimate

which in turn leads to the inequality

Owing now to the fact that the random process (2.4) is x-independent
and that the operator I - Q is an orthogonal projector in L2 (S~), we have
P-almost surely

as t -~ oo, by virtue of Theorem 2.1 for p = 2. Schwarz inequality and
relations (3.33), (3.34) then imply that the estimates

hold P-almost surely for every -/ E (0, ~). This and the a priori
estimate (3.27) now imply relation (2.5) or (3.29). 0

The passage from relation (2.5) to the first statement of Theorem 2.2 relies
on hypothesis (LEO) in an essential way. We first show that the existence
of the family of random linear evolution operators (U(t, T. allow~s
us to get the following integral representation for the projected random
field (~ - Q)~c,~(.. t, w).
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LEMMA 3.6. - For every 7 E ( 0, oo ) and every t E [r,oo) we have
P-almost surely

Proof. - Relation (3.36) is an immediate consequence of the variation

of constants formula, together with the observation that the relations

(I - Q) U(t, T, cv) = U(t, T, cv) (I - Q) and (I - t, c~’), 0) = 0
both hold P-almost surely. D

We can now give the following

Proof of Theorem 2.2. - We begin by proving --~ 0

P-almost surely as t -~ oo for every p E [1, oo). Since the a priori estimate
(3.27) holds, it is sufficient to prove the result for p = 1. Our first objective
is to prove that

P-almost surely. By using successively Lemma 3.6, hypothesis (LEO),
the boundedness of the random process (s(t, .))teR and a limited Taylor
expansion for g we obtain P-almost surely the estimates

for every T, T E (0,oo), every t E (r, r + T] and some c(T) É (0, oo).
Now let j3 E (1,2) and let ,C~* E (2,oo) be the dual exponent. Clearly,
the function £ -~ (t - ~) -’~ is integrable on (r, t) so that we can invoke
Holder’s inequality to handle the second term in the last term of relation
(3.38). We obtain P-almost surely the inequality
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for some T) E (0, 00 ). The substitution of relation (3.39) into relation
(3.38) then leads P-almost surely to the estimate

for some T) E (0, oo) and for every T, T E (0, oo), t E (T, T + T].
Since we eventually want to investigate relation (3.40) for t sufficiently
large and since r > 0 is a priori arbitrary, we now consider estimate
(3.40) for T E [t - 2, t - 1]. Then estimate (3.40) implies P-almost surely
the inequality

, F i

for t large enough. Considering now inequality (3.41) as a function of r
and integrating both sides with respect to T over the interval [t - 2, t - I],
we obtain P-almost surely the estimate
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for t sufficiently large. Now by virtue of estimate (3.34), the first two terms
of relation (3.42) go to zero P-almost surely as t 2014~ oc, while the same

conclusion holds for the third term as a consequence of Lemma 3.5 so that

relation (3.37) holds. We now combine relation (3.37) with the ellipticity
estimate of relation (1.2) and integration by parts to get P-almost surely

as t -~ co. Equivalently, --~ 0 and hence
~ 0 P-almost surely for every p E as t ~ oc

because of the a priori estimate (3.27). This and Theorem 2. I now imply
that relation (2.8) holds. As in the proof of Theorem 2.1, relation (2.10)
then follows from dominated convergence while (2.9) and (2.11) follow
from the existence of the continuous embedding ~I 1 ~~ ( SZ ) ~ for p

sufficiently large ( ~ 1 ]). D

The proofs of the remaining theorems of Section 2 rely on yet another
version of the parabolic maximum principle. We begin with the proof of
Theorem 2.3, for which we need two preparatory results. In the first one
we prove structural inequalities for the nonlinearity g.

LEMMA 3.7. - Assume that 0. Then for every constant
c E (0, there exist real constants c1,2 E R such that the inequalities

hold for every y E (uo, c). Similarly, assume that 0) ~ 0. Then
for every constant c E (0, there exist real constants E (~ such

that the inequalities

hold for every y E (uo + c, u,1 ).

Proof - Define the function ho : (uo, ~ (I~ by

It follows from the first part of hypothesis (G) and from the appropriate
Taylor expansion around Uo that ho can be continued to [uo. and is
bounded on c] for every c E (0, uo). Furthermore, from the
definition of G and relation (3.46) we get
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for every fixed ~ E and every y E (uo, U1 - c). Now we infer
from the boundedness of ho that ] = 0(1) for such This

remark together with relation (3.47) imply relation (3.44). We can prove
inequalities (3.45) in a similar way by introducing the function

In the following lemma, we establish a comparison between the random
field and certain random processes of the form (2.4).
LEMMA 3.8. - Given the random field there exist two random processes

(i~_(t,, and (~c+(t, .) )tE of the form (2.4) such that the inequalities

hold IP -almost surely for every t E ~+.

Proof. - Since SZ is compact and since c~p ( ., c.~ ) is continuous P-as., there
exists a random variable c such that the inequalities uo + c(w)  c.~) 

hold for every x E n. Now let (u_ (t, .) )tE be the random
process of the form (2.4) generated by the initial condition uo + c(c,~) ; in
a similar way, let (u+(t, be the random process of the form (2.4)
generated by the initial condition Since the two random processes

(û±(t, .))t~R and the random field u03C6 satisfy the same parabolic boundary-
value problem, inequalities (3.48) follow from the parabolic maximum
principle ([15]). D

Our proof of Theorem 2.3 now follows from Lemmata 3.7, 3.8 and the
Birkhoff-Khintchin pointwise ergodic theorem.

Proof of Theorem 2.3. - We begin by proving statement ( 1 ) . Since

 s >  0 implies that ~o d~s ( ~, c,~ ) ~ - oe P-almost surely when t -~ ~x,
we may assume that w)  c for some fixed c E (0, uo ) and
t sufficiently large. By using successively the second inequality in (3.44),
the second inequality in (3.48) and relation (2.4) we then get

or
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P-almost surely. Inequality (3.49) together with the Birkhoff-Khintchin

pointwise ergodic theorem now imply that the estimate

holds P-almost surely. Now, by using successively the first inequality
in (3.44), the first inequality in (3.48) and relation (2.4), we obtain the
sequence of estimates

or

P-almost surely. Inequality (3.51) along with the Birkhoff-Khintchin

pointwise ergodic theorem once again imply that the estimate

holds P-almost surely. Relation (2.14) then follows from relations (3.50)
and (3.52). If  s > > 0, a similar reasoning based on inequalities (3.45)
and Lemma 3.8 leads P-almost surely to the estimates

which give relation (2.15). D

The proof of the corollary concerning the average times is now

elementary.

Proof of Corollary 2.4. - Assume that  s >  0, g’ (~o, 0) > 0

and let E E (0, 0)). Let T* E (0, oc), let be as in

relation (2.18), let be the indicator function of and let

6 > 0. Since the P-almost sure convergence of Theorem 2.3 implies the
convergence in probability, there exists 8) > 0 such that the sequence
of estimates

Vol. 15. n ’ 2-1998.



226 1. D. CHUESHOV AND P.-A. VUILLERMOT

holds for every t E ( t ( ~ . ~ ) , oe ) . In order words we have

for every t E (t,(~, b), oc), which proves the first statement of the lemma.
The proof of the second statement is similar. D

Lemma 3.8 plays a fundamental role in the remaining part of this section
as well. The basic strategy amounts to getting estimates for the probability
of various events associated with the random processes .))~E~ ; such
estimates can be readily derived from the hypotheses concerning the random
process through the explicit form (2.4). We can then transfer
the corresponding information over to the random field ~c~ through the
comparison Lemma 3.8. We begin with the following

Proof of Theorem 2.5. - Owing to Lemma 3.8, we first notice that

where a : fR~ -~ is the function that appears in the first statement
of Theorem 2.5. It is therefore sufficient to estimate the long-time behavior
of the probabilities P{w EX:  a (t) ~ . Write momentarily

for the two random processes of Lemma 3.8

and write cp = uo + c, cp = c for their initial non-random conditions.

Refering back to the explicit form (2.4) and recalling that the function G
is strictly monotone increasing, we obtain

J
for every t, ~ Now let a* be as defined by relation (2.24) ; if I  x

then for every ~ > 0 there exists t,= > 0 such that the inequalities
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hold for every t E oo ) . Invoking now hypothesis (CLS) and relations
(3.56), (3.57) we obtain

for every E > 0. By observing that a* does not depend on the initial

condition cp and by letting 6; ,~ 0 we get

Relations (3.55) and (3.59) then prove the first statement of the theorem
when ]  oo. A slight variation of the above argument also shows that
relation (3.59) holds when a* = Finally, we can prove the second
statement in a similar way if we notice that

where b : R+ - (uo, ui) is the function that appears in the second

statement of Theorem 2.5. D

It is now easy to prove Theorem 2.6 by making suitable choices for the
functions a and b of Theorem 2.5. For this we need the following

for every ~ > 0 sufficiently small. Similarly, if g’ (u1. 0) -# 0 have

for every ~ > 0 sufficiently small.
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Proof. - Choose ~ _ uo + E in relation (3.44) in

relation (3.45). D

Then we have the following

Proof of Theorem 2.6. - For any constant c E (0, oo) we choose
a(t) = Uo + Since ~(t,) -~ oo when t --~ oo we have

a(t) E (uo, for t sufficiently large and

Now for the above choice of a and because of relation (3.61) of Lemma
3.9 we have

Relations (3.63), (3.64) and the second statement of Theorem 2.5 then
prove relation (2.29). We can prove the second statement of the theorem
in a similar way by choosing b(t) = ul - and by invoking
relation (3.62) of Lemma 3.9. D

Having disposed of Theorem 2.6, we can now prove Corollary 2.7 by
making very specific choices for the function ~, which allow an explicit
evaluation of the numbers a* and b* given by relations (2.28) and (2.30).
For this we have to distinguish the case s> = 0 from the case s> ~ 0.

Proof of Corollary 2.7. - If  s >  0 and g’(uo,0) > 0, let

~ E (o, 0)) and choose ~(t) _ -( s > g’(uo, 0) + ~)t in

Theorem 2.6. Then a* _ +00 from relation (2.28) so that

as t -~ x because of relation (2.29). But if ~(t) _ -(cs> 0) - ~.)t
then a* 1= 2014oc so that

as t -~ oc by switching to the complementary event. Relations (3.65)
and (3.66) then immediately imply relation (2.32). In a similar way we
can prove relation (2.33) when  s > > 0 and g’ (~1. o)  o. Finally, if

s>= 0, > 0, y’(~cl. 0)  0 and if ~. ~* : R+ - (f~+ are any
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two continuous functions such that w(t) ~ oo, ~~‘(t) -~ oo and -~2014 --~ oo

as t --~ 00, we choose ~(~) = ~ ) in relations (2.28) and (2.30). Then
a,* = b* = 0 so that the relations

and

hold simultaneously as t --~ oo. But if then a* = -oo
and b* = oo so that

and

as t ~ oo, again by switching to complementary events. Relations (3.67)
and (3.69) then imply relation (2.34), while relations (3.68) and (3.70)
imply relation (2.35). D

We next observe that there is no need to prove Corollary 2.8 directly,
for the preceding considerations and the above choices of 03A6 for the case

s> = 0 show that Corollary 2.8 is a simple consequence of Theorem 2.9.
Therefore, we now turn to the proof of that theorem.

Proof of Theorem 2.9. - We begin by observing that

From relation (3.71) and the first statement of Theorem 2.6 we then infer
that

as t -~ oo for every T * E The proof of the second statement of
Theorem 2.9 is similar. 0
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Finally, we devote the remaining part of this section to proving the
results of Section 2 that are relative to the case where the random process

(8( t, satisfies hypothesis (NS). Lemma 3.8 plays an essential role
here as well. We begin with the following.

Proof of Theorem 2. 10. - As in the proof of Theorem 2.5, it is sufficient to
estimate the long-time behavior of the probabilities P{03C9 EX: 
a(t) ~ where ~u~ (t..) ~tE~ are the two random processes of Lemma 3.8,
and where a : R+ ~ (u0, u1) is the function that appears in the first

statement of Theorem 2.10. By using the same notation as in the proof of
Theorem 2.5 and by noticing that the integrated process t ~ Jo d~s (~, ~ ) is

Gaussian as well, with average s> t and variance given by relation
(2.47), we obtain

for every t E Invoking then relation (2.49) and the fact that a(t) -~ oc
as t 2014~ oo we obtain

independently of the initial condition cp. This and relation (3.55) then imply
relation (2.50). We can carry out the proof of relation (2.52) in a similar
way. D

It is now clear that Theorem 2.11 follows from Theorem 2.10 in

exactly the same way as Theorem 2.6 follows from Theorem 2.5, and
that Theorem 2.12 follows from Theorem 2.11 l exactly as Theorem 2.9

follows from Theorem 2.6.

4. SOME CONCLUDING REMARKS

In this paper we have investigated the long-time behavior of random fields
that are P-almost surely classical solutions to quasilinear parabolic problems
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with random coefficients of the form (1.1) when hypotheses (K), (S) and (G)
hold. We have obtained the most complete and precise results for the case
where the lower-order coefficients (s( t, .) )tE are either stationary random
processes whose statistics obey the central limit theorem, or stationary
Gaussian processes such as the Ornstein-Uhlenbeck process. In both cases,
we have shown that a P-almost sure solution to (1.1) first homogeneizes
over the region 03A9 to identify eventually with an x-independent random
process of the form (2.4), and then either converges to a spatially
and temporally homogeneous asymptotic state or undergoes oscillations
between two such asymptotic states. In both cases we have also determined
the corresponding rates of stabilization along with the average times that
the random fields spend in small neighborhoods of the asymptotic states.
Related results hold in case (s(t, .)~tE~ is homogeneous multiplicative white
noise, provided that Problem (1.1) be semilinear and that the nonlinearity g
does not depend on We develop and present these results in [8] and [9].

ACKNOWLEDGEMENTS

The final version of this paper was written while the first author was

visiting the Institut de Mathematiques de Jussieu (Paris-VI and Paris-

VII) and the Institut Elie Cartan (Nancy-I). He would like to thank the
people at both institutions for their very kind hospitality. He also gratefully
acknowledges the financial support of the CNRS and of the University
Henri-Poincare (Nancy-I). The research of the second author was supported
in part by the Institute for Mathematics and its Applications in Minneapolis
with funds from the National Science Foundation of the United States of

America. He would like the thank Professor A. Friedman for his invitation.

REFERENCES

[1] R. A. ADAMS, "Sobolev Spaces", Academic Press, New York-London, 1975.
[2] D. G. ARONSON and H. F. WEINBERGER, Nonlinear Dynamics in Population Genetics,

Combustion and Nerve Pulse Propagation. In Partial Differential Equations and Related
Topics, J. A. Goldstein, Ed., pp. 5-49, Lecture Notes in Mathematics, Vol. 446,

Springer-Verlag, Berlin-Heidelberg-New York, 1975.

[3] S. R. BERNFELD, Y. Y. Hu and P. VUILLERMOT, Homogénéisation Spatiale et Équivalence
Asymptotique pour une Classe d’Équations Paraboliques Semilinéaires Non Autonomes,
C. R. Acad. Sci. Paris, Vol. 320, Série I, 1995, pp. 859-862.

[4] S. R. BERNFELD, Y. Y. Hu and P. VUILLERMOT, Large-Time Asymptotic Equivalence for
a Class of Non-Autonomous Semilinear Parabolic Equations, Bull. Sci. Math., 1998
(in press).

[5] H. BRÉZIS, Analyse Fonctionnelle : Théorie et Applications, Masson. Paris-New York, 1983.
[6] P. BRUNOWSKI, P. POLACIK and B. SANTSEDE, Convergence in General Periodic Parabolic

Equations in One-Space Dimension, Nonlinear Analysis TMA. Vol. 18, No. 3. 1992.

pp. 209-215.

Vol. 15. nr 2-1998.



232 1. D. CHUESHOV AND P.-A. VUILLERMOT

[7] I. D. CHUESHOV and P. VUILLERMOT, On the Large-Time Dynamics of a Class of Random
Parabolic Equations, C. R. Acad. Sci. Paris, Vol. 322, Série I, 1996, pp. 1181-1186.

[8] I. D. CHUESHOV and P. VUILLERMOT, On the Large-Time Dynamics of a Class of Parabolic
Equations Subjected to Homogeneous White Noise: Stratonovitch’s Case, C. R. Acad.
Sci. Paris, Vol. 323, Série I, 1996, pp. 29-33.

[9] I. D. CHUESHOV and P. VUILLERMOT, Long-Time Behavior of Solutions to a Class of
Stochastic Parabolic Equations with Homogeneous White Noise: Stratonovitch’s Case,
1997 (preprint).

[10] I. P. CORNFELD, S. V. FOMIN and Ya. G. SINAI, Ergodic Theory, Springer-Verlag,
Berlin-Heidelberg-New York, 1982.

[11] E. N. DANCER and P. HESS, Stable Subharmonic Solutions in Periodic Reaction-Diffusion
Equations, J. Differential Equations, Vol. 108, No 1, 1994, pp. 190-200.

[12] E. N. DANCER and P. HESS, Stability of Fixed Points for Order Preserving Discrete-Time
Dynamical Systems, J. Reine Angew. Math., Vol. 419, 1991, pp. 125-139.

[13] D. DANERS and P. KOCH MEDINA, Abstract Evolution Equations, Periodic Problems and
Applications, Pitman Research Notes in Mathematics Series, Langman Sci. Techn.,
Harlaw, Vol. 279, 1992.

[14] A. FIGOTIN and L. PASTUR, Spectra of Random and Almost-Periodic Schrödinger Operators,
Springer-Verlag, Berlin-Heidelberg-New York, 1992.

[15] A. FRIEDMAN, Partial Differential Equations of Parabolic Type, Prentice Hall, Inc.,
Englewood Cliffs, N.J., 1964.

[16] P. HESS and H. F. WEINBERGER, Convergence to Spatial-Temporal Clines in the Fisher
Equations with Time-Periodic Fitnesses, J. Math. Biol., Vol. 28, No. 1, 1990, pp. 83-98.

[17] P. HESS, Periodic Parabolic Boundary-Value Problems and Positivity, Pitman Research
Notes in Mathematics Series, Vol. 247, Langman Sci. Tech., Harlaw, 1990.

[18] T. KATO, Abstract Evolution Equations of Parabolic Type in Banach and Hilbert Spaces,
Nagoya Math. Journal, Vol. 19, 1961, pp. 93-125.

[19] T. KATO Perturbation Theory for Linear Operators, Springer-Verlag, Berlin-Heidelberg-New
York, 1982.

[20] O. A. LADYZENSKAYA, N. N. URALTCEVA and V. A. SOLONNIKOV, Linear and Quasilinear
Equations of Parabolic Type, Amer. Math. Soc. Transl. of Math. Monographs, Vol. 23,
1968.

[21] J. NEÇAS, Introduction to the Theory of Nonlinear Elliptic Equations, John Wiley and
Sons, New York, 1986.

[22] A. PAZY, Semigroups of Linear Operators and Applications to Partial Differential Equations,
Springer-Verlag, Berlin-Heidelberg-New York, 1983.

[23] B. SIMON, Functional Integration and Quantum Physics, Academic Press, New York-
London, 1979.

[24] P. TAKAC, Linearly Stable Subharmonics in Strongly Monotone Time-Periodic Dynamical
Systems, Proc. Am. Math. Soc., Vol. 115, No. 3, 1992, pp. 691-698.

[25] P. VUILLERMOT, Almost-Periodic Attractors for a Class of Non-Autonomous Reaction-
Diffusion Equations on RN, I. Global Stabilization Processes, J. Differential Equations,
Vol. 94, No. 2, 1991, pp. 228-253.

[26] P. VUILLERMOT, Almost-Periodic Attractors for a Class of Non-Autonomous Reaction-
Diffusion Equations on RN, II. Codimension-One Stable Manifolds, Differential and
Integral Equations, Vol. 5, No. 3, 1992, pp. 693-720.

[27] P. VUILLERMOT, Global Exponential Attractors for a Class of Almost-Periodic Parabolic
Equations on RN, Proc. Am. Math. Soc., Vol. 116, No. 3, 1992, pp. 775-782.

[28] P. VUILLERMOT, Almost-Periodic Attractors for a Class of Non-Autonomous Reaction-
Diffusion Equations on RN, III. Center Curves and Liapounov Stability, Nonlinear
Analysis TMA, Vol. 22. No. 5. 1994, pp. 533-559.

(Manuscript received January 22, 1996. ) >

Annales de I ’Institut Henri Poincaré - Analyse non linéaire


