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ABSTRACT. - The paper is concerned with the long-time behaviour of the
solutions of a certain class of semilinear parabolic equations in cylinders,
which contains as a particular case the multidimensional thermo-diffusive
model in combustion theory. We prove, under minimal conditions on the
initial values, that the solutions eventually become monotone in the direction
of the axis of the cylinder on every compact subset; this implies convergence
to travelling fronts. This result is applied to propagation versus extinction
problems: given a compactly supported initial datum, sufficient conditions
ensuring that the solution will either converge to 0 or to a pair of travelling
fronts are given. Additional information on the corresponding equations in
finite cylinders is also obtained.

RESUME. - Cet article traite du comportement en grand temps des
solutions d’une classe d’équations paraboliques dans des cylindres; ce

type d’ équation contient le modele thermo-diffusif multidimensionnel de
la theorie de la combustion. Nous montrons que, sous des hypotheses
minimales sur la donnee initiale, les solutions deviennent, en temps fini,
monotones sur tout compact dans la direction de l’axe du cylindre; ceci
implique la convergence vers des ondes progressives. Ce resultat est ensuite
applique a des problemes de propagation et d’extinction: une donnee initiale
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500 J.-M. ROQUEJOFFRE

etant fixee, on donne des conditions suffisantes pour que la solution qui
en est issue tende vers 0, ou converge vers deux fronts se deplagant dans
des directions opposees. On obtient enfin des informations supplementaires
pour des equations dans des cylindres bornes.

1. INTRODUCTION

Let £ be the being an open bounded
regular subset of O~N-1, with N > 1; the outward normal derivative at

{x, ~) E R x will be denoted by v(x, y), as usual. Consideration is

given to the asymptotic behaviour - as t --~ +00 - of the solutions of the
following class of semilinear parabolic equations

with Dirichlet or Neumann boundary conditions:

The boundary condition (l.lb) is either Dirichlet or Neumann : B?z = ~ or

Bu = 2014. Problem (1.1) is complemented by the initial datum
d~

In the whole paper, the functions a(,y) and g(y, u) will satisfy

This is enough to ensure the existence of a local classical solution to

(1.1). It will be denoted by S(t)uo in the sequel, or simply u(t) when no
confusion is possible.
We shall make two sorts of assumptions on g. The first series of

assumptions that we can make is g(y, u) = g(u), with g(0) = g(1) = 0.
This is the natural generalisation of the well-known one-dimensional model

which has received thorough treatment, and is which is now fully
understood. The relevant references are stated in [27] and [22]; we will not
come back to them. Let us only mention the celebrated reference [11]. In
this framework, the function g will fall into one of the following cases.
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501EVENTUAL MONOTONICITY AND CONVERGENCE

Case Al. There exists 9 e]0,l[ such that

Moreover

This case will be referred to as the "bistable case"; it often arises in genetics
or population dynamics; see [2], [3], [11]. A typical example is the cubic
nonlinearity g(u) = u{1 - u) (u - 0).

Case A2. There exists 0 E~ 0,1 [ such that

Moreover

This case arises in combustion theory, in the framework of the thermo-
diffusive approximation; see [28] for the physical background; see also [6].
We will sometimes refer to it as the "ignition temperature case".

Case A3. The function g satisfies g > 0 on ]0, 1[, and

When s - g(s)/s is decreasing, this case is often referred to as the Fisher
model in population dynamics, or also KPP model. Another interesting
subcase, namely the ZFK model [31], arises in combustion theory; in

this context g’(0) is assumed to be small and du is large. This

assumption will be more precisely quantified in Sections 2 and 3; we will
refer to it as Case A3/ZFK.

Case B. The second sort of assumption that we can make concerns
y-dependent nonlinearities. Assume that the solutions of the problem

are such that

(H1) 2022 there exist two solutions (y)  03C82(y) such that 1 (-Dy -
> 0,

Vol. 14, n° 4-1997.



502 J.-M. ROQUEJOFFRE

(H2) . each solution 03C8 such that  03C8  03C82 has 

 0.

Here, for a second-order elliptic operator A in w with boundary operator
B, we denote by 1 (A) its first eigenvalue. We notice that Case B contains
Case Al, but not A2-A3. Therefore in the sequel the emphasis will be
laid on the two latter cases. We also notice that it is possible to make
assumptions on Problem (1.7) that would contain Case A3; see [32]. We
will not make them first because we do not wish to make the paper too

complicated, second because the physically relevant situation is really Case
A3/ZFK.

Let us once and for all make the operator B precise. In Case A the
natural boundary operator is the Neumann one; we will therefore always
take Bu = ~.

In Case B, it is more or less equivalent to take Dirichlet and Neumann
boundary data, the Dirichlet conditions being more technically delicate to
handle. Therefore we will always take Bu = u.

Finally, we will also investigate the following system, which is a slight
generalisation of Case A2:

The function f will be smooth, and of "ignition temperature" type, i. e.

Physically speaking, in (1.8), u is a temperature and v a mass fraction.

When uo+vo == 1, we notice that 1, and that (1.8) reduces to (1.1),
with g(u) = (1 - u) f (u). This system shares a lot of features with case
A2, but we will see that the convergence to the waves is not exponential.
It will be treated separately.

In each case A1-A3 and B, Problem ( 1.1.a), (l.l.b) admits travelling
front solutions, i.e. solutions of (l.l.a), (l.l.b) of the form u(t, x, y) _

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire



503EVENTUAL MONOTONICITY AND CONVERGENCE

+ ct, y). They have first been studied in [6] (case A2), then in [9]
(cases Al and A3). These results have been generalised to y-dependent
nonlinearities in [32]. The waves are unique in each case except Case A3,
where there exists a continuum of speeds c, which is bounded from below.
In [7] and [26], the waves of Case A2 were found to be asymptotically
stable; therefore the question which comes next is whether the solution of
(1.1) will converge to a travelling front. We proved in [27] that it was

indeed true for cases Al and A2, provided that uo was nondecreasing in x.
Because of the x-translational invariance, we did not see any way to carry
over the result for nondecreasing data to more general data.

In [22] we treated case A3 in collaboration with J.F. Mallordy, and
classified the long-time behaviour of the solution according to the behaviour
at x = - o0 of We could basically do so because the wave solutions were
stable in weighted spaces where the x-translations were not continuous.
However, for Case A3/ZFK, we did not manage to get rid of the

nondecreasing assumption for the minimal speed.
The aim of this paper is to extend the results of [27] for cases Al-

A3/ZFK and B to non necessarily nondecreasing initial data, and to apply
these results to various generalisations, such as the study of propagation
versus extinction problems, which are of interest in combustion theory, or
to system (1.8). In doing so, we put an end to the problem of the long-time
behaviour of solutions of the above class of reaction-diffusion equations. In
particular, we generalise to the multidimensional setting the convergence
theorems of Fife and McLeod [11] for case Al.

In proving exponential convergence theorems, one usually proceeds
in three steps: asymptotic stability, compactness of the orbits, and

quasiconvergence. The first step is fully treated in [7] and [26] for case A2;
cases Al, A3/ZFK and B are similar, up to technical details. The second
step relies, as in [11], on the construction of sub and super solutions having
uniform-in-time spatial decay properties.
The ultimate step, namely the existence of a sequence tn ---~ +00 such that

together with the asymptotic stability, implies the exponential convergence.
In the case a = Constant it is easy to obtain such a sequence (tn)n by
considering the Liapounov function

Vol. 14, n ° 4- I 997.



504 J.-M. ROQUEJOFFRE

or perhaps a slightly modified one in case Al (see [11]); here G ( u) _
g(v) dv. The function V (t) is time-decreasing; this, with compactness

arguments, yields the sequence (tn)n. In the case 03B1 ~ Constant things
are unfortunately not so easy; in fact it seems to be impossible to find a
suitable Liapounov function. As an alternative solution, one could think of
adapting of a deep result of Hirsch [17] about strongly monotone semiflows.
Let X be an ordered Banach space, such that the positive cone X+ has
nonempty interior; such a space is called strongly ordered. If a local

compact semiflow S(t) on X is such that

Hirsch’s result states that almost every trajectory is quasi-convergent. This
result solves the problem for second-order parabolic equations in bounded
domains with Neumann boundary conditions, but does not apply to our case.
Matano [23], [24] proves similar results under less stringent hypotheses; in
particular he does not need the nonempty interior assumption. However, he
assumes the semiflow to be strongly order preserving, i.e., for u  v and
t > 0, there exists 8 (t) > 0 such that

As is easily seen, the semiflow generated by a parabolic equation in £ is
not strongly order preserving, and to weaken significantly (1.10) seems to
be a very difficult task. Therefore our work has the merit of providing a
nontrivial example of convergence to equilibrium solutions in a setting to
which none of the known theorems applies.
Our approach is different from the above-mentionned ones, and relies on

the eventual x-monotonicity of the solution on every compact of ~. This
idea that the solution of a parabolic equation will asymptotically bear the
same qualitative properties as the elliptic solutions dates back to Jones [19].
He proves, in a weak sense, asymptotic spherical symmetry for initially
compactly supported solutions of ut - = g(u) in RN, with a bistable g.
His work, based on reflection-type arguments, is the parabolic analogue of
Gidas, Ni, Nirenberg [13]. Our method is not unlike the "sliding method"
developped by Berestycki and Nirenberg in [10]; it is in fact its parabolic
analogue.
The present work is organised as follows. In Section 2 we collect some

results on existence, uniqueness and stability of travelling waves; most of
them - but not all - are proved in other papers. In Section 3 we state

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire
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our results precisely; Section 4 is devoted to compactness. The results of
Section 3 for Cases A1-A3/ZFK are then proved in Sections 5 to 8. In

Section 7, multiplicity theorems for the solutions of the steady problem
in a finite cylinder are given, and their implications discussed. Section 9
is devoted to Case B, and Section 10 to a system (1.8). Possible further
investigations are discussed in Section 11. Finally, additional results on
asymptotic stability are proved in Appendix.

2. EXISTENCE AND ASYMPTOTIC
STABILITY OF TRAVELLING FRONTS

Travelling wave solutions of ( 1.1.a), (1. 1. b) satisfy:

In Cases A1-A3, we will always impose: 0 and ~2 ~ 1. This is the
natural conditions to impose in cases Al and A3; in Case A2 one could
take any constant between 0 and 8. In Case B, we recall that and 
are described in the introduction.

There are three paragraphs in this section. The first one sums up known
existence, uniqueness and qualitative properties of travelling fronts for cases
Al, A2 and B. The second one is devoted to the precise definition of Case
A3/ZFK and to the asymptotic behaviour as x - - o0 of the wave of
minimal speed. In the third one, precise statement of orbital stability results
in the form that will be of use to us are given.

2.1. Existence, uniqueness and qualitative properties: Cases Al, A2
and B

We collect here existence, uniqueness and asymptotic behaviour - as
I --~ +0oo - of solutions to (2.1) from the papers of Berestycki,

Larrouturou, Lions and. Berestycki, Nirenberg ~8]°, in cases A 1-A2.
For Case B, they are taken from Vega [32].

Let us begin with uniqueness results and qualitative properties. In cases
A1-A2 and B, there is at most one solution (c, ~) to Problem (2.1) in the

Vol. 14, n° 4-1997.
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following sense: c is unique and § is unique up to a translation of the
origin in the x-direction. Moreover (~ satisfies: qlx > 0. Finally, there exist
A+ > 0, A- > 0 and two C2 functions: which are positive
on c;v, such that the following estimates hold:

for some s > 0. The function is a positive exponential solution
of

and the function e ~+~+(?/) is a positive exponential solution of

A proof of these results may be found in [8].
As for the existence results, they depend on whether case Al, A2 or B

holds. In case Al, Berestycki and Nirenberg have proved the existence of
a solution (c, 03C6) for (2.1) when 03C9 is convex; a proof of this result may be
found in [9]. In case A2, Berestycki, Larrouturou and Lions [6] have shown
the existence of a solution to (2.1 ) for any smooth domain cv. Furthermore,
still in case A2, we have c + 0:> > 0, where a> is the mean value of
a in w. Finally, in case B, Vega [32] showed the existence of a solution
( c, ~) to (2.1 ). It is to be noticed that Case A 1, with cv convex, implies
Assumptions and (H2).

Let Yo E w be given. In the sequel we will often denote by 03C6 the unique
solution of (2.1) which satisfies:

Moreover, we will always assume that, when we treat case A, problem (2.1 )
has solutions; the above statements show that this is true in at least a
nontrivial case.

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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2.2. The case A3/ZFK: existence and asymptotic properties of the
waves

In the framework of case A3, there exists a real number c* such that, for
c > c*, there exists a unique-up to translations-wave solution which is

x-increasing in ~; see [8]. There exists a minimal real number c, denoted
by co such that the equation in A

has real solutions; for c > co there are two positive solutions >

03BBmin(c); see [8]. In all cases, we have c* > co; the case A3/ZFK will

be defined by c* > co. This is true when g‘(o) is small and / g(s) ds
is large; see [8]. This is precisely the physical assumptions of [33], and
we shall see that in this case, the wave has common features with
the wave of case A2.

For c > c*, the wave ~~ satisfies (see [8]) estimates (2.2.b), and estimates
(2.2.a) with the exponent ~m2n (c). For c = c* something different occurs.
THEOREM 2.1. - The wave ~~~ satisfies (2.2.a), with exponent (c* ).

Proof. - Assume this is not true, and that (2.2.a) holds with exponent
~min (C* ). For small real number d, we try to solve

with u close to ~~ . Because c* > co, equation (2.3.a), with c = c* + d, and
with ~d~  c* - co, has two solutions. Let ~~* correspond to the function
~_ in (2.2.a). Let ~~* +d correspond to (2.5), with ~ _ + d), and
such that

Obviously, + d) ~ as d - 0. Let us set, for small d:

Let r be the usual C°° nonnegative function which takes the value 1 for

x  0, and 0 for x > 1. We shall look for u under the form

Vol. 14, n ° 4-1997.
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Let us set

We shall ask w(x, y) = The equation for w reads, after a tedious
but straightforward calculation:

with

and (1 + bounded and uniformly continuous in ~. Let us recall
(see [22], Theorem 5.1) that the operator

with Neumann boundary conditions, is an isomorphism from its domain
to Definition (2.7) below -. Therefore, for d small enough, the
above equation is uniquely solvable in w. This contradicts the definition
of c* ..

Remark. - This result has already been proved in the one-dimensional
framework in [5], where it seems to appear for the first time.

2.3. Asymptotic stability and non autonomous equations

Everything is now stated in the reference frame of a travelling front, i. e.

every wave ~ is now a steady solution. Let UC(~) be the space of all
bounded, uniformly continuous functions in ~. For r e]0, ~_ [, we set:

Define the space

equipped with the = I I wr (x, y)u(x, The space 
is used in [26] to prove a nonlinear stability result for the travelling waves

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire
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of case B, with a suitably chosen real number r. In the framework of case
Al, the relevant space is UC ( ~ ) .

Notations

1. Let Z be a Banach space of continuous functions in ~. For u E Z and
8 > 0, the ball of Z with centre u and radius 8 will be denoted by Bz (u, 8).

2. For h e R, the x-translation operator will be denoted by Th, and
defined by (Thu) (x, ~) _ u(x + h, ~) .

3. Let A be the (unbounded) operator of X with suitable domain

D(A) (including the Neumann boundary conditions), given by A =
-0 + (c + 

4. We will denote by X the Banach space UC ( ~ ) (resp. with

r  2014, resp.  r  AT~(c~)) in cases Al and B (resp. case
A2, resp. case A3/ZFK). Further, we will denote by X’ the space UC ( ~ )
(resp. in case Al and B (resp. case A2 and A3/ZFK).

5. Finally, following Sattinger [27], it will sometimes be useful to work
with the two Banach spaces, defined for every w > 0:

We will need two kinds of results. The first one is a summary of our

asymptotic stability results for the wave, and will be used in Sections 4
and 5. The second one, which is a corollary, is a stability result with respect
to small time-dependant perturbations; it will be of use in Section 7.

THEOREM 2.2. - For vo(x, y) E X, let u(t, x, y) be the solution of

There exist a positive real number bo, one constant w > 0 and a function
~y E C1 (,13X (0, bo), 0~) such that, for all vo E ,t3X (0, bo), the function
u - belongs to XW.
Theorem 2.2 for case A2 is basically proved in [26]. Its proof for cases

A l, A3/ZFK and B is the same as in case A2 in the main lines, but a few
details differ in cases A l and B.

COROLLARY 2.3. - For vo(x, y) E X and h E let u(t, x, y) be the
solution of

Vol. 14, n ° 4-1997.
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There exist positive real numbers bo, tco, one constant c,~ > 0 and a function
03B3 E C1 (BX(0, 03B40) x (0, ,uo ) , R) such that, for all vo E 03B40) and
h E the function u - belongs to 
Both proofs will be sketched in Appendix.

3. LONG-TIME BEHAVIOUR RESULTS

First consider Cases A1-A3/ZFK. The initial datum Uo will always be
assumed to be between 0 and 1. For Cases Al and A2, it will be below 0 for
large negative x. We will see that, according to how big the set ~ uo > 8 ~
is, the solution will either converge to a unique front, or asymptotically
vanish, or develop into a pair of two travelling fronts.

3.1. Convergence to travelling fronts

The initial datum is assumed to have different limits at In all cases,
this implies convergence to a front. In what follows, let us recall that

u(t, x, y) is the solution of the Cauchy problem (l.l.a)-(l.l.c).
THEOREM 3.1. - Assume case A1 holds and take uo in Additionally

assume that there exist 0-  0, 0+ > 0 such that:

Then there exist xo E (~ and cv > 0 such that

Theorem 3.1 will be proved at the same time as Theorem 3.7 below about
Case B. Turn to case A2 and A3/ZFK. It is now clear why we shall only
treat the waves with minimal speed: the wave is stable in spaces where the
translation operator is continuous, contrary to the waves with higher speeds.
THEOREM 3.2. - Assume case A2 or A3/ZFK holds and take ua in 

In case A2, assume that there exists 8+ > B and r > 0 satisfying

Then the conclusion o,f’ Theorem 3.1 is valid.
.

Annales de l’Institut Henri Poincare - Analyse non linéaire
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We have not only improved the results of [27] by removing the

monotonicity assumption, but also by allowing any exponential decay at
-oo, which is natural in view of the nonlinear stability assumptions in
[26]. In [27], we basically needed Uo to remain between two translates of
(~ for x ---+ - oo .

3.2. Propagation and extinction results

Let ( c, ~) be the travelling front solution of ( 1.1.a), (l.l.b) satisfying
y) -- 1, y) = 0, and (2.4). In case A2, the inequalities

c + cx> > 0, -c - ~x> > 0, imply c  c. In case Al, we just suppose
that this inequality is true; for N = 1 it holds as soon as the total mass

of g is positive. As for Case A3/ZFK, we shall denote by c* the maximal
admissible speed. Set ~L ._~ - 

THEOREM 3.3. - Assume case Al holds, and that c  c. Take ~co E 

satisfying the following condition: there exist b > 0, r~ > 0, L > 0 such that

Then

1. If 03B4 and L are small enough, ~~ = for some w > 0,
2. If L is large enough, then there exist x1, x2 E R and w > 0 such that

THEOREM 3.4. - Assume case A2 holds. Take uo for which there exist
b > 0, r > 0, r~ > 0 and L > 0 such that

Then

1. If Land b are small enough, then S(t)uo goes uniformly to 0,
2. If L is large enough, then there exist x1, x2 E R and w > 0 such that

Turn to Case A3/ZFK. We only consider initial data with compact
supports; the generalisation to data having prescribed exponential decays at
±~ can be made by the interested reader with the aid of [22].

Vol. 14, n° 4-1997.
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THEOREM 3.5. - Assume case A3/ZFK holds. Take uo E UC(03A3) with
nonempty compact support. There exist x1, x2 E I~ and w > 0 such that

Theorems 3.3 and 3.4 are the multidimensional analogues of Theorem 3.2
in [11] and Theorem 3.2 in [2]. Theorem 3.5 seems to appear for the first
time, even in the 1 D case. In this latter case, the reader may see that, if Uo
does not have a compact support but decays exponentially at one or two
of the ends of the cylinder, one may have many combinations of diverging
fronts. These three results will be proved in Sections 6 and 7.
The first four theorems admit a corollary, which describes the long-time

behaviour of the solution when uo is assumed to be above 0 only in

cylinders of the form R x c,v’, with w’ c w, and this is the purpose of
Theorem 3.6 below. We will restrict ourselves to Case A2, because the
applications that we really have in mind are related to the thermo-diffusive
model for flame propagation. The interested reader may state analogous
results for the bistable case.

For w’ c w, w’ measurable, we _~ - L, L[ x w’ _ ~ x w’.

THEOREM 3.6. - Assume case A2 holds, and take uo E UC(), compactly
supported.

1. Assume there exist w" C w’ C wand ri e]0, O[ such that

If and are small enough, then S (t) uo drops uniformly below
8 in finite time. Conversely, if is small enough, then the conclusion
of Theorem 3.2 holds.

2. Assume there exist cv" C w’ C w, b > 0, r > 0, r~ > 0 and L > 0
such that

If L is large enough and is small enough, then the conclusion of
Theorem 3.4 holds.

Theorem 3.6 has a very practical meaning: if one believes in the accuracy
of the thermo-diffusive model, one sees that a flame has to be initiated in
a large part of the cylinder, if one wishes it to propagate.

Annales de l’lnstitut Henri Poincar-e - Analyse non linéaire
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Theorem 3.6 is proved in Sections 6-7, as a corollary of Theorems 3.2
and 3.4.

3.3. Generalisations

First, let us consider case B. A reasonable assumption on uo is to ask

Uo ::; To formulate a slightly more general assumption, we
introduce the problem

Let po > 0 such that,  Po ~2 ~ ~ ~  Po), then
the solution of (3.6) starting from ~o is attracted by ~1 (resp. ~2). Let
us set, for Uo E M7(E):

THEOREM 3.7. - Assume Case B holds, and assume that

max(~1 (uo ), ~2 (uo ) ) _ Po. Then the conclusion of Theorem 3.1 holds.
It finally remains to deal with System ( 1.8).

THEOREM 3.8. - Assume that the initial datum (uo, vo), together with
satisfying (1.8.c), is such that uo and 1- vo belong to some r > 0.

Then there exists xo E Rsuch that

Theorems 3.7 and 3.8 are closely related to Theorems 3.1 and 3.2. They
will be treated in separate sections, with the emphasis laid on the additional
difficulties.

4. COMPACTNESS IN X

In [11], Fife and McLeod get compactness by confining S(t)uo between
two functions u and u, each of them converging to a travelling front. In this
scope, they constructed two functions qi (t) -> 0 and ~2 (t) - çi E R, such

= 

is a subsolution (resp. a supersolution).

Vol. 14, n° 4-1997.
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Their construction can be very easily extended to the multi-D setting in
case Al, and we did so in [27]; however we could not carry it over to case
A2 with the natural assumption. We give here an alternative construction,
based on Theorem 2.2. It will be convenient to work in the reference frame
of a travelling wave; we still denote by x and y the new coordinates.
LEMMA 4.1.

1. (Case ~l and B). Let ~co be as in Theorem 3.1 or 3.7. There exist q > 0,
w > 0, and ~l  ~2 such that, for to large enough, there holds:

2. (Case A2 and Let uo be as in Theorem 3.2. For to > 0 large
enough there exist q > 0, cv > 0, and ~l ~ ~2 such that:

The proof relies on Theorem 2.1. The following lemma will be useful.
LEMMA 4.2.

1. Assume case A l or B holds, and let ~co fall in the relevant assumptions.
Let ri2 be defined as in (3.7). Then

2. Assume case A2 or A3/ZFK holds, and that uo is as in Theorem 3.2.
Then, for all t > 0, u(t) belongs to moreover it satisfies

Proof - As for the proof is an easy adaptation of Lemmas 2.2
and 2.3 in [27]; therefore it will be omitted. As for r~2, it is hardly more
complicated: we simply have

because  Po we have S(t) --~ 

Proof of Lemma 4.1. ,

1. Bistable case. Let 03C6 be a travelling wave. Set vo - 1, and notice that

vo EX; let bo > 0 be as in Theorem 2.1 and ~° . From Lemma
2

4.2, part l, select to > 0 large enough so that
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Therefore there exists M > 0 such that

From the maximum principle, we have, for all t > to :

The equation and boundary conditions being x-independant, the semigroup
S(t) commutes with the x-translation operator; we get therefore

Application of Theorem 2.1 ~vo and use of the continuity in X of
the x-translation operator exactly yields (4.1), with xi = - M - 
x2 = M and some q > 0.

2. Ignition temperature case. It should be noticed that, in Theorem 3.2,
r may be assumed to be so small that Theorem 2.1 holds in This

will be understood to hold without further notice.

Let § be a travelling wave. Set vo = 1 /w 2 , and select 6-0 > 0 so small
that Theorem 2.1 holds with c and vo. Choose to large enough so that, by
virtue of Lemma 4.2, part 2, one has:

and remember that S(to)uo still lies in Therefore one may find
M > 0 large enough so that

Arguing as in part 1 of this lemma yields (4.2).

3. ZFK case. Same treatment as the ignition temperature case..

COROLLARY 4.3. - Select 8 > 0. In cases Al-A3/ZFK and B, the set

relatively compact in X.
The proof relies on Lemma 4.1 and Ascoli’s Theorem; it is by now

standard and we omit it. The reader may refer to [11].
Armed with Lemmas 4.1 and 4.3, we may start the proof of the first

three convergence theorems.
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5. QUASI CONVERGENCE AND PROOFS
OF THEOREMS 3.1-3.2

This section presents the basic version of our results, namely Theorems
3.1 and 3.2. The cornerstone of our argument is Proposition 5.2 below,
which states that any w-limit contains at least one x-increasing element.
The section is divided into three paragraphs: in the first one, we state a

boundary form of the Harnack inequalities; in the second one, we state and
prove Proposition 5.2. Finally, we end the proofs of Theorems 3.1 and 3.2.
As in Section 4, we work in the reference frame of a travelling front.

5.1. A boundary form of the parabolic Harnack inequalities

On Q = R+ x ~ consider a nonnegative strong solution of

with Neumann boundary conditions. The coefficients B and c belong to
Cs~ 2 ( Q ) ; moreover we assume

From the usual Harnack inequalities [18] one can prove

PROPOSITION 5.1. - For every M > 0, there exists T (M) > 0,

8T(M)  T(M) and K(M, E~) > 0 such that:

The elliptic version of this result may be found in [4]. We have stated the
form that will be of use to us. Proof and comments can be found in [27].

5.2. A property of the w-limit sets

Recall that the w-limit set of uo G X with respect to the semiflow S(t)
is the set

In both cases A and B, any w-limit set is nonempty and compact by
Corollary 4.3; moreover, as is well-known, it is connected and positively
invariant. We want to prove the following
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PROPOSITION 5.2. - For every uo E X, there exists ~ E w( uo) which is
x-increasing.
We will see that this property forces the solution to become x-increasing

on every compact subset of £ in finite time. Notice that, due to the standard

parabolic estimates [20], the function ~ belongs to W3 ~ °° ( ~ ) . Furthermore,
we may suppose that > 0 in ~. Indeed, if it were not true, we would
still have (S ( 1 ) ~ ) x > 0 in ~, due to the strong maximum principle.

Let uo e X be selected once and for all. From Lemma 4.1, there exist
two real numbers hl  h2 such that

Denote by h the following application, defined on w(uo):

from (5.4) we see that is finite for 03C8 E w(uo). Also, as can

easily be noticed, the function h is nonnegative lower semicontinuous
on w(uo); therefore, by compactness, it attains its minimum ho at some

point w( uo). We will prove by contradiction that ho = 0.
Assume therefore that ho > 0. Notice that, from the definition of ho and

the maximum principle, we have ho. The contradiction will
follow from two intermediate lemmas.

LEMMA 5.3. - There exists Ei > 0 such that

Proof. - If this were not true, there would exist a sequence (tn)n such that:

However, whether too belongs to R or not, (iii) cannot be true because
of (5.4). Hence Lemma 5.3 holds:

For every 8 E R, let be defined as

We will turn estimate (5.5) into a lower estimate for vs on every compact.

Vol. 14, nO 4-1997.



518 J.-M. ROQUEJOFFRE

LEMMA 5.4. - For every M > 0 large enough, there exist bo (M) ho ~ [
and > 0 such that

Proof. - Let 1 be as in Lemma 4.1; also assume that it is large enough
so that, for all M > 0 large enough and for all t > to, the left handside of
inequality (5.5) is attained on The function v° is a solution of

notice that the coefficients of the equation satisfy assumptions (5.2) and
that v° is nonnegative. From Lemma 5.3, the quantity sup x, y)
is estimated from below on [to, [ by a positive constant; by the strong
maximum principle we may in fact write

for some > 0. But we have ux(t, x, y)  +00 from the
standard parabolic estimates; hence the existence of is guaranteed..

Proof of Proposition 5.2. - Let 8z be defined as follows:
1. There exists ~ > 0 such that g’  -~y on [1 - 81, 1],
2. If case Al holds, there exists 03B3 > 0 such that g’  -03B3 on [0, 03B81];

if case A2 holds then ol : -.
3. If case A3/ZFK holds, then there exists ~ > 0 such that g’  ~ on

[0, 81~, and Problem (2.5), with q instead of g’(0), has two real positive
solutions

From (5.4), there exists M > 0 such that

If case Al or A2 holds, we take B1 E 0, inf f 9,1 - 03B8, 1 2)[. Let M > 0 be
chosen once and for all such that both Lemma 5.4 and (5.7) hold for M.
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We are now going to study the evolution of By compactness,
there exist a sequence (tn)n and such that

From the definition of ho and Lemma 5.4, we know that, for all (x, y) E ~M
and k > ho - 80, + k, y) ~ 03C8~(x, y). Let us see what happens for
x > M. From Point 1 of the definition of there exists a continuous

function p(t, x, y)  -~y such that, or all 8 E [0, the function vs satisfies

Therefore, by the maximum principle, there exists q > 0 such that, for
all (x, y) E ~M, the inequality: vs (t, x, ~) > - qe-~’t holds. This
implies that ~~ (x -E- ~, ~) > y) for (~, y) E [M, and

To see what happens for x  -M, we have to distinguish between each
case A1-A3. The same argument as above works for case Al, therefore
turn to case A2. This is not much more complicated, because vs is larger
than a negative solution of te pure convection-diffusion equation in the half
cylinder, with a zero limit at x = - oo . Lemma 6.1 below asserts that such
a solution tends to zero as t -~ +00.

It therefore remains to treat Case A3/ZFK. We follow an idea of [26].
Set 13* = c* +  a > ; recall that 13* > 0. For any ~ ~]0,03B2*[ let be

the principal generalized eigenvalue for the problem:

Let r~ be chosen once and for all so small that 0  p(r~) 
+ ~min(e*)- * - 

. The existence of p(r~), follows from point 3 and [8],2
Section 3. We denote by p the real number p(r~), and by (~) one of the
corresponding positive eigenfunctions. The function vs (t, x, ~), defined by
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satisfies the equation

The coefficient p is nonnegative. Therefore, there exists q > 0 such that, for
all (x, y) E] - oo, -M[xw, the inequality: v~ (t, x, ~) > holds.
To sum up, we have just constructed, in all the three cases, w(uo)

such that, for every 1~ > ho - 80, the inequality ~oo holds, which
implies:  ho - 80. This contradicts the definition of ho..

5.3. Eventual monotonicity and convergence
We are now able to prove, in a few lines, Theorems 3.1 and 3.2.

However, a consequence of Proposition 5.2 is finite time monotonicity on
every compact set. We are going to dwell on this property for a while,
because this is really the effect that allows convergence.

PROPOSITION 5.5. - For every M > 0, there exists T(M) > 0 such that,
for T(M), we have: (S(t)uo)x > 0 on ~M.

Proof. - Let ~ E be such that ~x > 0 in ~, and let (tn)nbe such
and go to 0.

A consequence of Propositions 4.4 and 5.3 of [27] is the fact that every
x-nondecreasing orbit is L°°-stable; in particular there exist C(~) > 0
and > 0 such that, ~0(03C8), and for all u0 ~ BX’(03C8,~), the

following inequality holds:

Further, from Proposition 5.1 and (5.4), for every M > 0, there exists
> 0 such that for every t > to on ~M. This

proves Proposition 5.5..
We could appeal to Proposition 5.5 to end the proof of our convergence

theorems. However, in [27], we obtained convergence results for x-

nondecreasing orbits; so we are going to use them.
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Proof of Theorem 3.1 and 3.2. - Theorems l.l and 1.2 of [27] assert the
following: when uo, besides satisfying assumptions (3.1) (bistable case) or
(3.2) (ignition temperature case), is x-nondecreasing, then S(t)uo converges
to a travelling front. As for Case A3/ZFK, we use Theorem 12 of [22]. In
fact, in the ignition temperature case, Theorem 1.2 is stated when  is
between two constants, but it works perfectly with assumptions (3.2): what
we in fact needed was Lemma 4.1.

Let once again 03C8 E w( uo) be such that 03C8x > 0 in 03A3. From (5.4), it

perfectly fulfils the assumptions of Theorems 1.1 and 1.2 of [27]. From
these theorems, we infer that converges to for some real

number h. From the closedness of w( uo), E w( uo). This is exactly
quasiconvergence. Now, as we said in introduction, this property, together
with asymptotic stability, implies the convergence of S(t)uo towards 

6. CONVECTION-DIFFUSION EQUATION, EXTINCTION,
REFINED CONDITIONS FOR THE CREATION OF ONE FRONT

In [2] and [3], Aronson and Weinberger noticed that exctinction occurs
when the part of £ in which the initial datum is above 0 is small enough;
their analysis required two ingredients. The first one is the time-decay
property of the linear heat equation; the second is the possibility of

converting an initial L2-estimate into a not much bigger L°° estimate for
later time. All that we will have to do is really to check these two properties,
and this section is nothing but rewriting in terms of our nonselfadjoint
problem the estimates of [2] and [3] for the particular case of the heat
equation. In what follows, Dy will always be understood with Neumann
boundary conditions.

LEMMA 6.1. - Let p > N be chosen.

1. There exists Cp > 0 such that, for all Wo E LP(~):

2. There exists Cp > 0 such that, for all E LP(w):

3. Let Wo E UC(~) be such that lim Wo(x, y) = 0. Then
Ixl+oo
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Proof. - This lemma is well-known. Points 1 and 2 stem from the fact

that (resp. is an analytic semigroup in every Lp ( ~ ) [16]. As for
Point 3, a proof involving detailed asymptotics of the fundamental solution
can be found in [12]. Here is a quick - but less precise-argument.

Set W (t) = e-tAWo. The semigroup e-tA is a semigroup of contractions,
therefore we assume that Wo has compact support in ~; the result follows by
density. Multiplication of the equation for W by W and integration yields

From the maximum principle, identity (6.1) and parabolic estimates, the

function t dxdy is uniformly continuous; therefore, from

(6.1), it goes to 0 as t -~ +0oo. Further, the function t W(t)2 dxdy
goes to a limit as t -~ +0oo, and there exists (tn)n such that

(W (tn))n converges in to some function W°°. In view of the

above remarks, is constant, and therefore 0. This implies

At this point, one only has to apply a classical bootstrap procedure to
reach decay in L°° . ~

For the extinction results, we prove that u(t) := S( t)uo falls under 0 in
finite time by following the idea of Aronson-Weinberger [2], [3]. As for the
convergence part of Theorem 3.6, paragraph 1, we just have to examine
the limiting equation for u - as x - +0oo for large-but finite-time.

Proof of Theorem 3.4, part 1. - The set of initial data uo will be chosen
below a reference initial datum, denoted by tio, such that (3.4) is true for

with given Lo, 80, ~!o and ro.

From the integral identity

one may write, from Lemma 6.1 and for p > N :

However we have, from (6.2) and the fact that is contracting in L~ ( ~ ) :
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which implies, by Gronwall’s B)+ ( ( Lp (~>  (L +
To sum up, we have obtained the following inequality, for

some large C:

From Lemma 6.1 there exists to such that  e therefore

if we choose L + 203B4)~  e e-~g~Lipt0 we have u(t  8 and

u( t) = for t > to. A second application of Lemma 6.1
yields Part 1 of Theorem 3.4. ~

Proof of Theorem 3.3, part l. - Let ~co E UC(~) be equal to 1 on 

and equal to 8 - r~ on ~~~ j,~2b. Let ~c(t) be the solution of

with g = 0 on [0, 03B8] and 9 = g on [0, 1] . Then S(t)uo  u; moreover the
same argument as above, applied to ~c(t) - B + r~, shows that u(t) falls

under 03B8 - ~ 2 in finite time, say, after to. Therefore, S(t)uo is dominated,

for t > to, by the solution of the equation u’ = g(u), u(to) = ~ 2, which
converges exponentially to 0.. 
To prove Part 1 of Theorem 3.6, we examine the asymptotic behaviour

of the solutions of the problem

LEMMA 6.2. - Assume that y) is a solution of (6.4) with ~(0, y) C
~0,.1~. Then y) goes to a constant which either belongs to ~0, 9~ or which
is equal to l.

Assume further that there exist w" C w’ C w and ri B ~ such that

If and are small enough, then drops uniformly below 0
in finite time. Conversely, if is small enough, then goes to 1

uniformly.

Proof - The maximum principle and the Hopf lemma tell us that the only
steady solutions of (6.4) are the constants in ~0, o~ or 1. Further, for every
03C8 E [0, 03B8] U {1}, we have > 0. Since 0   1, the
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w-limit-set of is nonempty; further, Theorem II.l, part (ii) of Lions
[21] ] asserts that it is a singleton.

Therefore, it only remains to give sufficient conditions ensuring that 
will either converge to 1, or to some constant less than 8, but this is not too
difficult: indeed, if and are small enough, the same argument
as in the proof of Theorem 3.4, part 1 proves that drops uniformly
below 8 in finite time. On the other hand, if is small enough, then

~(0)» 0 + ~, and since > et° ~ 0 then t > ~ + 3e forC 03C8(0) >- 2 and since 03C8(t) ~ et0394y 03C8(0), then 03C8(t) ~  4 
for

large enough t..

Proof of Theorem 3.6, part l. - Straightforward in view of Lemma 6.2:
if and ( are small enough, it is possible to construct ~o > Uo
satisfying (6.5) - possibly with different w’ and w" - such that the solution
~ (t) of (6.4) with initial datum will eventually drop below 8o and
extinction will occur. Conversely, if is small enough, then by
Lemma 6.2 once again: u(t, x, ~) ) = l; therefore
S(to)uo satisfies the assumptions of Theorem 3.2 for to > 0 large enough..

7. AN ELLIPTIC PROBLEM IN A FINITE CYLINDER

If we wish to prove propagation theorems in Case A2, we have, as

it will be clear later, to prove that the solution goes to 1 somewhere.

This can be done very quickly by noticing that the solution of the ODE
u = g(u), u(0) > 8 goes to 1 as t ~ It is also possible to take a
much longer way, which gives us an insight in the solutions of the steady
problem in a finite strip. This insight is of independent interest, and this
is why we are going to spend some time on it now. For L > 0 let us

consider the problem

Let us notice that, trivially, all the solutions of (7.1) remain between 0
and 1; this will not be said again. Let us also point out that, in one space
dimension, the problem is fully understood; see [30], Chapter 13.

For a solution ~ of (7.1), we set
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THEOREM 7.1. - Assume g satisfies the assumptions of case A2, and
that a has zero mean. For L > 0 large enough, Problem (7.1 ) has at
least three nonnegative solutions: the zero solutions, and two positive
solutions ~L  ~L , which additionally satisfy ~c1 (0) > 0, _ 0
and 1 (03C8+L) > 0. Finally there holds, uniformly on compact subsets of 03A3:

An open problem is the number of solutions between 0 and 

Only the "ignition temperature" case is be treated, once again because
this is really the one we have in mind. The bistable case will be examined
somewhere else.

Adapting the method of [6], we see that there exists a unique solution
~ °° to. the problem

Moreover, > 0 in ~. In the same vein, there exists a unique ~°°
solution of the same PDE as in (7.2), but posed in £-, and such that

y) = l, y) = 0. In this case we have  0. This

implies the two following lemmas, that will be useful to us in the proof
of Theorem 7.1.

LEMMA 7.2. - Let L be a branch of nontrivial solutions of (7.1 ) in
~L. Then one of the two statements holds.

1. There exists (Ln)n going to +oo, such that, uniformly on there
holds

In this case, there exists an interval In of ~ -Ln, Ln ~, with lim _ 

+
such that tends to 8 on In x b. Furthermore, 1 (03C8Ln)  0.

2. There holds -~ uniformly on the compact subsets of ~+.
In this case, there exists x(L) > 0, such that + L~)
is a bounded function of L, and such that there holds

Finally, there exists b > 0 such that 1(03C8L) ~ b.
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Proof - Let the assumption of Statement 1 hold. In this case, there
exists (xn, E 03A3Ln such that 03C8Ln (xn, gn) > 9. By elliptic estimates,
and because = 0, there exists two sequences En - 0 and an - +00
such that > 8 - En on [xn - an, xn + an] n which proves the
existence of the interval In. To end the proof of statement 1., we use a very
classical argument: let us indeed recall that the assumptions on g imply the
existence of r~o > 0 such that g ( u )  ug’ ( u ) on the interval ~0, 8 + 
Therefore the function u := > 0 satisfies

which implies 1 (03C8Ln)  0.

If now the assumption of Statement 1 does not hold, there exists ~l > 8
independent of L, and such that > B 1. From
now on, we denote by xL the smallest x for which there exists ?/ such that

~) = 81. We know that the quantity ~xL + L ~ is bounded; otherwise
there would exist a sequence Ln -+ +00 such that would

converge to solution of (7.1), but this time in ~, with ~~ {0, = 81,
for some E w. By elliptic  +00. Let a  0  b;
integrating the equation for on [a, b] x w we get

which proves that g ( ~~ ) E L 1 ( ~ ) . Therefore, multiplying the equation for
and integrating we see that L2 (~), which in turn implies, by

regularity, that 1 goes to 0 as Ix I --~ +00, uniformly in By
compactness there exist two sequences and bn - +00 such that

in since ~ ~~ vanishes as x ~ -~ ~ oo the functions ~~ ( ~ ) are

constants, which we still denote by ~~ .
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Now, the integral identity for g ( ~ ), with a = an and b = bn yields,
for large n:

letting n -~ -I-oo and taking into account  a > = 0 we get:

g ( ~ ) dxdy = 0. As a consequence, either ~  B 1; the two

possibilities being absurd due to the fact that ~~ (0, = 81.
The uniqueness of the solution ~°° to (7.2) implies exactly that

1/;, uniformly on the compact subsets of £+.

Let us now prove the assertion on the set ~~ > 1 + 2 e . If this were
not true, there would exist a sequence Ln -~ +00, and a sequence (xn , 
of Ln such that xn + tends to +00, and such that

Letting ?~ 2014~ and arguing as above on the sequence we end

up with a nonconstant solution of (7.1 ), but this time on the whole cylinder
~. This is absurd because c~ has zero mean.

It remains to prove that ~cl (~L ) is controlled from below. We recall that
there exists M > 0 such that -M  ~cl (~~ )  M. Let us introduce an
associated eigenfunction uL, and let be defined such that

There exists a sequence Ln - +00 such that converges in 

+00, towards a function moreover 1 (03C8Ln) ~ ~. Two cases

have to be examined.

Case 1. For a subsequence still denoted by (Ln)n, the quantity
min(xLn + Ln, Ln - tends to +00. In this case we have

which obviously implies 1 and ~c~ _ -g’ ( 1 ) .
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Case 2. the quantity min(xL + L, L - xL) is bounded. Assume that the
first argument of the min is bounded; in this case we have

av 
’

Because > 0 in ~, an argument similar to the one in [7], Proposition
5.7, shows that > 0. Finally, in case the second argument of the min
is bounded, one only has to introduce the solution ~ of(7.2), but this time
in £- ..

LEMMA. - Let 9i > 8 be fixed. For Lo > 0 large enough, there exists at
most one solution of (7.1 ) such that

If such a branch (~L ) L exists, it satisfies Statement 1 of Lemma 7.2.

Proof. - Assume that there is a sequence Ln -~ such that there exist

satisfying the assumptions of the lemma. Set

Let (xn, Yn) E ~ be such that = 1. The proof of the lemma
can be obtained by deriving an equation for Txn ~n, and arguing as in the
end of the proof of Lemma 7.2.. .

Proof of Theorem 7.1. - It is based on the construction of a sub-solution.
1. For 6~1 E~ 8,1 ~ and b > 0, there exists a solution ~2 (x, y) of

Indeed 81 is a subsolution to (7.4), and 1 is a supersolution.
2. For 8 > 0, we now want to solve the following problem:
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Let us first seek solutions of (7.5) - except the condition at x = 0 - of the
form e8(x, y) = 8x + ~s (~). Obviously, for every given b > 0, there exists
a unique solution of that form, since ~s has to solve + = 0

in w, with Neumann boundary conditions (Recall that  a >= 0). Now,
for A > 0, set ~(x, y) = e8(x, y) + A, ~(x, y) = e8(x, y) - A. For A
large enough, 9 (resp. ~) is a supersolution (resp. a subsolution) of (7.5).
A straightforward adaptation of the method of sub and supersolutions -
solve (7.5) on ] - first, = then pass to

the limit a --~ +00 - yields the existence of a solution of (7.5), which
will be denoted by ~s .

Let us now prove that

By Theorem 5.6 of [ 1 ], Theorem 2.3 of [9] and the fact that 
es + A for large A, there exists E > 0 such that the following asymptotics
hold, uniformly in y E w:

This proves, in particular, that ~x ~s > 0. Now, let (bn)n be a sequence
going to 0. There exists a subsequence - still denoted by (bn)n - such that
~sn -~ ~°° in for every compact K c ~_ . Notice that the comer

~ 0 ~ x is not too annoying because of the Neumann boundary condition,
which allows a local extension by reflection of ~s, and so, in particular,
convergence in ~0~ x w. The function ~°° is still x-nondecreasing, therefore
it has a limit l(y) as .r 2014~ -oo. However, in view of Theorem 5.6 of [1],
this limit has to satisfy -0394yl = 0 in w with Neumann boundary conditions;
hence l(y) - Constant := l . Let us prove that l = 81. If it were not true,
then > 0. In view of Theorem 5.6 of [1] and Theorems 2.1 and 2.3
of [9], ~°° would have the following asymptotics:

~°°(x~ ~J) = l -+- e~_~(~P~_(~J) + ~(xp)) 
The function e~‘- ~ ~_ (~) is an exponential solution of the first two equations
of (7.5), and therefore changes sign if nonzero. Since c~x~°° > 0, this would
mean that in fact ~_ - 0, and therefore that ~°° - l would decay faster
than any exponential. However, for c E ~ 0, B 1 ~ [ and M > 0 large enough,
the function e(x, y) .- satisfies
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Therefore we would have l --~- e  a contradiction. As a consequence
l = 6~1, and ~°° - 6~1. This implies (7.6).

3. We are now in a position to construct a weak subsolution. The

function ’!£2 of paragraph 1 of this proof is such that there exists p > 0
such that r~~~2(-b, ~) > c~~~2(b, ~)  -2~c. From our considerations
of paragraph 2 of the present proof, there 
solution of

which additionally satisfy:  ,~, > Further,
the set y) = 0~ (resp. ~~3 (x, y) = 0~) has the y),

where belong to and have

Xl (y)  -b, x3(y) > b, for all y ~ 03C9.
Now, the defined by

is a weak subsolution to the stationary problem corresponding to (1.1),
which is in addition  82.

4. Let us notice that, at this stage, we have not proved yet any information
that is valuable enough to justify the above long developments. Let us do it
now by examining the implications (7.7). Fix Lo > 0 such that 03C8L0 can be
defined by (7.7). For every L > Lo, the function Lo - suitably extended
by 0 outside ~Lo - is a subsolution to (7.1); therefore for every L > Lo
there exists ~~ > ~Lo solution of (7.1), such that ~,l (~L ) > 0. Because

of Lemma 7.1, (~L ) > b for L > Lo large enough, and the asymptotic
behaviour of ~L is obvious.

Finally, let us deal with ~L , by a classical degree argument - cf [30],
Chap. 13 -. We transform Er into a fixed domain, and make L a bifurcation

parameter via the change of variables x ~ x L. Set
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Problem (7.1) may be written as F(L, u) = 0, F being a locally compact
map from R+ x E to E. Let L > 0 be chosen so that exists. Let Ho be
the ball of E with centre 0 and radius and let S~+ be the ball of E with
centre ~+ and radius ~. For é > 0 small enough, 0 (resp. ~~ ) is the only
solution of F(L, u) = 0 in no (resp. SZ+), and we have

For L > 0 small enough, we have deg(F(L, .), E, 0) = 1; therefore,
by invariance of the degree under homotopy, there exists a solution

E EB (no u SZ ~ ) such 0. The asymptotic behaviour
of is given by the combination of Lemmas 7.2 and 7.3..

8. CREATION OF TWO FRONTS

A key ingredient is the time-exponential convergence to 1 on every subset
of the form ~ (t, x) : _ ;;’t  x  c’t~ x w, with c  c’  c’  c. In [ 11 ],
Fife and McLeod proceed by sub and supersolutions, and we imitate them.
To make the notations simpler we assume, until the end of the paragraph,
and without loss of generality, that a>= 0. This implies c  0  c.

The sub and supersolutions can readily be constructed as in [11] ] for

Case Al; and a little less easily for Case A2. A perturbation argument
is then used.

8.1. Sub and supersolutions

Let us first deal with case Al. As said above, Lemma 8.1 below can be

proved as in [ 11 ], Lemma 6.1, and its proof will not be given.

LEMMA 8.1. - Let uo be as in Theorem 3.3. Then, when L is large enough,
there exist constants xl, x2, q > 0, w > 0 such that

As for case A2, we first need the analogue of Lemma 4.2; this is

unfortunately a little more intricate. We set wr (x) = for every
r > 0. ’ "

LEMMA 8.2. - Let ~co be as in Theorem 3.4 and L be large enough so that
Theorem 7.1 applies. There exist xl, x2, q > 0, w > 0 and to > 0 such
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that, for all t > to, there holds:

Proof.
1. We first prove the upper bound. The same method as in Lemma 4.1

yields the existence of x2 such that

By possibly taking x2 large enough, we can also show:

The infimum of the right handside of the above two estimates is dominated
by the right handside of (8.1), by estimates (2.2.b).

2. The next four steps are devoted to the left handside. Let u~ first prove
that S(t)uo tends to 1 uniformly on the compact subsets of ~, as long as
L is large enough. Choose 6~2 E ~ 8, 8 + r~ ~ and a sub solution ’!£  e2 as in
(7.7). When L > 0 is large enough, ~  uo; therefore  S(t)uo.
The function is time-increasing - because is a subsolution -; as a
consequence, by standard C2 estimates, it converges to a solution 03C8 of

on every compact of ~. By the same arguments as in the proof of Lemma
7.2, we can only have ~ - 1.

3. Define the functions w(x, y) and as in (5.8), by

the functions ~_ and ~_ being positive solutions of

with r~ small enough and c = 1, r = p -1, r = - p) if

~ _ ~_ ~- ). They will be chosen so that ( ~- ~ ~ ~  1. (resp.
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 1.). Select ?i E~O, 4~ such that -.g’ > ’~~ in ~1 - 481, 1~
and choose A > 0 once and for all such that

In the whole sequel, we will + M + ct, and ( = x - M + ct,
with M > 0 to be chosen later. We require the functions w(~ - A, y) and
w ( ~ - A, y ) to be such that

It is enough to ask (8.3.b) to hold for t = 0; this is equivalent to impose:

Under this condition, there exist two functions Xl(t, y)  X2(t, y) such
that the following holds:
(8.3.d)

We set = A), w(~ - A)) . Finally, we require in
addition that

4. We look for a subsolution of (1.1) in the form

We furthermore require the following conditions to hold:

Denote by N the nonlinear operator Nu = ut - Au + a(y)ux - g ( u) .
The way to construct q, ~ and ~ is now standard: assume that conditions
(C1)-(C3) hold, and estimate with barehands.
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Two parameters will need special attention: the initial value of q, denoted
by E, and the real number M. Therefore, in the whole sequel, C will denote
a nonnegative constant which does no depend on these parameters. Three
cases are to be examined.

Case 1. (  -A.

This means that ( :::; -A as well. In view of the definition of 81, (8.2),
(8.3) and (C3), we have p(t, x, y) = w(~ - A, y) and

However, we have, by denoting A+ the exponent playing the same role
for $ as the real number A+ in (2.2.b): g(~(~ ~-- ~(t), ~)) ~ Ce~+~ 

We therefore require q to satisfy the inequality - notice that q, and

therefore p and p may be chosen small enough to be  À+ - :

Case 2. -A G ~  A.

This time we still have (  -A and cp(t, x, y) = m(~ - A, ,y). We get:

However there holds:

Set m = inf it is sufficient to require:

Case 3. ~ > A.

In this case three subcases have to be considered, namely: ~ > A,
( E ~-A3 A~, ~ ~ -A. The two first subcases lead to inequations similar
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to (8.5.a) and (8.5.b); the only differences is that they now involve ( and (
instead of ç and (. Therefore turn to the case (  -A. In view of (8.3.a)
and (2.2), there exists q > 0, C > 0 such that there holds:

Here we have set A = inf(A+, A+). The real number 03B3 is equal to -g’(1) 2
(resp. g~(1) + p(c - ~I)~ ~-~ + p(~I ‘ - c ) if > ~) is equal to 1

2 
+ p(c - 2 

+ - ê) if cp(t, x, y) is to 1

(resp. w(( - A, y), w (( - A, ~~-)
There holds: inf(e-~‘~, e~~) = Therefore we ask q to

satisfy a a similar inequality as (8.5.a).
To sum up, if we wish x, y) defined by (8.4) to be a subsolution,

the functions q, ~ and $ have to satisfy the following three additional

conditions, for some C > 0, A > 0 and 03B3 ~]0, 03BB[:

Clearly, conditions (C 1 )-(CS) are fulfilled as soon as c is small enough
and M is large enough. Therefore, once they are chosen, u(t, x, y) defined
by (8.4) is a subsolution.

5. The conclusion is now easy: if ~ > 0 is chosen small enough in

(8.2), then there exists b > 0 such that u(0)  0 on ~~~h. Further,

_u(o)  1, by construction. By Lemma 8.1, there exists to > 0 such that

u(0), and Lemma 8.2 follows from the maximum principle,
with r small enough. e.

8.2. Proofs of the propagation theorems

In this paragraph, we drop the assumption  ~x >= 0. Let T(x) be a
nondecreasing, C°° function, such that: f (x) = 0 if :r  0 and r(x) = 1 if
~ > 1. As in [ 11 ], we introduce the "left truncation" of S(t) uo :
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The "right truncation" v’~ is defined in a symmetric way. We will show
that vl converges exponentially to a travelling front; the same result can be
proved in a similar way for This will imply our theorems.
We come back to the reference frame of ~, still denoting by x and y the

new coordinates. As in Section 4, we have the

COROLLARY 8.3. - Select 8 > 0. In both cases Al and A2, the set

{vl(t + .), t > relatively compact in --~oo ~, X ).

Proof of Theorem 3.3 and 3.4, part 2. - Let cv(vo) be the 03C9-limit set of vo;
from Corollary 8.3 it is nonempty; therefore chose uo E cv(vo). By Lemmas
8.1 and 8.2, there exist hi  h2 such that 03C4h1 03C6  Uo ::; Therefore,
by Theorem 3.1 (bistable case) or Theorem 3.2 (ignition temperature case)
there exists k E R such that S(t)uo converges towards 

Consider now the real numbers 80 and ~co such that Corollary 2.2 works
with and select 6 E J 0, 80 [. Denote the convergence exponent of S ( t) uo
to by for every /1 EJ 0, we may always assume - possibly
by performing a sufficiently large translation in time - that vz satisfies an

evolution equation of the type (2.8), with  ~c. Select T > 0

such that

from Corollary 8.3 there exists some large to such that

Application of Corollary 2.2 shows that vl ( t) converges to some translate
of of order 8 + ~c; since 6 and /1 are arbitrarily small, vl (t) converges
to Tk The exponential convergence is also guaranteed by Corollary 2.2. ~

It should be noticed that there is an intermediate behaviour between

propagation of two flame fronts and extinction. To be convinced of this,
one only has to notice that, due to the preceding results, propagation and
extinction are both "open" properties, i. e. that if one of the two behaviours

holds for an initial datum, it will hold for all nearby initial data. This is

true because S(t)uo has to be below 8 in finite time for extinction, or to
be above a nontrivial solution of (7.2). Therefore what really plays a role
here is the continuous dependence with respect to the initial data. As a

consequence, by connectedness, there has to be an in-between behaviour.
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Proof of Theorem 3.5. - It suffices to prove an inequality of the type
(8.1), with c = c*. The upper bound is easily obtained, due to the fact that
Uo is compactly supported.
The lower bound requires more care. Let g be a C3 function such that

There exists a unique B 1 > 0 such that = 0. From Theorem 3.2 of

[22], we see that S(t)uo becomes greater than 81 on every compact subset
of £. Let us then consider a sequence such that, for all 9 > 0, go
satisfies the assumptions of Case A2, and

Let co and Co the corresponding wave speeds; from [9] we know:

Applying Lemma 8.2 to every go - it works uniformly for all Of  2014!- -
then passing to the limit B - 0 yields the desired inequality. 8

Proof of Theorem 3.6, part 2. - Once again, nothing more sophisticated
than continuity of the nonlinear semigroup and parabolic regularity is

involved in this result. Let L > 0, b > 0 and vo E UC(~) be chosen so that
(i) vo only on 

(ii) vo satisfies (3.4),

(iii) Theorem 3.4 holds with L - 1 and - instead of L and r~.

Choose p > n. By elementary LP-continuity of S(t) - the reader who is
still unfamiliar with the argument may consult [16] - we have, for every
t > 0:

By abstract regularizing effect (see [16], Chapter 3) we have, for possibly
different C:

Choosing ~cvBc,~" ~ I small enough leads to the fact that, at time t = 1, the
solution S ( t ) uo is above 6~ ~- ~ on ~ L . In view of (iii), S(t)uo develops
into a pair of two fronts, ~ and this terminates the proof of our long-time
behaviour results. 8
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9. DIRICHLET BOUNDARY CONDITIONS

This is devoted to case B, and we come back to the arguments of Section
5. Since they have already been presented in detail, we will only insist on
the technical differences. The section is divided into three paragraphs: in
the first one, we state a uniform - possibly known - positivity result; in
the second one, we prove Theorem 3.7. As in Section 5, we work in the
reference frame of a travelling front.

9.1. Refined Hopf Lemma

We state the form that will be of use to us. On Q = R+ x ~ consider
a nonnegative strong solution of

with Dirichlet boundary conditions. The coefficients B and c belong to
(Q); moreover we assume

From the usual Hopf Lemma [30] we shall prove

PROPOSITION 9.1. - For every M > 0, there exists > 0 such that:

Proof - Assume the existence of a sequence (tn)n going to +0oo, and
of a sequence such that

We may assume that - For t E [0,1],
(x, Y) E and n large enough, let us set ~cn (t, ~;, y) = u(t.n -1-I- t, x, ~).
Due to the smoothness assumptions (9.2) and the classical Schauder

estimates, the sequence (un)n converges, in C2+~~l+b (~0,1~ x ~~,I), to

a solution u~ of an equation of the form

with Dirichlet boundary conditions. Two cases hold:
- Case 1. y E cv. Then (9.3) implies = 0, a situation

precluded by the strong maximum principle.
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- Case 2. y E Then (9.3) implies = =

0, a situation which is this tipme precluded by the Hopf boundary Lemma.
Therefore Proposition 9.1 is proved. 8

Remark. - This proposition could also have served us in the proof of
Proposition 5.2. However, the Harnack inequalities could be readily used.
Moreover, they need less smoothness than (9.2).

9.2. Convergence for x-increasing initial data, eventual monotonicity
and convergence

We first prove the equivalent to Proposition 4.4 in [27]. We take

the notations of Section 2, 2.3. In X, let Y be the space of those

functions u which are x-increasing, and such that lim u(x,y) = 03C81 (y)
and lim u(x, ~) _ (~).

PROPOSITION 9.2. - Let ulo belong to Y. There exists ~0(u10 > 0 and a
constant C such that, for every ~  and for every u2o E 
the following estimate holds:

Proof. - In two steps. The new one is really the first.
1. Let be a standard regularisation of the distribution bo, and H the

heaviside function. For i E ~1, 2~ let be a positive eigenvector associated
to gy(y, and let us set

Obviously, there holds

and the following estimate is easily checked

2. A subsolution to (1.1) is looked under the form

with ~ = x+03BE1(t). For the choice of A, 03BE1(t) and c, one basically proceeds
as in [27], Section 4, by adding the following ingredients: for 7; outside
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a large cylinder ~~,T, by reducing c a first time and taking (9.6.a) into
account, one chooses

Inside ~~~, we have to choose, by virtue of estimate (9.6.b):

Proposition 9.1 and estimate (9.6.b) again allow us to choose = 

which ends the proof of Proposition 9.2. ~

Proof of Theorem 3.7. - From Proposition 9.2, the set of initial data ~.co

such that S(t)uo converges to a front s open and closed in Y; moreover,
due to local stability, it is nonempty. Therefore, it is Y itself. Therefore

it suffices to prove that, for uo 6 X, n Y is nonempty. To do so
we simply have to follow the scheme of the proof of Proposition 5.2, the
only difference being that, this time, Proposition 9.1 instead of Proposition
5.1 applies. 8

10. THE CASE OF THE SYSTEM

This part is devoted to the proof of Theorem 3.8 on System (1.8). We
immediately set ourselves in the reference frame of a wave, and we set,
still keeping the notations x and y:

We may write (1.8) under the form

Therefore System (1.8) is a perturbation of (1.1). What prevents us from

applying directly Corollary 2.3, as we had done in the preceding sections,
is that W (t) does not decay exponentially as t - +00. Therefore we have
to use an additional result, which is a slight variant of a theorem of [14].
Here is the precise result.
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Let X C X be two Banach spaces, with continuous injection from X to
X. Let A be a sectorial operator in X and X, and f a C2 function of X.
Assume that the equation Au = f(u) admits a C2 manifold of solutions:

We are interested in the stability of the with respect to the evolution

problem

The Cauchy Problem for (10.3), associated to an initial datum uo, has a
local solution denoted by S(t)uo. Let denote by ,Ca the operator A - 
Its spectrum in X (resp. X ) will be denoted by (resp. ~X (,Ca ) ).
THEOREM 10.1. - Assume that the three following assumptions hold.
1. The function f is C2 in. X. Furthermore, the function g satisfies the

folloxing assumptions:

For the meaning of the notation, see Notation 4 in Section 2.
2. For any given ~ E ~, N(,Ca) is spanned by moreover the

decompositions

hold, with algebraic and topological sum. Further, a-X (,C~, ) ~ ~ 0 ~ is contained
in a cone of the complex plane with positive vertex and aperture  ~r.

3. For any given ~, let ea be such that  e~ , > = 1 and = 0.

There is a positive function cp(t), such that lim cp(t) = 0, such that there
holds, for all vo E X :

Let Ao E R and v0 ~ X be given. The Cauchy datum uo is taken under
the form uo = + vo, vo E X. and are small enough,
there exists such that
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When X = X, the above result is nothing else than Exercise 6 page 108
in [16], and the convergence of S( t)uo to is exponential. The proof
of the general case will therefore closely follow the one in [16].

Proof - When vo is small enough we may write, at least for short

times: u(t) = + v(t), with v(t) E R(,C~o ). The problem is to show
the validity of this formula for large times. Let n be the projection onto
R(,C~o ), and let us set

where C( u, h) is locally bounded. Equation (10.3) may be written under
the form

with

Let us assume, as is usual: )A(t) - Ao) + rp. We operate in X;
writing down the integral formula for v(t), using the formula for ~(t) and
carrying on with the usual estimtes yields the existence of w > 0 and two
constants Ci and C2(r~), bounded for small r~, such that

Looking at the equation for in (10.4) we infer the existence of a
constant qi > 0 and a function q2 (r~~, with lim q2 (~) = 0 such that

~~o
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Therefore, when ~ and are really small enough, we have ~,
and there exists such that

It now remains to prove that actually remains below 7~. The above
formulas will from then on be valid, and the theorem will be proved. We
write the integral formula for v in Z, and we use (10.5); this yields

Therefore, when is small enough, we 
Theorem 10.1 will provide us for an equivalent version of the

compactness theorems in Section 4.

LEMMA 10.2. - Let ~co and vo be as in Theorem 3 .8. For to > 0 large
enough there exist q > 0, c.~ > 0, and p(t) > 0, such that lim p(t) = 0,
and such that:

We remark that the function satisfies lim = 0;

moreover, for every c > 0, there exists ~ > 0 such that

Therefore we only have to apply Theorem 10.1 with

and the following choice of nonautonomous terms: gl (t) = for the
lower bound, and g2(t) _ for the upper bound..

Proof of Theorem 3.8. - Same as the proofs of Theorems 3.3 and 3.4,
Part 2..

11. EXTENSIONS AND CONCLUDING REMARKS

The method that we have developped in this paper for proving eventual
monotonicity, combined to the techniques that we have used in our previous
papers [7], [22], [26], [27], also allows us to handle more general differential
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operators, namely to replace the term -0394u in (1.1) by an expression of the

type - ( Y~ or also of the 

In particular, for N = 1, one can prove in a similar way as above that the
travelling front solutions of the problem

g being as in case AI-A3/ZFK or B, are globally stable. Local stability
has been known for a long time (it can easily be deduced from [29]), but
global stability, up to our knowledge, is new.

In the same vein, we can also prove convergence to travelling waves
for the solutions viscous regularisations of hyperbolic equations, namely
equations of the form

The term g may satisfy Al, and the term f is taken to be strictly convex.
There exists an x-decreasing wave § connecting 0 to 1, which is a

regularisation of the entropic shock wave H(x - at) , with a = f (1) - f(O);
see [30] for the background. The stability of cjJ is once again well-known;
see [16] or [22]; we provide here a method for proving its global stability,
and the result is once again new.

In bounded domains, a similar study could be made in order to treat a
problem of the form

see Berestycki and Nirenberg [10] for the right assumptions of F and the
appropriate boundary conditions. Once sufficiently stong a priori estimates
are known, a solution of the above problem becomes monotone in finite
time in the whole domain. Such a result, however, has little interest, for the

theory of Hirsch, combined to [10], asserts that every solution converges
towards the unique monotone equilibrium state.

Let us now come back for a moment to Problem (7.1). The whole
structure of the solution set is still to be understood. In particular, we
have not yet fully exploited the fact that we were working in a continuous
family of cylinders, which should yield a much more precise description
of this solution set.

In the same way, we have said nearly nothing about the intermediate
behaviour that we have noticed in Section 7.3. In one space dimension, at
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least for even initial data, one could effortlessly be a little more explicit.
However, the full study of this critical behaviour would have led us too far
from the main stream of this paper, and will be performed somewhere else.

Let us finally conclude with a question that we leave open, and whose
answer might require other techniques than the ones we have displayed. In
[22], where case A3 is investigated, we prove that the long-time behaviour
of S(t)uo, strongly depends on the asymptotic behaviour at x = -oo;
namely the decay rate selects the speed of the front; we are even able to
give an explicit expression of the asymptotic shift..

Here nothing like this happens; in fact, our convergence proof, which
relies on a connectedness argument, is perfectly non-constructive. The

problem occurs in one space dimension as well, for the Liapunov function
which naturally comes up only tells that quasiconvergence to some

equilibrium occurs, but never specifies which one is chosen, and why.
Most certainly, it does not occur as in the KPP case, and here is a very
simple reason why. For uo E X, let h ( uo ) be such that S ( t) uo converges
tO 

PROPOSITION 11.1. - For every r,L > 0, for every function a(y) E
C(cw, I~+), there exists (uL, vL) E X2 such that

(i) uL = oo, -L] x cv,
(ii) lim UL(X, = a(y) as x ~ -oo, uniformly in y E 03C9 and

such that h(uL) - h(vL) > L.

Proof - This is nothing else than an application of Theorem 2.1 to

two suitably chosen initial data. We use the notations of Section 2 and
Theorem 2.1.

Let uL and vL be defined as follows:

When L > 0 is large enough, the quantities 
become  80, and Theorem 2.1 applies, which yields:
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in other words:

This proves Proposition 11.1 ~
Thus we see that convergence occurs in a totally different manner than

in the KPP case: indeed, for r > 0 small enough, assumptions (i) and (ii)
of Proposition 9.1 would imply h( UL) = 

Therefore we think that understanding how the asymptotic shift is selected
in the bistable case and in the ignition temperature case would undoubtedly
be mathematically quite interesting.

APPENDIX

This appendix contains an outline of the proof of Theorem 2.1 in the

bistable case, of the proof of Corollary 2.2 in both cases. To be complete,
we should also include the Dirichlet case: however it is quite similar to the
proof that we are going to give now. First, turn to Theorem 2.1.

In the framework of the bistable case, recall that X = UC ( ~ ) . Let L be
the linearised operator about ~, with domain

and whose expression is given by

For A E C, a solution of Lu = Au is an element u ~ 0 of D(L) such that
Lu = ~u. Two steps are required for Theorem 2.1, each of them being the
subject of one paper in the ignition temperature case.

Step 1. Linear stability

It suffices to copy word by word the proofs of [7], so we will not dwell
on this point any longer.

Step 2. Nonlinear stability

This part corresponds to [26]. There are once again two steps: first, one
has to show lies in a cone of the complex plane, with angle
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 2 , and with vertex on the positive real axis. Second, one has to show
that 0 is a simple - in the geometric as well as in the algebraic sense - of L.
The conclusion of the proof of Theorem 2.1 relies on an Implicit Functions
Theorem argument due to Sattinger [29].

1. Localisation of the spectrum. - For a > 0 and 03B1 E 0, - let Ca;a
denote the cone of the complex plane

PROPOSITION A. I . - The operator L is sectorial in X. Further, there exist

a > 0 and c~ E 0, ~ such that C Moreover, for every

b a[ and 03BB ~ (Ca,03B1 U Bs ), there holds:

Proof - The fact that L is sectorial is an extension of a result of Stewart

[31]; see [26]. As for the existence of we construct two operators T

and S of X, such that L = S + T, Re a(L) > ~y for some q > 0, and
is compact. A result of Gohberg [15], combined to the fact that L is

sectorial, yields the existence of C~,,~~ . Estimation (A.3) follows easily.
As for the operators Sand T, let r ( x) be a C°° nondecreasing function,

zero for x  0, equal to 1 pour x > 1. We set:

There exists -y > 0 such > ~y.

We set D(T) = D(L), and, for u E D(T):

then, for u E X, Su = [q(x) - We notice that Sand T satisfy
all the required properties (easy adaptation of [26], Section 4, Lemmas
4.6 and 4.7)..

2. multiplicity of the eigenvalue 0. - In fact, we only have to prove
that 0 is geometrically simple; the algebraic simplicity being obtained by
copying the proof of Theorem 3.1 in [26].

PROPOSITION A.2. - Let u E D(L) be such that Lu = 0. Then u has the
form Constant x ~~.
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Proof. - We may assume that u is real-valued. By the same argument as
in Proposition 3.4 of [26], there exist cx+ and ~x _ such that

We have to distinguish the case cx _ = c~+ and the case 0;- ~ o~.
If c~ _ = ~x+, the same argument as in Proposition 3.4 of [26] proves
U = Therefore it remains to prove that cx _ ~ a+ is impossible.

In order to do so, we always may assume that c~_ = 0, and a+ > 0.
On the other hand we know - see [9] - that there exist A- > 0 and

> 0 such that:

as Ixl --~ - oo, for some ~ > 0. The maximum principle applied to f x
yields: u > 0 in ~. Let us prove by induction the following claim: for

ever y n E IV, u(x, y) = as ~~ --~ -oo, with 0  ~n  ~~ .
This is indeed true for n = 1 and ~- ; therefore assume it is true up
to the order n, and let us prove that it is true up to the order n + 1. The

equation Lu = 0 may be written as follows:

From Lemma 5.2 of [25] and the induction assumption, there exist

~~° E D(L) solution of = 0 and u* E D(L) solution of

such that u = u° + u*, and:

From [9], there exist q- E R, > A- and (y) such that:
- the function := belongs to D(L), and satisfies

= 0; moreover the function is nonzero and changes sign in cJ,
- the function zc° may be written as:
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Since a- = 0, then q- = 0. Since the function changes sign in ©
and since u > 0 in ~, we get:

Finally, setting en+1 = En + ~-1, we see that: 0   2 . This
proves our claim, since u = u + u*.

Therefore, u decays faster than any exponential as x -~ -oo. However,
for A > 0 large enough, the function u(x) = satisfies:  0

in ~. On the other hand, let xo  0 be such that  0 in

] - oo, xo] x w. Since u > 0 in ~, there exists 8 > 0 small enough
so that: u(x°, .) > bu(x°, .), which implies, by the maximum principle:
u(x, ~) > bu(x, y) for (x, y) E~ - oo, xo~ x c.~. Contradiction..

Remark. - When dealing with Dirichlet conditions, one should avoid
divisions by and rather work with solutions of the form u + for

suitably chosen k.

Once we know what we have to know, the end of the proof of Theorem
2.1 is a particular case of the proof of Corollary 2.2, with h(t) = 0. This
is what we are going to see now.

Proof of Theorem 2.1. and Corollary 2.2. - We transform Problem (2.8)
into the following problem: find v(t) E X03C9 and 03B3 ~ R such that

the functions R an k being the second-order terms:

We set: v(t) = + ~(t,), with ((t) E R(L); see [26], Section 5
to see why we may do so. Let e* E X* (the dual space of X) be such
that L*e* = 0, = 1 and Ge*,~T>= l. The equations for p(t) and
~(t) read:
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Here, Q =  e * , . > we know that there exists > 0 such that

Problem (A.9) is equivalent to the following problem: find ~(t) E 
p(t) E E03C9 and 03B3 ~ R such that:

(A10) 
L

We write (A.10) in compact form:

( A .11 ) .~’1 (~~ ~~’Y, vo, h~ _ .~2(~; ~;’Y~ vo~ h) _ -~’3~~~ ~~’Y~ vo~ h) == 0.

and set: .~’ = .~’3 ) . The mapping .~ is G‘1 from x x ff~ x

X x X2w to x E‘~ x R; moreover = 0. Further, as easily seen we
have ~03B6,p,03B3F(0) = IdE03C9 ~ IdR, which clearly is an isomorphism
of QXw x E‘~ x R. Application of the Implicit Function Theorem ends
the proof of Corollary 2.2..
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