
ANNALES DE L’I. H. P., SECTION C

THOMAS BARTSCH
A generalization of the Weinstein-Moser
theorems on periodic orbits of a hamiltonian
system near an equilibrium
Annales de l’I. H. P., section C, tome 14, no 6 (1997), p. 691-718
<http://www.numdam.org/item?id=AIHPC_1997__14_6_691_0>

© Gauthier-Villars, 1997, tous droits réservés.

L’accès aux archives de la revue « Annales de l’I. H. P., section C »
(http://www.elsevier.com/locate/anihpc) implique l’accord avec les condi-
tions générales d’utilisation (http://www.numdam.org/conditions). Toute uti-
lisation commerciale ou impression systématique est constitutive d’une
infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIHPC_1997__14_6_691_0
http://www.elsevier.com/locate/anihpc
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


A generalization of the Weinstein-Moser theorems
on periodic orbits of a Hamiltonian system

near an equilibrium

Thomas BARTSCH

Ann. Inst. Henri Poincaré,

Vol. 14, n° 6, 1997, p. 691-718 Analyse non linéaire

Mathematisches Institut, Universitat Giessen,
Amdtstr. 2, 35392 Giessen, Germany.

ABSTRACT. - We study the Hamiltonian system JH’ (x) where
H E C2 {(~2N, ~) satisfies H (0) = 0, H’ (0) = 0 and the quadratic
form Q (x) = 2 (H" (0) x, x) is non-degenerate. We fix To > 0 and

assume that N E 0 F decomposes into linear subspaces E and F
which are invariant under the flow associated to the linearized system

JH" (0) .r and such that each solution of (LHS) in E is To-
periodic whereas no solution of (LHS) in F - 0 is To-periodic. We write
a (To) = TQ (TO) for the signature of the quadratic form Q restricted to
E. If a (To) ~ 0 then there exist periodic solutions of (HS) arbitrarily
close to 0. More precisely we show, either there exists a sequence 0

of Tk-periodic orbits on the energy level H-1 (0) with Tk --~ To; or for
each A close to 0 with ~~ (TO) > 0 the energy level H-1 {~) contains
at ] distinct periodic orbits of (HS) near 0 with periods near
To. This generalizes a result of Weinstein and Moser who assumed Q ~ E
to be positive definite.

RESUME. - Nous considerons le systeme hamiltonien = JH’ (x)
ou H E C2 ((~2N, ~) satisfait H (0) = 0, H’ (0) = 0 et la forme

quadratique Q (x) = 2 (H" (0) x, x) est non-degeneree. Nous fixons To > 0
et supposons F est la somme des sous-espaces lineaires

E, F qui sont invariants sous le flot associe au systeme lineaire (LHS)
x == JH" (0) x. En plus chaque solution de (LHS) dans E est To-periodique
lorsqu’aucune des solutions de (LHS) dans F - 0 soit To-periodique. Soit
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692 T. BARTSCH

o- (TO ) == la signature de la forme quadratique Q restreint a E.
Si a ( TO) 7~ 0 il existe des solutions periodiques de (HS) arbitrairement
pres de 0. Plus precisement nous demontrons que ou bien il existe une

suite 0 des solutions Tk-périodique au niveau H-1 (0) avec Tk --~ To
ou bien pour chaque A pres de 0 tel que > 0 il existe au moins

solutions periodiques au niveau H -1 ( ~ ) pres de 0 avec des
periodes pres de To. Ce resultat generalise un theoreme de Weinstein et
Moser qui supposent que est positif defini.

1. INTRODUCTION

We consider the Hamiltonian system

where

H : 1~2N --~ R is of class C2, H (0) = 0, H’ (0) = 0; H" (0) is

non-singular and J = ( °I the usual symplectic matrix. Thus the
origin is an equilibrium and we are interested in periodic solutions of

(HS) in the neighborhood of the equilibrium. This is an old problem. It

is well known that periodic orbits near 0 can only exist if the linearized
Hamiltonian system

has non-trivial periodic solutions, that is, if JH" (0) has a pair of purely
imaginary eigenvalues a > 0. Simple examples show that this

necessary condition is not sufficient. We fix a period To = 2 k E N,
of the linear system and let E = E (To) be the space of periodic solutions
of (LHS) which have (not necessarily minimal) period To. Assume that E
has a complement F which is invariant under the flow associated to (LHS).
This means that all eigenvalues of JH" (0) which are integer multiples
of 203C0 i/03C40 = are semisimple. The Lyapunov center theorem [L]

guarantees the existence of a two-dimensional surface containing the origin
which is foliated by periodic orbits of (HS) provided dim E = 2. This

non-resonance condition has been removed by Weinstein [W 1 who proved
the following.

THEOREM (Weinstein 1973). - If the quadratic form Q (x) _
! (H" (0) x, x) is positive definite then for each ~ > 0 small there exists
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693A GENERALIZATION OF THE WEINSTEIN-MOSER THEOREMS

at least N geometrically different periodic orbits of (HS) on the energy
surface (~).
Two solutions ii, x2 are said to be geometrically different if their

trajectories x 1 ( f~ ) , X2 are disjoint, that is, if they are not obtained
from each other by time translation. Clearly H is a first integral of (HS).
Therefore the solutions can be parametrized by the energy but they do not
form smooth surfaces in general. In [M] Moser weakened the assumptions
of both the Lyapunov center theorem and Weinstein’s theorem.

THEOREM (Moser 1976). - If Q IE is positive definite then for each a > 0
small there exist at least 2 dim E geometrically different periodic orbits of
(HS) on (~) with periods near To.

In the case dim E = 2 the energy provides a smooth parametrization
of the periodic orbits. Thus, Moser recovers the Lyapunov center theorem.
If Q is positive definite then one can split f~21’~ N E ... 0 E (Tr)
into subspaces E (Ti) such that each E (Ti) consists of Ti-periodic orbits
of (LHS), and Tl, ... , Tr are rationally independent. Here we identify a
periodic orbit .c E with x (0) E Weinstein’s theorem follows

by applying Moser’s result to each of the E (TZ ) .
The goal of this paper is to prove the following result.

THEOREM 1.1. - Let = crQ (TO ) be the signature of the quadratic
form Q restricted to E = E (TO ) . If a (TO) ~ 0 then one of the following
statements hold.

(i) There exists a sequence of Tk-periodic orbits x~ of (HS) which lie on
the energy surface H-1 (0) - ~0~ with 0 and Tk ~ To as k -~ oo.

(ii) There exists ~o > 0 such that there are at least 2 ~ ~ (TO ) ~ geometrically
different periodic solutions of (HS) on (~) with periods near To for
0  ~ ~ ~ I  Ao > 0. These solutions converge towards 0 as
~ ~ 0.

The lower bound ) ] in (ii) is optimal. (Observe that a (TO) is an
even integer.) Moser’s theorem corresponds to the case a (ro) = dim E (TO ) .
It is not difficult to see that (i) cannot occur in this case. Whereas the
energy surface (A) will in general not be compact any more if Q is
not positive (or negative) definite, the intersection (A) n E is compact
if Q ~ E is positive definite. This compactness plays an important role in
Moser’s proof of his theorem. In order to prove Moser’s theorem one can
also apply Weinstein’s method for bifurcation of non-degenerate periodic
manifolds but again it is important that the manifold (A) n E is

compact; see [Wl, 2].
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694 T. BARTSCH

It is not difficult to see that a (To) 7~ 0 implies the existence of periodic
orbits near the origin. In [CMY] Chow, Mallet-Paret and Yorke use the
Fuller index in order to prove the existence of a connected branch of

periodic solutions bifurcating from the origin if a (To) 7~ 0. In the case

] = 2. Theorem 1.1 follows easily from their result. But they do
not obtain a multiplicity result as in 1.1 (ii) if I a (TO) ] > 2. Neither do
they obtain the direction of the bifurcating solutions, that is, whether the
solutions lie on (A) for A > 0 or A  0. On the other hand the result

of Chow et al. generalizes to ordinary differential equations with a first

integral. It is not needed that these are Hamiltonian. In general it cannot be
expected that the solutions obtained in 1.1 lie on connected branches which
bifurcate from the origin. A detailed count of the number of bifurcating
orbits parametrized by the period can be found in the paper [FR] by Fadell
and Rabinowitz. However, their result does not even imply the existence
of one periodic solution on every energy surface (A) with ~ ~ ~ small
and A . a (TO) > 0. In addition they do not obtain the direction of the
bifurcating solutions. It is interesting to observe that the periods of the
bifurcating solutions may be less than To or bigger than To. In other words,
the direction of the bifurcating solutions with the period as parameter is
not determined by the signature a (TO ) . Our paper can be considered as a
fixed energy analogue of the fixed period result of [FR]. As in [FR] we
shall apply variational methods and Borel cohomology. In addition we use
ideas from equivariant Conley index theory. It should be mentioned that

one can also prove the result of Fadell and Rabinowitz in a similar spirit.
Such an approach can be found in a paper by Floer and Zehnder [FZ] and,
for more general bifurcation problems, in [B 2] .

In a certain sense the non-triviality of the signature is a necesary and

sufficient condition for the existence of periodic orbits of (HS) near 0 if
one does not know anything about the higher order terms of H. Namely,
if Q is a non-degenerate quadratic form on 1R2N ;; E 0 F as above with

cr~ (TO/n) = 0 for all n E N then there exists a polynomial function
H (x) = Q (x) + o ( ~ ~ ~ ~ ~ 2 ) such that (HS) does not have any small periodic
solutions with period near To except 0. We shall prove this in § 6.
We conclude this introduction with a sketch of the proof of Theorem 1.1.

The T-periodic solutions of (HS) correspond to 1-periodic solutions of .

These in turn correspond to critical points of the action functional
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restricted to the hypersurface ~ x E X : ~-C { x ) _ ~ ~ . Here X =

Hl {S1, ~2N) consists of the absolutely continuous I-periodic functions
x : !R -~ 1R2N with X E L2 and

The period T appears as Lagrange multiplier in this approach. We perform
a reduction of the equation

near (TO, 0) to a finite-dimensional variational problem and are left with
the problem of finding critical points of a function

restricted to the level set {v E V : Ho (v) _ ~-l (v + u~ (v)) = ~~. Here
V is the kernel of the linearization

and iv : V D U (0) ~ V-~ C X is defined on a neighborhood U (0) of 0
in V. Thus V ~ E and one checks that Ao and Ho are of class C1 and
that Ho" (0) exists. In fact:

This suffices to apply the Morse Lemma to Ho near 0. After a change of
coordinates Ho looks near 0 like the non-degenerate quadratic form

Therefore the level surfaces ~-~Co 1 ( ~ ) look locally like the level surfaces of
q. If q is positive definite (which is just the situation of Moser’s theorem)
on can conclude the proof easily upon observing that the functionals A, H,
hence Ao, Ho are invariant under the action of S1 = R/Z on X induced
by the time shifts:

Moreover, (A) ~ (A) is diffeomorphic to the unit sphere SV of
V. And any C1-functional SV ~ R which is invariant under the action of
S1 has at least 2 dim V = 2 dim E S1-orbits of critical points.

This elementary argument from S1-equivariant critical point theory does
not work if q is indefinite. Instead we look at the local flow px on

a := (A) which is essentially induced by the negative gradient of
Ao ~a . Since Ao and ~o are only of class C1 the gradient vector field is

Vol. 14, n° 6-1997.



696 T. BARTSCH

of class C°, so it may not be integrable and has to be replaced by a locally
Lipschitz continuous gradient-like vector field which leaves ~~ invariant
for all A and whose zero set is close to the set of critical points of Ao ( ~a .
We are not able to apply standard minimax methods because the function
Ao is only defined near 0. The level surface ~~, C U (0) can be chosen
to be open manifolds or manifolds with boundary. In both cases it does

not seem possible to detect critical values by looking at a change in the
topology of the sublevel sets ,,40 = ~ v E ~ ~ : Ao ( v )  c}. However, one
observes that the hypersurfaces ~a change their topology as A passes 0.
In fact, they undergo a surgery. If 2 n~ (respectively 2 n- ) is the maximal
dimension of a subspace of V on which q is positive (respectively negative)
definite then ~+a is obtained from ~ _ ~ upon replacing a handle of type
B2n + X S2n- -1 by ~2n+ -1 x B2n -. It its this change in the topology of
~a near 0 which forces the existence of stationary orbits of p near the
origin. In order to analyze the influence of this change on the flow px we
use methods from equivariant Conley index theory and Borel cohomology.
If n+ > n- then as S1-spaces ~+03BB has a richer cohomological structure

The difference n+ - n- = 2 ~ o- (T° ) ~ ] is a lower bound for the

number of stationary S1-orbits of px on ~03BB if A > 0 is small.

The paper is organized as follows. In § 2 we present a variational

formulation of the problem and perform the finite-dimensional reduction.
Then in § 3 we collect a number of more or less known results on the

equivariant Conley index and how Borel cohomology can be used to analyze
equivariant flows. In § 4 we construct the locally Lipschitz continuous
vector field and begin to study the induced local flow. Finally in § 5 we
put the pieces together and prove Theorem 1.1. The paper concludes with
a number of remarks and related results in § 6.

2. VARIATIONAL FORMULATION

AND FINITE-DIMENSIONAL REDUCTION

The treatment of (HS) which we describe in this section is a generalization
of the one in [MW], Chapter 6, where a proof of Moser’s theorem is given.
We give a sketch which contains details whenever we deviate from [MW].
This is necessary in order to make the paper readable because our indefinite

case is not treated in the literature the way we need it and requires a
number of changes and additions.
We first recall that the subspaces E, F C 1R2N are symplectic subspaces,

that is, the symplectic form 03C9 (.r, y) = ( J x, ?/) is nondegenerate if restricted
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to E or F. After making a linear symplectic change of coordinates in 1R2N
we may therefore assume that the quadratic part Q of H has the form

Since each solution of (LHS) in E is periodic we may assume in addition
that

Here the 03B1k are integer multiples of Now we make a change of
variables and look at

Clearly, 1-periodic solutions of (HS)T correspond to T-periodic solutions of
(HS). We want to find 1-periodic solution of (HS)T for T near To and x near
0. Let X = H1 ( ~‘1 , ~2~r ) be the Sobolev space of 1-periodic functions
x : : !R 2014~ 1R2N which are absolutely continuous with square integrable
derivative. This is a Hilbert space with the usual scalar product

and associated norm = + In the sequel we shall also use
( , ) to denote the scalar product in 1~2‘~ . We define the action functional

and

It is well known (and not difficult to see) that A is a quadratic form of
class C°° and ?~ is of class C2 with derivatives

and

Thus a critical point x E (A) of (A) satisfies (HS)T with
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698 T. BARTSCH

appearing as Lagrange multiplier.
Since the action functional is strongly indefinite it is easier to make

a reduction to a finite-dimensional constrained variational problem first.

Let r := ,,4" ( 0 ~ - and V := ker/; C X. Then /: X -~ X

is a Fredholm operator of index 0. The kernel consists of the 1-periodic
solutions of

so E. The Hilbert space X decomposes into the orthogonal direct sum
of V and the image W of £ because £ is self adjoint. At this point we
also recall the action of ,~ l == IR/l on X given by translation. For x E X
and 03B8 E S1 we define Xe E X by setting

Clearly the scalar product in X is invariant under this action, i. e.

(xe, y03B8> = (x, y), and so are A and H : A(x03B8) = ;,4 (x) and
= ~-C (x) . Therefore £ is equivariant, i.e. ,C (xe ) = (,C x) e, and

V, Ware invariant subspaces of X. Let P : X --~ X be the orthogonal
projection onto V. We write x = v -f- w with v = P x, w = (I - P) x.
Now (HS)T is equivalent to the system

By the implicit function theorem (2.2) can be solved for w in terms of T,
v near v = 0, w = 0, T = To because £ : W -~ W is an isomorphism. In
a neighborhood U (TO, 0) in R x V (2.2) defines a Cl-map

such that (2.2) is satisfied near (TO, 0, 0) E I~ x V x W iff w = w* (T, v).
One easily checks that

Moreover, w* is equivariant: w* (T, ve ) = (w* (T, v) ) 8 . It remains to solve
the bifurcation equation

In order to do this we look at the quadratic form q induced by ~-C" (0) on V:
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We decompose V as V- such that q is positive definite on V+
and negative definite on V-. We write v = v+ + v- according to this
decomposition. Both subspaces can be chosen to be invariant under the
action of 81 on V. This implies that dim V+ = 2 n+ and dim V- = 2 n-
are even integers because there are no fixed points of the action except 0.
The signature of q on V is a (To) = 2 (n+ - n- ) .
Now we consider the inner product of equation (2.4) with v+ - v- .

Observing that the image of L is orthogonal to V this yields the equation

which is defined for (T, v) E U (TO, 0) c R x V. We want to solve this
for T in terms of v near (TO, 0). To this end we set

for v ~ 0 and

As in the proof of Lemma 6.11 of [MW] one checks that g : U (TO, v) -~ (~
is well defined and continuous. Moreover, 3 (T, v) exists for all

(T, v). E U (TO, 0) and is continuous with 3 (To, v) = 1. In addition

a9 (T, v) exists for v ~ 0 and is continuous. The implicit function theorem
yields a continuous map

where U (0) c V is a neighborhood of 0 in V, with the following properties.
The equation g (T, v) = 0 is satisfied near (TO, 0) iff T = T* (v). In

particular, T* (0) = To. The map T* is of class Cl in U (0) - ~0~.
Observe that equation (2.5) is equivalent to g (T, v) = 0 for v ~ 0.

Therefore, setting w ( v ) . := w * (T ( v ) , v ) it remains to solve

This is defined for v E U (0) C V. The equivariance of w* implies that g
is invariant, hence T* is invariant and u) is equivariant: u) (ve) _ (u) (v))o

. for v E U (0) and 6* E Sl. Since T* E C1 (U (0) - ~0~) we have
u) E C~ (U (0) - ~0~, W). Using (2.3) it follows that

Hence d4 (0) = 0. We claim that w e C~ (U (0), W), that is dw (v) --~ 0
as v -~ 0. By the definition of 4 and T* we obtain from (2.2) the equation

Vol. 14, n ° 6-1997.



700 T. BARTSCH

Differentiating (2.7) yields

In order to estimate dT * ( v ) we differentiate the equation g (T * ( v ) , v ) = 0.
This gives

Combining (2.8) and (2.9) we obtain

hence d4 (v) -~ 0 as v --~ 0.

Equation (2.6) can be reformulated as a finite-dimensional variational
problem. We define

and

These functionals are of class C~. They are invariant under the action
of S’1 on U (0). Moreover, Ho (0) = 0 and (0) = 0. We claim that

(0) exists and

This can be seen as follows:

uniformly for bounded u e V. Here we used that w e C 1 ( U ( 0 ) , W ) ,
w (0) = 0 and = 0.

If v E U (0) - ~0~ is a critical point of (~) then there exists a
Lagrange multiplier T such that

A simple computation shows that this implies T = T* (v) and that

satisfies A’ (x) = TH’ (x), so x solves (HS)T and x : t (t/T) solves
(HS). The periodic orbit x satisfies
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This implies H (x (t) ) = A for all t, so x lies on the energy surface (A).
If 0 is an isolated periodic solution of (HS) on H -1 (0) then the critical

points of ( ~ ) which we find converge towards 0 as A - 0. hence,
their Lagrange multipliers converge towards To. Moreover, if vi and v2

are critical points of Ao (03BB) which lie on different S1-orbits then the
associated periodic solutions ii, x2 are geometrically different provided
A is close to 0. Namely, if Xl and X2 differ only by a time shift then

either T * (vi) = T * ( v2 ) , hence v 1 and v2 lie on the same S1-orbit; or
( v 1 ) - T* (v2)| ] is an integer multiple of the minimal period of x1 and

~2. The minimal periods of periodic solutions of (HS) near 0 are bounded
away from 0 (cf. [Yo]), so the last case cannot occur if A is close to 0

because then also IT* (vi) - T* (V2) ] is close to 0.

In the following proposition we summarize what we have achieved in
this section.

PROPOSITION 2.10. - Periodic solutions of (HS) on the energy level

(A) near the equilibrium with period near To correspond to critical
points of the functional Ao constrained to the hypersurface H-10 (03BB). The
functionals Ao, Ho : U (0) -~ I~ are of class C1 defined on an open
neighborhood U (0) of 0 in E. Moreover, H0 (0) = 0, H’0 (0) = 0,
~‘~Co (0) exists and

Both functionals Ao and are invariant with respect to the action of 
on V. Diff’erent S1-orbits of critical points of A0|H-10 (03BB) correspond to
geometrically di, ff ’erent periodic solutions of (HS) on H-1 ( ~) .

3. CONLEY INDEX AND BOREL COHOMOLOGY

In Section 4 we shall construct an equivariant local flow in U (0) whose
stationary solutions are close to the critical points of ( ~) for A
close to 0. In order to analyse this flow we use a cohomological version of
the equivariant Conley index. We assume the reader to be familiar with the
standard version of Conley index theory as developed for instance in [Co],
[CoZ] or [Sa]. We just introduce the basic notions without proofs.

Let M be a locally compact metric space on which the group S1 acts
continuously. Let ~p be a continuous equivariant local flow on M, that is,
p : C~ -~ M, (t, x) t-~ cpt (x), is a continuous map defined on an open
S 1-invariant subset O of R x M such that:

- ~ 0 ~ x M c 0 and C~ n R x ~ x ~ is an interval for any x e M;
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702 T. BARTSCH

A compact subset ~’ of M is said to be isolated invariant if S is invariant
with respect to the action of S1 and if there exists a neighborhood N of
,S’ in M with

In particular, S‘ is also invariant with respect to the flow: cpt (x) is defined
for all x E 5 and t E R and lies in S. A neighborhood N as above is
called an isolating neighborhood of S.
An index pair for an isolated invariant set S is a pair (N, A) of compact

51-invariant subsets A c N of M with:
- N - A is an isolating neighborhood of S;
- A is positively invariant with respect to N, that is, if x E A and

cpt (x) G N for all 0  to then ~ (~) G ~ for 0  to;
- A is an exit set forN, that is, if x E N and N for some

to > 0 then there exists t e [0, to] with cpt (x) e A.
The starting point of (S1-equivariant) Conley index theory is the following
result.

PROPOSITION 3.1. - For any neighborhood U of an isolated invariant
subset ,5‘ of M there exists an index pair (N, A) for S contained in U. If
(N, A) and (N’, A’) are two index pairs for S then the quotient spaces
N/A and N’ / AI are homotopy equivalent as S1-spaces with base points.
The Conley index C (S) of an isolated invariant set S is the based 51-

homotopy type of N/A where (N, A) is an index pair for 5. We use the
convention N/ ~ . - N U pt.
An S1-Morse decomposition of a compact invariant set S c M is a

finite family (M (1r) : 7r E P) of pairwise disjoint compact invariant sets
M (vr) C S with the following property:
- There exists an ordering 1rl,..., 03C0n of P such that for every

x E ,S’ - there exist indices i, j E ~ 1, ..., n ~ with z  j
and w ( x ) C M (1ri) and 03B1 ( x ) C M (03C0j). Here 03B1 ( x ) and w ( x ) denote the
alpha and omega limit set of x respectively.
Next we recall Borel cohomology; see [tD] for its basic properties. Let

H* ( - ; Q) denote Alexander-Spanier or Cech cohomology (cf. [D] or [Sp]).
Let be a contractible space with a free action of S 1; for example we
may take the unit sphere of an infinite-dimensional normed complex vector
space where S1 considered as the group of complex numbers of modulus
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703A GENERALIZATION OF THE WEINSTEIN-MOSER THEOREMS

1 acts via scalar multiplication. ES1 is determined up to equivariant
homotopy. For S1-spaces B c A we write

for the Borel cohomology of ( A, B). Here (ES1 x denotes the

orbit space of the diagonal actional of S1 on ES1 x A. Observe that
= is the classifying space of It is unique up to homotopy

and homotopy equivalent to Therefore the coefficient ring is

with a generator c E H 2 Q) N ~ . The cup product in cohomology
turns h* (A) into a graded commutative ring with unit and h* (A, B) into a
module over h* (A). The homomorphism R ~ h* (A) induced by A ~ pt
induces an R-module structure on each h* (A, B).

DEFINITION 3.2. - For a pair ( A, B ) of S1-spaces the length l(A, B )
of ( A, B) is defined to be

We use the convention min  = oo.

This notion is due to Fadell and Rabinowitz [FR], at least if B = ~. They
call it cohomological index for S1 because it is defined analogously to the

cohomological index for 7~ / 2 introduced by Yang [Ya].

PROPOSITION 3.3. - The length .~ has the following properties.
(a) Monotonicity: If there exists an equivariant map A -~ A’ then

.~ (A)  .~ (A’).
(b) .~ ( A, B )  £ ( A) for any invariant subs pace B of A.
(c) Subadditivity: If A and A’ are open subset of A u A’ then

.~ (A U A’)  .~ (A) + .~ (A’).
(d) £ (i~I Ai) = sup {l (Ai) : z E I}
(e) Continuity: Any locally closed invariant subset B of a metrizable S1-

space A has an invariant neighborhood N with l (N) _ £ (B). Here B
is said to be locally closed if it is the intersection of a closed and an open
subset of A

(f) Triangle inequality: For any triple C c B c A of ,~’1-spaces
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(g) If C c B c A are invariant subspaces and C is closed in A then

(h) If Y is a representation of ,S’1 without nontrivial fixed points (i.e.
( v = v for all ( E ,S‘1 implies v = 0) and ,S’Y is the unit sphere then

This also holds if dim Y = oc.

Proof. - The statements follow easily from the properties of h* . See [FR]
for the proof of a), c), e), h) or [B2], § 4.4.
We conclude this section with some direct consequences of the properties

of .~ applied to isolated invariant sets.

PROPOSITION 3.4. - Let S be an isolated invariant set of the equivariant
local flow cp on M.

(a) .~ (C (S)) .- .~ (N I A, pt) _ .~ (N, A) is independent of the choice of
an index pair (N, A) for S.

(b) .~ (S) > .e (C (s)~ > .e (N) - .e (A) for any index pair (N, A) of s.
(c) If (M (03C0) : 03C0 E P) is an S1-Morse decomposition of S then

Proof. - a) Follows from 3.1 and 3.3 a), g).
b) Follows from the fact that we may choose an index pair (N, A) with

~ (N) _ .~ (S) by 3.1 and the continuity of £. Then apply 3.3 b) and f).
c) Can be deduced from 3.3 a)-c); see [B2], Theorem 6.1. D

4. THE LOCAL FLOW

In this section we construct an S1-equivariant local flow p on U (0) which
leaves the level surfaces (A) invariant and whose stationary points on

( ~ ) are close to the critical points of ( ~ ) . To begin, recall that

We need the following S1-equivariant version of the Cl-Morse lemma; see
[BL] or [Ca] for a non-equivariant version.
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LEMMA 4.1. - There exists an S1-equivariant diffeomorphism x : U ~
U (0) of class Cl, defined in a neighborhood U of 0 in V with x (0) = 0 and

Proof - Decompose into irreductible

representations Vk of Here dim v = 2 n and we may assume (for
later purposes) that q is positive definite on V+ which consists of the first
n+ summands and negative definite on V- which consists of the last n-
summands. Here n = n+ + n- and 2 (n+ - n- ) is the signature of q. Then

with real numbers c~l > ... > an+ > 0 > an++l > ... > an. The function

is invariant, continuous and of class Cl in U (0) - 0. Setting

we therefore obtain an equivariant map (making U (0) smaller if necessary)

This satisfies % (0) = 0 and

Clearly, ~ is continuous and of class C~ in U (0) - ~0~. One can now check
as in [BL] that ~ is even of class C~ in U (0) with (0) = Id. The lemma
follows with x :== which is well defined in a neighborhood of 0. D

Instead of looking for critical points of ( ~) we set , f . - Ao o x
and q = o x and are left with the problem of finding critical points
of (03BB) for 03BB near 0. After this C1-change of coordinates around the
origin of V the C1-function H0 has been replaced by the quadratic form

with is C°°, of course.
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Now we choose ei, Ai > 0 so that f is defined on the set

We think of £ as being a space over A = via the map q : ~ --~ A.
If Ai is small then q is surjective. It is a bundle map if one restricts q
to the part over  - {0}. We write ~03BB = q-1 (A) for the fibres, even for
A = 0. Clearly, the ~~ are manifolds with ~o having a singularity at 0.
We decompose V = V- with dimV+ = 2 n+, dimV- = 2 n- as
in the proof of Lemma 4.1 so that

and

All spaces are 51-spaces and the diffeomorphisms are equivariant.
In the same "over A" spirit we write f a for the restriction of f 

These functions induce a vector field over A on £ - (0) which we denote
f defined as follows. For v = 0 we set f (0) = 0 and for

v E ~a - ~0~ we set

We write K . - ~ v E ~ : ~ n f ( v ) = 0 ~ for the zero set of this vector
field. From now on we assume that 0 E ~0 is an isolated zero of ~ fo. If
this is not the case then part (i) of Theorem 1.1 holds and we are done.
We may also assume that 6-1 is so small that 0 is the only zero of V f o in
Eo, i. e. Ko = ~ 0 ~ . Upon making Ai smaller if necessary we may assume
that ~v~  for v E K. Finally, we assume  1 for

every v 

Unfortunately, f is only of class Cl, so VA f is only continuous and may -
not be integrable. We replace it by a locally Lipschitz continuous vector
field 17 over A for f whose zero set is close to K. Compared with the usual
construction of a pseudo-gradient vector field as in [R], for instance, there
are two differences. First, we want the vector field to be locally Lipschitz
on all of E, not just on E - K. The reason for this is that we do not

have a minimax description of the critical values of f03BB but instead apply
ideas from Conley index theory. Second, the new vector field ~ has to

respect the fibres ~03BB, that is, ~(v) E Tv ~03BB for v ~ ~03BB - {0}. This has
to be done with some care near the singularity 0. We construct a function
~ : 11. --~ (0, ~1 /4) which is continuous in A - ~0~ and satisfies £ (A) --~ 0
as A - 0. We may also assume that  ~ 1 /4 for v E U~ (~) (Ka ) where
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a ) ( Ka ) is the closed E (A)-neighborhood of Ka Moreover,
we can choose E (0) so that 

’

where

In addition, if for 03BB ~ 0, Kx consists of finitely many S1-orbits 3i, ... , or

then we require that E (A) has the following two properties.

The reason for the choice of E (0) is the following. If v (t) solves

v (t) _ -~_1 f (~~ (t)) and if for the time ti  t2  t3 we have
= ~v (t 3) II = ~v (t 2 ) II = ~1/2 then t3 - tl > 

because ~~~:~,f (v(t;))~~  1 for v E ~. From this it follows that

f (v (t~ )) - 1 (v (t3)) > E~,~3. Consequently, an orbit of the negative
gradient flow of fo that connects two points of Eo with norm E (0) cannot
approach the boundary of Eo in between. Similarly, E (A) is chosen such
that there cannot exist a solution v (t) of iJ (t) _ -~_~ f (v (t)) with
a (v (0)) C UE ~a> and c~ (v (0)) C UE ~a) if .~ _ .~~ 
Now we set

and

Then Z is a closed subset of £ lying in a small neighborhood of K; in
fact, Z = U~ (K) in the "over A" sense.

LEMMA 4.6. - There exists a continuous equivariant vector field r~ on ~
with the following properties.

a) r~ is a vector field over A, i.e. r~ (v) E Tv ~~1, for v E ~a - ~0~
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f) locally Lipschitz continuous for every ~ E A.

Proof - We first construct an equivariant pseudo gradient vector fielc
~1 for f over A. This is a vector field over A which is locally Lipschitz
continuous in ~ - K and satisfies

Each v E ~ - ~0~ has a neighborhood NV which is isomorphic over A
to U (A) x where U (A) is a neighborhood of A = q ( v ) in A. The
isomorphism ~z’ : N~ --~ U (A) x f~~ is a smooth map over A such that the
restriction ~;~ : N~ -~ ~ ~ ~ x is a diffeomorphism with ~~ ( v ) = (A, 0).
In our situation k = dim ~03BB = 2n - 1. We define ~2 (v) E IRk by

Now we set

for u e NV with  = q (u). Then 773 (v) is a pseudo-gradient vector for
f (v) if ~l~ f (v) ~ 0; that is, the inequalities (i) and (ii) are satisfied

for r~3 (v) if v E ~ - K. If A~" is small enough then (i) and (ii) are also
satisfied for r~3 (u) for all u e NV provided v E ~ - K. Moreover, 773
is Lipschitz continuous. Next we choose a locally finite partition of unity
{03C0i : ~ ~ [0, e I} subordinated to the covering {Nv : v ~ ~ - K}:

We also assume that each 1ri is locally Lipschitz continuous. Then we obtain
a pseudo-gradient vector field r~.~ over A for f by setting

and

Finally we define for v E ~ - 0 and A = q ( v )

Here dB (v) : Tv ~a ~ Tve ~~, is the derivative of the action of 6* on
~~,. This is the required equivariant pseudo-gradient vector field over
A for f. Alternatively, one can construct r~3 to be equivariant, that
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is, NV is an invariant neighborhood of the orbit E S1 ~ and
r~3 (ue) = dB (v) r~3 (~c). Then also each ~ri i can be chosen to be invariant.
This makes r~l = r~4 automatically equivariant.
We obtain a vector field ~ satisfying a)-f) by defining r~ (0) := 0 and

where c~ : ~ --~ [0, 1] is a smooth ~’ 1-invariant function with (0) = Z
and c~ (v) = 1 if ~l/3   D

Let ~ be a vector field as in 4.5. For each A E A we obtain a local
flow px : : ~~ on ~a which consists of the maximal solution of
the differential equation

Clearly is gradient-like with Lyapunov function because for

Thus for v E ~03BB with ~ (v) ~ 0 the map t ~ f o 03C6t03BB (v) is strictly
decreasing. Here we used the properties of ~ as stated in Lemma 4.5.
We set

LEMMA 4.7. - cp is an equivariant local flow over A. It is gradient-like
with Lyapunov function f.

Proof - We only have to show that O is an open subset of R  03A3 and that

p is continuous. The other conditions for cp to be an equivariant gradient-
like local flow over A with Lyapunov function f follow immediately from
the fact that these properties hold for each px. Since ~ is continuous and
r~ ~ ~a is locally Lipschitz continuous for each ~ according to 4.5 f), we see
that C~’ . - 0 n IR x ( ~ - ~ 0 ~ ) is an open subset of R x ( ~ - ~ 0 ~ ) and

is continuous. It remains to prove that C~ is an open neighborhood of
R x ~ 0 ~ in R x ~ and that cp is continuous at each point of R x ~ 0 ~ .
Vol. 14, n° 6-1997.
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If v E ~ we write (T - ( v ) , T+ ( v ) ) for the maximal interval on which
cpt (v) is defined. Then 0 is an open subset of R x ~ if the function
T~ : ~ -~ (0, oo] is lower semi-continuous and T- : ~ -~ [-00, 0)
is upper semi-continuous. We only treat the case of T+, the other
case being analogous. Clearly, T+ (0) = oo and we have to show that
T + (vn ) -~ oc for every sequence 0. Suppose to the contrary that
T+ (vn ) remains bounded for some sequence vn -~ 0. Then there exists a
sequence tn E (0, T+ (vn) such that (vn ) ~ ~ = = : b and such
that ~03C6t(vn)~  b for every t e [0, tn] for n large. We may assume that
tn - to as n - oo . In addition we have

= 8. Clearly -tn e (T - (un); 0) for n large and we claim that
-to E (T- (u), 0]. If -to  T- (u) then there exists t E (T - (u), 0]
with ~(~)~ ( = 2 b. Then cpt (un ) is defined for n large because T - is
upper semi-continuous in E - 0. Moreover cpt (un ) --~ cpt (u), which is
not possible because

This shows that -to e (T- (ic). 0]. Therefore

contradicting the facts that 0 and that p is continuous at the point
(-to, u). Thus we have proved that C~ is an open subset of R x ~.

In order to see that p is continuous at the points of R x {0} we again
argue indirectly. Suppose there are sequences vn --~ 0 and tn bounded with

(vn ) bounded away from 0. Making Itn ] smaller if necessary we may
assume that Un := (vn) -~ u E ~o with = b e (0, 6-i/2) and
such for every t E [0, tn] for n large. This leads to a
contradiction as above. D

5. PROOF OF THEOREM 1.1

We study the local flow p on £ using Conley’s index theory and Borel
cohomology as described in § 3.

LEMMA 5.1.

is an isolating neighborhood of the flow po on ~o.
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Proof - We have to show that the set

is obtained in the interior of No (relative to ~o). The only stationary flow
orbits of cpo are the points in Zo = U~ ~o~ (0). Since po is gradient-like a
point v E So must satisfy

We claim that ]  ~1 /2 for any t e f~. Suppose to the contrary that
there exist times ti  t2  t3 with

and

Since d dt 03C6t = and ~~(03C6t (v))~ C 1 for t E t3] by Lemma 4.6c)
this yields t,;3 - tl > e/3. Therefore we obtain

where Ec is defined as in (4.3). Now using (4.2) and (5.2) we obtain

If (cpt (v))1 ]  for all t E tR. This leads to the contradiction

LEMMA 5.3. - There exists ~2 > 0 such that for a ~  ~2 the set

is an isolating neighborhood of ,S’a . - inv ( Ua ) .
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Proof - We have to show that Sx C int ( Ua ) for |03BB| ] small. If this is not
the case then there exists a sequence 0 and points

Consequently cpt e for all t e (~. By compactness we may assume
that v~ converges towards v e 0Uo along a subsequence. Moreover, the
continuity of p implies cpt (v) E Uo for all t e ~. This means

a contradiction. D

With E2 and A 2 as above we set

This is an isolating neighborhood with respect to the flow cp restricted to the
part over ~-a2, ~2~. Let S’ .- inv (U), so that S’a = inv = (A).
Choose an index pair (N, A) for S in U. Clearly, (N~, is an index pair
for ]  ~2 . By the continuity of the length £ we can find Ao = 0 such
that f  .~ (Ao ) for ( ~ (  Ao, because Ax is contained in an arbitrarily
small neighborhood of Ao in N if A is small. Proposition 3.5 implies

Observe that

Thus there exist equivariant maps Ao - SY+ and SV-. According
to Proposition 3.3 a), h) we obtain

For A > 0 small we have

hence, .~ (N~ ) _ £ (,SY+ ) = 7z+ . Analogously we obtain £ (Na ) = n- for
A  0 close to 0. Finally this yields small

To deduce Theorem 1.1 recall that the set = U ~~) (Ka ) of stationary
orbits of has the following property. If consists only of finitely
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many 51-orbits o 1, ... , of critical points then 03A303BB is the disjoint union
of the c (03BB)-neighborhoods of 01, ..., or . In that case we obtain an S 1-
Morse decomposition ( Ml , ..., Mr ) of Sx with M2 . - U~(03BB) ( oi ) . Here
we use that ~ (~) satisfies (4.4) and (4.5). Now Propositions 3.4 c) and
3.3 a), h) yield

Theorem 1.1 follows from (5.4) and (5.5). D

Observe that the same argument yields more solutions if .~ (Ao) 
n ~ ~ . In fact, then we would get n+ - .~ ( Ao ) S 1-orbits of stationary

points on ~~ for A > 0 small; and we would obtain n- - .~ (Ao) stationary
S1-orbits on 03A303BB for A  0 close to 0. Therefore the number

.~u (So ) : .- (Ao) : (No, Ao) is an index pair for So )
is of interest. It is called the exit-length of So with respect to the flow ~po
on So- It has been introduced and studied in [B2], Chapter 7. In certain
situations it is invariant under continuation; see [B2], Theorem 7.4. In

particular, if one considers a one-parameter family of Hamiltonian functions
H~ e C2 (~2N~ ~)~ ~  ~  1, with H~ (0) = 0, H~ (0) = 0, H~ (0)
non-degenerate, then the exit-length gu (So ) _ .~u ( ~ 0 ~ ) does not depend on
the Hamiltonian H~, to which one applies the constructions of this paper, at
least as long as there are no other periodic solutions on (0) near the
origin. Potentially this continuation invariance of .~~‘ (So) provides means
for its computation. Improvements of Theorem 1.1 in this direction would
depend on higher order terms of H.

6. REMARKS

In the situation of Theorem 1.1 one obtains more periodic solutions if
one knows more about the signatures ai := a (To/i) of Q restricted to the
spaces Ei :== E (To/i), i E N, of To/i-periodic solutions of (LHS). Clearly
Ei C Ej if j divides i, in particular Ei C J~i = E for any i E N. Set
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and

Theorem l.l yields the following

COROLLARY 6.1. - In the situation of Theorem 1.1 assume that case (i) does
not apply, that is, there are no periodic solutions of (HS) on (0) near
0 with periods close to To . Then for each ~ > 0 (respectively ~  0) close
to 0 there exist at least 2 a+ (respectively 2 03C3-) geometrically different
periodic solutions on (~) with periods close to To.
We conjecture that this result is optimal in the following sense. Let

Q be a non-degenerate quadratic form on f~21’~ and consider the linear
Hamiltonian system

Fix some period To > 0 of non-trivial periodic solutions of (LHS). Suppose
1R2N = splits as in the introduction into two linear subspaces invariant
under JQ" (0). As above we write Ei = E (Tp / 2 ) for the space of periodic
solutions of (LHS) with (not necessarily minimal) period To li, so E = Ei.
And we write ai for the signature of Q restricted to Ei. Then we conjecture
that there exists a polynomial function H (x) = Q (x) + such

that the Hamiltonian system + = JH’ (x) has for A > 0 precisely 2 a+
geometrically different periodic solutions on (A) with periods near To;
and it should have precisely 2 a- such periodic solutions on H-1 (A) for
A  0. We shall only prove the following special case.

PROPOSITION 6.2. - If the signature cri of Q restricted to Ei is 0 for
all i E N then there exists a polynomial function H : (~2 ~’ ---~ I~ with

H (x ) = Q and such that the Hamiltonian system ~ _ (x )
does not have any periodic orbits with periods near To except the equilibrium
0.

Proposition 6.2 shows that the sequence = a i E N) of
signatures is the only invariant of H which depends only on the second
order terms of H and whose non-vanishing guarantees the existence of
periodic solutions of (HS) near 0 with periods near To.

Proof. - As in § 2 we may assume that
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We shall find a polynomial H as required such that H (x) = Q (x) depends
only on xE E E. Therefore we may assume that = E and x = ~r~.
Let E~ be the space of periodic solutions of (LHS) corresponding to the
eigenspace of the eigenvalue These solutions have minimal period
To / j (except 0, of course). Let ~~ be the signature of Q restricted to E~ .
If ~i i = 0 for all z then cr~ = 0 for all j because

where : ~I -~ ~0, ~ 1 ~ is the Mobius function (cf [J], § 8.6). For each
j E N with E~ ~ 0 we shall find a polynomial Pj which depends only
on x E E~ with P~ (x) = o ( ~ ~ x ~ ~ 2 ) and such that the Hamiltonian system
x = J (Q + (x) has no periodic solutions in E~ . Thus we may assume
that E = E~ and

Here a := 2 j 03C0/03C40 and E = E+ EB E- is a direct sum decomposition of
E into subspaces E+ and E- on which Q is positive respectively negative
definite. Clearly, dim E+ = dim E’ = : 2 d since ~~ = 0. We introduce
symplectic coordinates in E~ so that x~ = q~ ~ p~ . Now we define (cf
[MW], Example 9.2)

If x = x (t) is a solution of the associated Hamiltonian system (HS) then
a straightforward computation shows that

0 then p+ q- - p- q+ is strictly increasing, so x cannot be periodic.
This proves Proposition 6.2. D

The methods of this paper together with the length for arbitrary compact
Lie groups as defined in [B2], Chapter 4, can also be used to treat more
general non-linear eigenvalue problems.
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Let ~, ~ : X - R be of class C2 defined on a Hilbert space X on
which a compact Lie group G acts orthogonally. Suppose ~ and W are
G-invariant and consider the equation

If ~’ (0) = 0 = w’ (0) and ~" (0) is non-degenerate one can study the
bifurcation of solutions on W -1 (A) near (TO, 0) with the level A as

parameter. Equations of this type have been studied by many authors,
but mainly in the special case W’ (x) = x or if ~" (0) is positive definite
on the kernel of the linearization ~" (0) - To ~" (0). Our method allows
to treat the case where ~" (0) is indefinite on this kernel. We state only
one result in this direction.

THEOREM 6.3. - Let ~, ~ E C2 (X, R) satis, fy ~ (0) _ ~ (0) = 0 and
~’ (0) _ ~’ (0) = 0. Let To e R be a possible bifurcation value, that is,
V := ker (~" (0) - To ~" (0)) ~ 0. Assume moreover that the quadratic
form q (v) .- 2 (w" (0) v, v) on V is nondegenerate with signature ~ ~ 0.

a) A least one of the following holds.
(i) There exists a sequence (Tk, ~~) E I~ x ~-1 (0), of solutions

of (P) which converges towards (TO, 0) as 1~ -~ oc.
(ii) For each À > 0 close to 0 there exists a solution E

R (A) o, f ’ (P) which converges towards (TO , 0) 0.

(iii) The same statement as in (it) holds for 03BB  0 close to 0.
b) If even functions then either (i) holds or
(iv) For each A close to 0 with ~ ~ ~ > 0 there exist at least ~ ~ ~ /2 pairs

(Ta, i , E IR x W -1 (A) of solutions of (P) which converge towards
(TO, 0) 0.

One can construct examples where precisely one of the cases (i), (ii) or
(iii) in 6.3 a) holds. It is interesting to observe that with the Z/2 symmetry
the direction of the bifurcating solutions is determined by the sign of a
which is not the case in general. Theorem 6.3 can be generalized to include
other symmetry groups. For example, if a compact Lie group G acts

orthogonally on X and ~, ~ are invariant with respect to this action then
6.3 a) holds if the unit spheres SY+ and 5V- are not stably G-homotopy
equivalent. Here V+ and V- are invariant subspaces of V = V-
such that is positive definit on V±. Also 6.3 b) can be generalized
to other symmetry groups. In fact, in this paper we essentially proved
the 51-version of 6.3 b). We refer to [B3] for details. It is interesting to
compare the proof of Theorem 1.1 with the approach of Floer and Zehnder
in [FZ] and of the author in [B2] who give new proofs of the result of
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Fadell and Rabinowitz [FR] on the existence of periodic solutions of (HS)
parametrized by the period. In [FZ] and [B2] both the Conley index and
Borel cohomology are also used. The situation considered in these papers
is somehow dual to the one considered here. There one considers a family
NT of isolating neighborhoods but the topology of NT does not change and
neither changes the exit-length .~u ( ST ) of ST = inv ( NT ) . In fact, the family
of flows p = (pr ) provides a flow over the parameter space [To - 6, To + 8]
in the sense of [B 1 ], contrary to the flow ~p over A = [2014~i, ~i] constructed
in § 4. This implies in particular that also the Conley index of ST does not
change. Instead for each T the invariant set ST contains a "trivial" solution
xT = 0 which is isolated for To. The existence of non-trivial solutions

follows from a change of the exit-length of as T passes To.
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