BAISHENG YAN Remarks on W^{1,p}-stability of the conformal set in higher dimensions

Annales de l'I. H. P., section C, tome 13, nº 6 (1996), p. 691-705 http://www.numdam.org/item?id=AIHPC_1996_13_6_691_0

© Gauthier-Villars, 1996, tous droits réservés.

L'accès aux archives de la revue « Annales de l'I. H. P., section C » (http://www.elsevier.com/locate/anihpc) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Vol. 13, n° 6, 1996, p. 691-705

Remarks on $W^{1,p}$ -stability of the conformal set in higher dimensions

by

Baisheng YAN

Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA e-mail:yan@math.msu.edu.

ABSTRACT. – In this paper, we study the stability of maps in $W^{1,p}$ that are close to the conformal set $K_1 = \mathbf{R}^+ \cdot SO(n)$ in an averaged sense as described in Definition 1.1. We prove that K_1 is $W^{1,p}$ -compact for all $p \ge n$ but is not $W^{1,p}$ -stable for any $1 \le p < n/2$ when $n \ge 3$. We also prove a coercivity estimate for the integral functional $\int_{\mathbf{R}^n} d_{K_1}^p(\nabla \phi(x)) dx$ on $W^{1,p}(\mathbf{R}^n; \mathbf{R}^n)$ for certain values of p lower than n using some new estimates for weak solutions of p-harmonic equations.

Key words: Weak stability, conformal set.

RÉSUMÉ. – Dans cet article, nous étudions la stabilité des applications dans $W^{1,p}$ qui sont proches de l'ensemble conforme $K_1 = \mathbf{R}^+ \cdot SO(n)$ dans un sens moyenné décrit dans la Définition 1.1. Nous prouvons que K_1 est $W^{1,p}$ -compact pour $p \ge n$ mais n'est pas $W^{1,p}$ -stable pour tout $1 \le p < n/2$ si $n \ge 3$. Nous prouvons aussi une estimée de coercivité pour la fonctionnelle $\int_{\mathbf{R}^n} d_{K_1}^p(\nabla \phi(x)) dx$ on $W^{1,p}(\mathbf{R}^n; \mathbf{R}^n)$ pour certaines valeurs de p inférieures à n en utilisant des estimées nouvelles pour des solutions faibles d'équations p-harmoniques.

¹⁹⁹¹ Mathematics Subject Classification. 49 J 10, 30 C 62.

This work was done while the author was a member at the Institute for Advanced Study during 1993-94, which was supported by NSF Grant under DMS 9304580.

Annales de l'Institut Henri Poincaré - Analyse non linéaire - 0294-1449 Vol. 13/96/06/\$ 7.00/© Gauthier-Villars

B. YAN

1. INTRODUCTION

Let $n \geq 2$ and $\mathcal{M}^{n \times n}$ denote the set of all real $n \times n$ matrices. For each $l \geq 1$, we consider the following subset K_l of $\mathcal{M}^{n \times n}$ in connection with the theory of *l*-quasiregular mappings in \mathbb{R}^n (see Reshetnyak [21] and Rickman [22]),

$$K_l = \{ A \in \mathcal{M}^{n \times n} \mid ||\mathcal{A}||^n \le l \det \mathcal{A} \}, \tag{1.1}$$

where ||A|| is the norm of $A \in \mathcal{M}^{n \times n}$ viewed as a linear operator on \mathbf{R}^n , *i.e.*,

$$||A|| = \max_{|h|=1} |Ah| = \max_{|h|=1} \sqrt{h^T A^T A h}.$$
 (1.2)

When l = 1, set K_1 is the set of all conformal matrices, which will be called the *conformal* set in this paper. Note that $K_1 = \mathbf{R}^+ \cdot SO(n)$. We also consider the set R(n) of all general orthogonal matrices in \mathbf{R}^n , *i.e.*,

$$R(n) = \{ A \in \mathcal{M}^{n \times n} \mid A^T A = \lambda I \text{ for some } \lambda \ge 0 \}.$$
(1.3)

Let Ω be a domain in \mathbb{R}^n , which is assumed throughout this paper to be bounded and smooth. We recall that a map $u \in W^{1,p}(\Omega; \mathbb{R}^n)$ is said to be (weakly, if p < n) *l*-quasiregular if $\nabla u(x) \in K_l$ for a.e. $x \in \Omega$, see [13], [14], [21] and [22]. The Liouville theorem asserts that every 1-quasiregular in $W^{1,n}(\Omega; \mathbb{R}^n)$ is conformal and thus is the restriction of a Möbius map if $n \geq 3$.

An important result proved in Iwaniec [13, Theorem 3] is that for each $n \ge 3$ and $l \ge 1$ there exists a $p_* = p(n, l) < n$ such that every weakly *l*-quasiregular map belonging to $W^{1,p_*}(\Omega; \mathbb{R}^n)$ belongs actually to $W^{1,n}(\Omega; \mathbb{R}^n)$ and is thus an *l*-quasiregular map as usually defined in [21] or [22]. Such higher integrability results depend on some new estimates for weak solutions of *p*-harmonic equations in Iwaniec [13], and Iwaniec and Sbordone [15].

In this paper, we shall study some properties pertaining to the stability of weakly quasiregular maps. We shall consider the stability of maps in $W^{1,p}(\Omega; \mathbb{R}^n)$ when their gradients are converging to the conformal set $K_1 = \mathbb{R}^+ \cdot SO(n)$ in the averaged sense described by (1.4) in Definition 1.1 below. The study is originated from a study of the structures of *Young measures* whose supports are *unbounded*. For references in this direction, we refer to [2], [3], [16], [17], [19], [23], [25], [26], [29], [30] and references therein. We need some notation to proceed. For a function f defined on $\mathcal{M}^{n \times n}$ we use $\mathcal{Z}(f)$ and $f^{\#}$ to denote the zero set and the quasiconvexification of f, respectively. For a given set $\mathcal{K} \subset \mathcal{M}^{n \times n}$, denote by $d_{\mathcal{K}}(A)$ the distance from A to \mathcal{K} for all $A \in \mathcal{M}^{n \times n}$ (in any equivalent Euclidean norm), and let $\mathcal{K}^{\#}$ be the quasiconvex hull of \mathcal{K} . See Dacorogna [8], Yan [26] and Šverák [23] for the relevant definitions.

In this paper, we use the following definition, *see* also Zhang [30]. We refer to Ball [2], Kinderlehrer and Pedregal [17] and Tartar [25] for more connections of this definition with the Young measures theory.

DEFINITION 1.1. – We say \mathcal{K} is $W^{1,p}$ -stable if for every sequence $u_j \rightarrow u_0$ in $W^{1,p}(\Omega; \mathbf{R}^n)$ satisfying

$$\lim_{j \to \infty} \int_{\Omega} d^p_{\mathcal{K}}(\nabla u_j(x)) \, dx = 0, \tag{1.4}$$

it follows that $\nabla u_0(x) \in \mathcal{K}$ for a.e. $x \in \Omega$. We say \mathcal{K} is $W^{1,p}$ -compact if every weakly convergent sequence $u_j \rightarrow u_0$ in $W^{1,p}(\Omega, \mathbb{R}^n)$ satisfying (1.4) converges strongly to u_0 in $W^{1,1}(\Omega; \mathbb{R}^n)$. In terms of Young Measures, \mathcal{K} is $W^{1,p}$ -compact if and only if every $W^{1,p}$ -gradient Young Measure supported on \mathcal{K} is a Dirac Young Measure on $\mathcal{M}^{n \times n}$.

It should be noted that in many cases $d_{\mathcal{K}}^p$ in (1.4) can be replaced by other functions f that vanish exactly on \mathcal{K} and satisfy $0 \le f(A) \le C(|A|^p + 1)$. For example, when \mathcal{K} is homogeneous, then $d_{\mathcal{K}}^p$ in (1.4) can be replaced by any non-negative homogeneous functions of degree p that vanish exactly on \mathcal{K} .

We also note that it follows from the result in Zhang [29]-[30] that if a *compact* set \mathcal{K} is $W^{1,p}$ -compact for *some* p > 1 then it is $W^{1,p}$ -compact for *all* p > 1. One of the main purposes of this paper is to show that this result fails to hold for *unbounded* sets \mathcal{K} . Our counter-example is provided by the conformal set $K_1 = \mathbf{R}^+ \cdot SO(n)$ defined above. More precisely, we shall prove the following result.

THEOREM 1.2. – Suppose $n \ge 3$. Then set $K_1 = \mathbf{R}^+ \cdot SO(n)$ is $W^{1,p}$ -compact for all $p \ge n$, but not $W^{1,p}$ -stable for any $1 \le p < n/2$.

The $W^{1,n}$ -compactness of K_1 follows from a stronger theorem (Theorem 3.1) proved by using the result of Evans and Gariepy [10] (*see* also Evans [9]) and the theory of polyconvex functions. Note that the $W^{1,p}$ -compactness of K_1 for p > n has been proved in Ball [3] using the Young measures and polyconvex functions; *see* also Kinderlehrer [16]. Using the similar techniques of *biting* Young measures, one can also prove the $W^{1,n}$ -compactness of K_1 without using the result of [10]; but we do

not pursue such a method in the present paper. For more on biting Young measures, we only refer to [6], [17] and [28].

It is also noted that $K_1 = \mathbf{R}^+ \cdot SO(n)$ is unbounded and contains no rank-one connections, but our theorem says that it may or may not support nontrivial gradient Young measures. This phenomenon also makes the conjecture in Tartar [25] more interesting for Young measures with unbounded supports; of course, this conjecture (in the case of compact supports) has been very well understood and resolved in Bhattacharya *et al.* [7], *see* also Šverák [24].

It has been proved in Yan [26] (also Zhang [29]) that if \mathcal{K} is compact then $\mathcal{K}^{\#} = \mathcal{Z}(d_{\mathcal{K}}^{\#})$. For $\mathcal{K} = \mathcal{K}_1$, the conformal set, if $n \geq 3$ it is easily seen from the proof of Theorem 3.3 that the set R(n) is contained in $\mathcal{Z}(d_{\mathcal{K}}^{\#})$. More recently, using this observation and the rank-one convex hulls, we have proved in Yan [27] that $d_{\mathcal{K}_1}^{\#}$ actually must be identically zero. For more on the growth condition for *conformal energy* functions, we refer to the forthcoming paper Yan [27]. Therefore in general the previous result $\mathcal{K}^{\#} = \mathcal{Z}(d_{\mathcal{K}}^{\#})$ does not hold for unbounded sets \mathcal{K} (an example when n = 2 was given in Yan [26]).

The proof of Theorem 3.1 uses the polyconvex function G(A) defined by (2.1) which vanishes exactly on the conformal set K_1 and is *uniformly strictly* quasiconvex in the term used by Evans [9] and Evans and Gariepy [10]. The proof using biting Young measures as in Ball [3] also uses such polyconvex functions. However for p < n both proofs break down since there is no counterpart of polyconvex function G(A) that vanishes exactly on K_1 and grows like $|A|^p$ when p < n, see Yan [27].

To study the case for p < n, we make use of some new estimates for *p*-harmonic equations obtained recently by Iwaniec [13, Theorem 1] (*see* also [15]). We shall prove the following coercivity result for the functional

$$\int_{\Omega} d_{K_1}^p(\nabla \phi(x)) \, dx$$

on $W_0^{1,p}(\Omega; \mathbf{R}^n)$ for certain p < n, which follows obviously from Theorem 4.1.

THEOREM 1.3. – Let $n \ge 3$ and $K_1 = \mathbf{R}^+ \cdot SO(n)$ be the conformal set. Then there exist constants $\alpha(n) < n < \beta(n)$ and $c_0(n) > 0$ such that for all $p \in [\alpha(n), \beta(n)]$

$$c_0(n) \int_{\Omega} |\nabla \phi(x)|^p \, dx \le \int_{\Omega} d^p_{K_1}(\nabla \phi(x)) \, dx \le \int_{\Omega} |\nabla \phi(x)|^p \, dx \qquad (1.5)$$

for all $\phi \in W_0^{1,p}(\Omega; \mathbf{R}^n)$.

Annales de l'Institut Henri Poincaré - Analyse non linéaire

This theorem implies that for certain values of p lower than n, any weakly convergent sequence $\{u_j\}$ in $W_0^{1,p}(\Omega; \mathbb{R}^n)$ that satisfies (1.4) must converge to 0 in $W^{1,p}(\Omega; \mathbb{R}^n)$. For functions ϕ with the conformal linear boundary conditions, we do not know whether a similar estimate like (1.5) can be obtained; see the remarks in the end of the paper.

Finally, we point out that the estimate like the second one of (1.5) can not be expected to hold for a constant $\alpha(n) < n/2$.

THEOREM 1.4. – Let $\alpha(n) < n$ be any constant determined in the previous theorem. Then it follows that $\alpha(n) \ge n/2$.

We now give the plan of the paper. In section 2, we review some notation and preliminaries that are needed to prove our main theorems. In section 3, we prove the $W^{1,p}$ -compactness of the conformal set $K_1 = \mathbf{R}^+ \cdot SO(n)$ for $p \ge n$ and study the $W^{1,p}$ -stability of K_1 for p < n/2. In section 4, we prove the coercivity property (1.5) of the integral functional $\int_{\mathbf{R}^n} d_K^p(\nabla \phi(x)) dx$ on $W^{1,p}(\mathbf{R}^n; \mathbf{R}^n)$ for certain values of p lower than n. We also prove that such a coercivity estimate is not true for p < n/2. Finally, in section 5, we make some remarks regarding the $W^{1,p}$ -compactness of set K_1 for certain lower values of p < n.

2. NOTATION AND PRELIMINARIES

For $n \geq 2$, let us define

$$G(A) = n^{-n/2} |A|^n - \det A$$
(2.1)

where $|A|^2 = \text{tr}(A^T A)$. It is easily seen that $G(A) \ge 0$ is polyconvex and vanishes exactly on $K_1 = \mathbf{R}^+ \cdot SO(n)$ and is *uniformly strictly* quasiconvex in the sense defined by Evans and Gariepy in [10], also [9] and [11].

LEMMA 2.1. – Let G(A) be defined by (2.1). Then for any $\epsilon > 0$, there exists a constant $C_{\epsilon} > 0$ such that for all $A \in \mathcal{M}^{n \times n}$

$$G(A) \le C_{\epsilon} d_{K_1}^n(A) + \epsilon |A|^n.$$
(2.2)

Proof. – This follows easily from the homogeneity of G(A) and $d_{K_1}^n(A)$. \Box

In order to use the estimates for p-harmonic tensors, we need some notation on exterior algebras and differential forms on \mathbb{R}^n . We follow the notation in Iwaniec and Martin [14].

Let e_1, e_2, \dots, e_n denote the standard basis of \mathbb{R}^n . For $l = 0, 1, \dots, n$ we denote by $\Lambda^l = \Lambda^l(\mathbb{R}^n)$ the linear space of all *l*-tensors spanned by $\{e_I = e_{i_1} \wedge e_{i_2} \wedge \dots \wedge e_{i_l}\}$ for all ordered *l*-tuples $I = (i_1, i_2, \dots, i_l)$ with $1 \leq i_1 < i_2 < \dots < i_l \leq n$. Define $\Lambda^l = \{0\}$ if l < 0 or l > n. The Grassmann algebra $\Lambda = \oplus \Lambda^l$ is a graded algebra with respect to the exterior multiplication.

For $\alpha = \sum \alpha^I e_I$ and $\beta = \sum \beta^I e_I$ in Λ the inner product is defined by

$$\langle \alpha,\beta\rangle = \sum_{I} \alpha^{I} \beta^{I},$$

where the summation is taken over all *l*-tuples $I = (i_1, i_2, \dots, i_l)$ and all integers $l = 0, 1, \dots, n$.

The Hodge star operator $*: \Lambda \to \Lambda$ is then defined by the rule that

$$*1 = e_1 \wedge e_2 \wedge \dots \wedge e_n$$

and

$$\alpha \wedge (*\beta) = \beta \wedge (*\alpha) = \langle \alpha, \beta \rangle (*1)$$

for all $\alpha, \beta \in \Lambda$. It is straightforward to see that $* : \Lambda^l \to \Lambda^{n-l}$ and the norm of $\alpha \in \Lambda$ is then given by the formula

$$|\alpha|^2 = \langle \alpha, \alpha \rangle = *(\alpha \wedge *\alpha) \in \Lambda^0.$$

For each $l = 0, 1, \dots, n$, a differential form α of degree l defined on Ω

$$\alpha = \sum \alpha^{I}(x) \, dx_{I} = \sum \alpha^{i_{1}i_{2}\dots i_{l}}(x) \, dx_{i_{1}} \wedge dx_{i_{2}} \wedge \dots \wedge dx_{i_{l}}$$

can be identified with a function $\alpha : \Omega \to \Lambda^{l}(\mathbf{R}^{n})$ with the same coefficients $\{\alpha^{I}\}$. It is appropriate to introduce the space

$$\mathcal{D}'(\Omega; \Lambda) = \oplus \mathcal{D}'(\Omega; \Lambda^l)$$

of all differential forms whose coefficients are Schwartz distributions on Ω . We can also define $L^p(\Omega; \Lambda), W^{1,p}(\Omega; \Lambda)$ or other spaces by requiring all the coefficients belong to the suitable function spaces.

We shall make use of the exterior derivative

$$d: \mathcal{D}'(\Omega; \Lambda^l) \to \mathcal{D}'(\Omega; \Lambda^{l+1}), \quad l = 0, 1, ..., n,$$

and its formal adjoint operator, commonly called the Hodge codifferential,

$$d^*: \mathcal{D}'(\Omega; \Lambda^{l+1}) \to \mathcal{D}'(\Omega; \Lambda^l),$$

defined by $d^* = (-1)^{nl+1} * d^*$ on (l+1)-forms.

Annales de l'Institut Henri Poincaré - Analyse non linéaire

696

The following observation will be useful in proof of Theorem 1.3.

LEMMA 2.2. – Suppose $F \in K_1 = \mathbf{R}^+ \cdot SO(n)$. Let f_j be the *j*-th column (or row) vector of F for j = 1, ..., n, each being considered in Λ^1 . Then

$$|f_{i_1} \wedge \dots \wedge f_{i_l}| = |f_1|^l, \quad 1 \le i_1 < \dots < i_l \le n, \quad l = 1, 2, \dots, n;$$

and

$$(-1)^{n-1}|f_1\wedge\cdots\wedge f_{n-1}|^{\frac{2-n}{n-1}}(f_1\wedge\cdots\wedge f_{n-1})=*f_n.$$

Finally we need the following estimate on the weak solutions of nonhomogeneous p-harmonic equation in \mathbb{R}^n proved in Iwaniec [13] and [12]. We refer to the recent paper of Iwaniec and Sbordone [15] for more discussions.

THEOREM 2.3. – For each p > 1, there exists $\nu = \nu(n,p) \in (1,p)$ such that for every $s \ge \nu$ every weak solution u with $du \in L^s(\mathbf{R}^n; \Lambda)$ to the *p*-harmonic equation

$$d^*[|g + du|^{p-2}(g + du)] = d^*h \quad in \mathbf{R}^n$$
(2.3)

satisfies for a constant C(n, p, s) > 0

$$\int_{\mathbf{R}^{n}} |du|^{s} \le C(n, p, s) \int_{\mathbf{R}^{n}} \left(|g|^{s} + |h|^{\frac{s}{p-1}} \right).$$
(2.4)

Moreover, the constant C(n, p, s) can be chosen independent of s for $\nu \leq s \leq n$.

Proof. – This is Theorem 1 in Iwaniec [13]. \Box

3. $W^{1,p}$ -COMPACTNESS OF THE CONFORMAL SET K_1

Let $K_1 = \mathbf{R}^+ \cdot SO(n)$ be the conformal set defined before. In what follows, we assume $n \ge 3$. We first prove the $W^{1,n}$ -compactness of the set K_1 .

THEOREM 3.1. – Suppose $u_j \rightarrow u_0$ in $W^{1,n}(\Omega; \mathbf{R}^n)$ and satisfies

$$\lim_{j \to \infty} \int_{\Omega} d_{K_1}^m(\nabla u_j(x)) \, dx = 0. \tag{3.1}$$

Then u_0 is a conformal map and moreover $u_j \to u_0$ in $W^{1,n}(\Omega; \mathbb{R}^n)$. Consequently, $K_1 = \mathbb{R}^+ \cdot SO(n)$ is $W^{1,n}$ -compact.

B. YAN

Proof. – Let G(A) is defined by (2.1). By Lemma 2.1 and (3.1), since $\{\|\nabla u_j\|_{L^n(\Omega)}\}\$ is bounded, we easily obtain

$$\lim_{j \to \infty} I(u_j) \equiv \lim_{j \to \infty} \int_{\Omega} G(\nabla u_j(x)) \, dx = 0.$$
 (3.2)

Since G(A) is polyconvex and satisfies $0 \le G(A) \le C |A|^n$, therefore by the theorem of Acerbi-Fusco [1], the functional

$$I(u) = \int_{\Omega} G(\nabla u(x)) \, dx$$

is weakly lower semicontinuous on $W^{1,n}(\Omega; \mathbb{R}^n)$ (see also Ball and Murat [4] and Morrey [18]) thus it follows that

$$0 = I(u_0) \le \liminf_{j \to \infty} I(u_j) = 0$$

which implies u_0 is a conformal map and $u_j \to u_0$ in $W^{1,n}(\Omega; \mathbb{R}^n)$ by the result of Evans and Gariepy [10] since G(A) is uniformly strictly quasiconvex. Finally by definition it follows that K_1 is $W^{1,n}$ -compact. \Box

The $W^{1,n}$ -compactness of K_1 can also be proved by using *biting* Young measures as in Ball [2] using Young measures for p > n. However, both methods do not work anymore for p < n mainly because in this case there is no counterpart of the polyconvex function G(A) vanishing exactly on K_1 and with growth like $|A|^p$; see Yan [27].

Before considering the $W^{1,p}$ -compactness of set K_l for 1 , $we make some remark about the non-<math>W^{1,p}$ -compactness for a general set $\mathcal{K} \subset \mathcal{M}^{n \times n}$ and 1 .

Let $A \in \mathcal{M}^{n \times n}$, we consider the following system of equations or differential relations,

$$\left. \begin{array}{l} u \in W^{1,p}(\Omega; \mathbf{R}^n), \\ \nabla u(x) \in \mathcal{K}, \quad \text{for a.e.} x \in \Omega, \\ u(x) = A x, \quad \text{for } x \in \partial \Omega. \end{array} \right\}$$
(3.3)

Generally, the solvability of (3.3) relies heavily on the structure of \mathcal{K} . It is expected that nontrivial solutions of (3.3) (if exist) should be highly oscillatory if set \mathcal{K} does not have certain *nice* structures.

When \mathcal{K} is the compatible two-well in two dimensions, Müller and Šverák [19] recently proved that for certain matrices $A \notin \mathcal{K}$, Problem (3.3) has Lipschitz solutions.

698

We now prove the following result. The argument is closely related to that in Ball and Murat [4].

THEOREM 3.2. – Suppose u, \mathcal{K} and A solve system (3.3). Then $A \in \mathcal{Z}(d_{\mathcal{K}}^{\#})$, and \mathcal{K} is not $W^{1,p}$ -stable if $A \notin \mathcal{K}$.

Proof. – First we remark that without loss of generality we can assume Ω to be the unit cell Q_0 centered at origin, since otherwise, using the Vitali covering and the affine boundary condition of u(x), one can construct a solution $v \in W^{1,p}(Q_0; \mathbf{R}^n)$ to a system similar to (3.3) only with Ω being replaced by Q_0 .

For each $k = 1, 2, \dots$, we divide Q_0 into 2^{nk} sub-cells with side 2^{-k} , and denote these sub-cells by $\{Q_i^k\}$ with $1 \le j \le 2^{nk}$. Suppose

$$Q_j^k \equiv a_j^k + 2^{-k} Q_0, \quad j = 1, 2, \cdots, 2^{nk}.$$
 (3.4)

We now define a map $u^k: Q_0 \to \mathbf{R}^n$ as follows,

$$u^{k}(x) = \begin{cases} A a_{j}^{k} + 2^{-k} u(2^{k}(x - a_{j}^{k})), & \text{if } x \in Q_{j}^{k} \text{ for some } j, \\ A x, & \text{for other } x \in Q_{0}. \end{cases}$$
(3.5)

It is easily seen that $\nabla u^k(x) \in \mathcal{K}$ for a.e. $x \in Q_0$ and $u^k \in W^{1,p}(Q_0; \mathbb{R}^n)$. It is also easy to see for all functions W(A) defined on $\mathcal{M}^{n \times n}$ that

$$\int_{Q_0} W(\nabla u^k(x)) \, dx = \int_{Q_0} W(\nabla u(x)) \, dx.$$
 (3.6)

A calculation also shows that (see e.g., Ball and Murat [4, Corollary A. 2])

$$u^k \to u_0 \text{ in } W^{1,p}(Q_0; \mathbf{R}^n) \quad \text{ as } k \to \infty,$$

$$(3.7)$$

where $u_0(x) \equiv Ax$. Since $d_{\mathcal{K}}(\nabla u^k(x)) = 0$, therefore, it follows from theorem on weak lower semicontinuity (see [1], [4], [8] and [18]) that $\nabla u_0(x) \equiv A \in Z(d_{\mathcal{K}}^{\#})$. If $A \notin \mathcal{K}$, then $\nabla u_0(x) \notin \mathcal{K}$, thus by definition and (3.7), this shows that \mathcal{K} is not $W^{1,p}$ -stable. We thus complete the proof. \Box

It is proved in [13] that there exists a $p_* = p(n,l) < n$ for each $n \ge 3$ and $l \ge 1$ such that every weakly *l*-quasiregular map belonging to $W^{1,p_*}(\Omega; \mathbf{R}^n)$ belongs actually to $W^{1,n}(\Omega; \mathbf{R}^n)$; thus is an *l*-quasiregular map as usually defined in [21] and [22]. The general conjecture is that $p_* = \frac{nl}{l+1}$; see also [14]. From this it follows that problem (3.8) can not have a solution when $p \ge p_* = p(n)$ and l = 1 unless $A \in K_1$.

The following results are based on the existence of weakly *l*-quasiregular maps that are not *l*-quasiregular when $n \ge 3$. Recall that R(n) is the set

of all general orthogonal matrices in \mathbb{R}^n defined by (1.3). See also Iwaniec and Martin [14, section 12].

THEOREM 3.3. – Let $1 \le p < \frac{nl}{l+1}$ and $A \in R(n)$ with det A = -1. Then the following problem has a solution:

$$\left. \begin{array}{l} u \in W^{1,p}(B; \mathbf{R}^n), \\ \nabla u(x) \in K_l, \text{ for a.e. } x \in B, \\ u(x) = A x, \text{ for } x \in \partial B, \end{array} \right\}$$
(3.8)

where B is the unit open ball in \mathbb{R}^n .

Proof. – For a given $l \ge 1$, define a radial map $\Phi_l : B \to \mathbf{R}^n$ as follows:

$$\Phi_l(x) = \left(\frac{1}{|x|}\right)^{1+\frac{1}{l}} x \quad \text{for } x \in B.$$
(3.9)

When l = 1, Φ_1 is the inversion with respect to the unit sphere.

It is easily seen that $\Phi_l(x) = x$ for $x \in \partial B$ and that

$$\nabla \Phi_l(x) = \left(\frac{1}{|x|}\right)^{1+\frac{1}{l}} \left(I - \frac{l+1}{l} \frac{x}{|x|} \otimes \frac{x}{|x|}\right)$$

Thus

 $\|\nabla \Phi_l(x)\|^n = |x|^{-n(1+\frac{1}{l})} = -l \det \nabla \Phi_l(x) \quad \text{for } x \in B \setminus \{0\}.$ (3.10)

For $A \in R(n)$ with det A = -1, define $u(x) = \Phi_l(Ax)$ for $x \in B$. We claim that u solves (3.8) for any $1 \le p < \frac{nl}{l+1}$.

Note that $\nabla u(x) = \nabla \Phi_l(Ax) A$ for $x \in B \setminus \{0\}$ and |Ax| = |x| for any $x \in \mathbf{R}^n$. Therefore by (3.10), it follows that $||\nabla u(x)||^n = l \det \nabla u(x)$ for $x \in B \setminus \{0\}$ and u(x) = Ax if $x \in \partial B$. What is left to check is $u \in W^{1,p}(B; \mathbf{R}^n)$ for any $1 \le p < \frac{nl}{l+1}$. Our calculation shows

$$\|\nabla u(x)\|^p = |x|^{-p(1+\frac{1}{t})}$$
 for $x \in B \setminus \{0\}$.

Thus

$$\int_{B} \|\nabla u(x)\|^{p} dx = \frac{l\omega_{n}}{ln - p(l+1)} < \infty,$$

where ω_n is the area of ∂B . Thus $u \in W^{1,p}(B; \mathbb{R}^n)$ for any $1 \leq p < \frac{nl}{l+1}$. We thus complete the proof. \Box

Combining Theorems 3.2 and 3.3, we have proved the following corollary.

COROLLARY 3.4. – For any $l \ge 1$ and $1 \le p < \frac{nl}{l+1}$, the set K_l is not $W^{1,p}$ -stable. Moreover, $R(n) \subset \mathcal{Z}(d_{K_l}^{\#})$.

As mentioned in the introduction, using rank-one convex hulls, we can prove $R(n)^{\#} \equiv \mathcal{M}^{n \times n}$ for $n \geq 3$. Therefore the previous corollary actually implies that $d_{K_l}^{\#}$ must be identically zero. See Yan [27] for more.

4. THE COERCIVITY OF $\int_{\mathbf{R}^n} d^p_{K_1}(\nabla u(x)) \, dx$ ON $W^{1,p}(\mathbf{R}^n; \mathbf{R}^n)$

Let $K = K_1 = \mathbf{R}^+ \cdot SO(n)$ be the conformal set. This section is devoted to proving the following result.

THEOREM 4.1. – For each $n \ge 3$, there exists $\alpha(n) < n$ such that for all $p \ge \alpha(n)$

$$\int_{\mathbf{R}^n} |\nabla \phi(x)|^p \, dx \le C(n,p) \int_{\mathbf{R}^n} d_K^p(\nabla \phi(x)) \, dx \tag{4.1}$$

for all $\phi \in W^{1,p}(\mathbf{R}^n; \mathbf{R}^n)$. Moreover, $1 \leq C(n,p) \leq C(n) < \infty$ for $\alpha(n) \leq p \leq n$.

Proof. – We have only to prove (4.1) for $\phi \in C_0^\infty(\mathbf{R}^n; \mathbf{R}^n)$. Let us assume

$$\nabla \phi(x) = A(x) - B(x), \ A(x) \in K_1, |B(x)| = d_K(\nabla \phi(x)), a.e.$$
 (4.2)

We can also assume B has compact support and is bounded. Let ϕ_i be the *i*-th coordinate function of ϕ , then $d\phi_i$ is a 1-form. Let $\beta_i(x)$ be the *i*-th row vector of B(x) considered as a 1-form. Since $\nabla \phi(x) + B(x) \in K_1$ thus by Lemma 2.2, we have

$$\begin{aligned} |(d\phi_{i_1} + \beta_{i_1}) \wedge \dots \wedge (d\phi_{i_l} + \beta_{i_l})| \\ &= |d\phi_1 + \beta_1|^l, \ 1 \le i_1 < \dots < i_l \le n, \quad l = 1, 2, \dots, n; \end{aligned}$$
(4.3)

and

$$|(d\phi_1 + \beta_1) \wedge \dots \wedge (d\phi_{n-1} + \beta_{n-1})|^{\frac{2-n}{n-1}} (d\phi_1 + \beta_1) \wedge \dots \wedge (d\phi_{n-1} + \beta_{n-1}) = (-1)^{n-1} * (d\phi_n + \beta_n).$$
(4.4)

Let

$$u = \phi_{n-1} d\phi_1 \wedge \dots \wedge d\phi_{n-2}, \quad du = (-1)^n d\phi_1 \wedge \dots \wedge d\phi_{n-1},$$
$$g = (-1)^n [((d\phi_1 + \beta_1) \wedge \dots \wedge (d\phi_{n-1} + \beta_{n-1})) - (d\phi_1 \wedge \dots \wedge d\phi_{n-1})],$$
$$h = -* \beta_n.$$

Then it follows from (4.4) and $d^** = *d$ on 1-forms that

$$d^*[|g + du|^{p-2}(g + du)] = d^*h \quad \text{in } \mathbf{R}^n, \text{ where } p = \frac{n}{n-1}.$$
 (4.5)

Therefore by Theorem 2.3, there exists $1 < \nu < \frac{n}{n-1}$ such that for all $s \ge \nu$,

$$\int_{\mathbf{R}^n} |du|^s \le C(n,s) \, \int_{\mathbf{R}^n} \left(|g|^s + |h|^{s(n-1)} \right). \tag{4.6}$$

By (4.3) and definition of du and g, it follow that for each j = 1, 2, ..., n,

$$|d\phi_j|^{(n-1)s} \le |g+du|^s + |\beta_j|^{(n-1)s} \le |g|^s + |du|^s + |\beta_j|^{(n-1)s}$$

and

$$|g|^{s} \leq \sum |d\phi_{i_{1}} \wedge \cdots \wedge d\phi_{i_{l}}|^{s} |\beta_{j_{1}} \wedge \cdots \wedge \beta_{j_{m}}|^{s},$$

where the summation is over all l + m = (n - 1) and l > 0, m > 0 and $i_l \le (n - 1)$. From this we have

$$|g|^{s} \leq \epsilon \sum_{j=1}^{n-1} (|d\phi_{j}|^{s(n-1)}) + C(\epsilon)|B|^{s(n-1)},$$

where $\epsilon > 0$ is arbitrary. Combining these pointwise estimates, integrating over \mathbf{R}^n and using (4.6), we obtain for each j = 1, 2, ..., n,

$$\int_{\mathbf{R}^n} |d\phi_j|^{s(n-1)} \le \epsilon \sum_{j=1}^{n-1} \int_{\mathbf{R}^n} |d\phi_j|^{s(n-1)} + C(n,s,\epsilon) \int_{\mathbf{R}^n} |B|^{s(n-1)},$$

for a different arbitrary $\epsilon > 0$, to be chosen later. Summing this inequality for j from 1 to n and choosing $\epsilon = 1/(2n)$, it follows that

$$\sum_{j=1}^{n} \int_{\mathbf{R}^{n}} |d\phi_{j}|^{s(n-1)} \le C(n,s) \int_{\mathbf{R}^{n}} |B|^{s(n-1)},$$
(4.7)

for all $s \ge \nu$. Now let $\alpha(n) = \nu(n-1)$ then $\alpha(n) < n$. For this $\alpha(n)$ it is easy to see (4.1) follows from (4.7). The proof is thus completed. \Box

THEOREM 4.2. – Let $\alpha(n) < n$ be any constant determined in the previous theorem. Then it follows that $\alpha(n) \ge n/2$.

Proof. – We suppose $\alpha(n) < n/2$. Let $\Phi_1 : B_1 \to \mathbf{R}^n$ be the inversion with respect to the unit sphere as defined by (3.9). Let $A \in R(n)$ with det A = -1. Define $u(x) = \Phi_1(Ax)$ for $x \in B_1$. Then

$$\nabla u(x) = \nabla \Phi_1(Ax) A \in K_1 = \mathbf{R}^+ \cdot SO(n), \quad a.e. \ x \in B_1.$$

Annales de l'Institut Henri Poincaré - Analyse non linéaire

702

Now let $\rho \in C_0^{\infty}(\mathbf{R}^n)$ with $\rho(x) = 1$ for $x \in B_{1/2}$ and $\rho(x) = 0$ for $x \notin B_1$, and

$$0 \le \rho(x) \le 1, \ |\nabla \rho(x)| \le 2.$$

Let $\phi(x) = \rho(x)(u(x) - c)$, where c is a constant to be chosen later. Then $\phi \in W^{1,p}(\mathbf{R}^n; \mathbf{R}^n)$ for all $1 \le p < n/2$.

For $0 < \epsilon < \frac{n}{2} - \alpha(n)$, applying (4.1) to $\phi \in W^{1,\frac{n}{2}-\epsilon}(\mathbf{R}^n;\mathbf{R}^n)$, we obtain

$$\begin{split} &\int_{B_{1/2}} |\nabla u(x)|^{\frac{n}{2}-\epsilon} \, dx \\ &\leq C(n) \int_{B_1} d_K^{\frac{n}{2}-\epsilon} \big(\nabla \rho(x) \otimes (u(x)-c) + \rho(x) \nabla u(x) \big) \, dx, \end{split}$$

from which and using $d_K(A+B) \leq d_K(A) + |B|$ it follows that

$$\int_{B_{1/2}} |\nabla u|^{\frac{n}{2}-\epsilon} \leq C(n) \int_{B_1} |u-c|^{\frac{n}{2}-\epsilon}$$
$$\leq C(n) \left(\int_{B_1} |\nabla u|^{\frac{n^2-2n\epsilon}{3n-2\epsilon}} \right)^{\frac{3n-2\epsilon}{2n}}, \qquad (4.8)$$

where we have chosen $c = \frac{1}{|B_1|} \int_{B_1} u$ and applied the Sobolev inequality. In (4.8), letting $\epsilon \to 0$ we would have

$$\int_{B_{1/2}} |\nabla u(x)|^{n/2} \, dx \le C(n) \Big(\int_{B_1} |\nabla u(x)|^{n/3} \, dx \Big)^{3/2} < \infty,$$

which is a contradiction, since $u \notin W^{1,n/2}(B_{1/2}; \mathbf{R}^n)$ as we showed before. We have thus completed the proof. \Box

5. A CONCLUDING REMARK

As we mentioned before, it is proved in Iwaniec [13, Theorem 3] that there exists a minimal $p_* = p(n) \in [n/2, n)$ for each $n \ge 3$ such that if a map u(x) belonging to $W^{1,p_*}(\Omega; \mathbf{R}^n)$ satisfies $\nabla u(x) \in K_1 = \mathbf{R}^+ \cdot SO(n)$ a.e. then it belongs actually to $W^{1,n}(\Omega; \mathbf{R}^n)$. Note that $p_* = n/2$ when n is even, by the results in [14].

For a weakly convergent unperturbed sequence $\{u_j\}$ in $W^{1,p_*}(\Omega; \mathbb{R}^n)$ with $\nabla u_j(x) \in K_1$ for a.e. $x \in \Omega$, the strong convergence follows easily from Theorem 3.1 and this higher integrability result.

Now, if we only assume the distance from $\nabla u_j(x)$ to the conformal set is small and approaches zero as $j \to \infty$, then we do not usually have the higher integrability for $u_j \in W^{1,p_*}(\Omega; \mathbb{R}^n)$. In the even dimensions, there are some linear structures (see [14] and [27]) among the subdeterminants of half dimension size, that may compensate some loss of the stability due to the weak convergence of $\{u_j\}$. But I have not come up with the definite results in this aspect even in even dimensions. Therefore, it would be interesting to consider the following problem.

PROBLEM 5.1. – Determine whether $K_1 = \mathbf{R}^+ \cdot SO(n)$ is $W^{1,p}$ -compact for some p < n. If it is, whether the minimal value of such p is equal to p_* given above.

Remark. – Most recently, in Müller, Šverák and Yan [20], it is proved that for *even* dimensions $n \ge 4$ the minimal $\alpha(n)$ in Problem 5.1 is n/2.

ACKNOWLEDGEMENT

I would like to thank Professor John Ball and the referee for helpful suggestions.

REFERENCES

- E. ACERBI and N. FUSCO, Semicontinuity problems in the calculus of variations, Arch. Rational Mech. Anal., Vol. 86, 1984, pp. 125-145.
- [2] J. M. BALL, A version of the fundamental theorem for Young measures, in "Partial Differential Equations and Continuum Models of Phase Transitions," (M. Rascle, D. Serre and M. Slemrod eds.), *Lecture Notes in Physics*, Vol. 344, Springer-Verlag, Berlin, Heidelberg, New York, 1988.
- [3] J. M. BALL, Sets of gradients with no rank-one connections, J. math. pures et appl., Vol. 69, 1990, pp. 241-259.
- [4] J. M. BALL and F. MURAT, W^{1,p}-Quasiconvexity and variational problems for multiple integrals, J. Funct. Anal., Vol. 58, 1984, pp. 225-253.
- [5] J. M. BALL and F. MURAT, Remarks on Chacon's biting lemma, Proc. Amer. Math. Soc., Vol. 3, 1989, pp. 655-663.
- [6] J. M. BALL and K. ZHANG, Lower semicontinuity of multiple integrals and the Biting Lemma, Proc. Roy. Soc. Edinburgh, Vol. 114A, 1990, pp. 367-379.
- [7] K. BHATTACHARYA, N. FIROOZYE, R. JAMES and R. KOHN, Restrictions on microstructure, Proc. Roy. Soc. Edin., A, Vol. 124, 1994, pp. 843-878.
- [8] B. DACOROGNA, Direct Methods in the Calculus of Variations, Springer-Verlag, Berlin, Heidelberg, New York, 1989.
- [9] L. C. EVANS, Weak Convergence Methods for Nonlinear Partial Differential Equations, CBMS, Vol. 74, 1992.
- [10] L. C. EVANS and R. F. GARIEPY, Some remarks on quasiconvexity and strong convergence, Proc. Roy. Soc. Edinburg, Ser. A, Vol. 106, 1987, pp. 53-61.

Annales de l'Institut Henri Poincaré - Analyse non linéaire

- [11] M. GIAQUINTA, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Princeton University Press, 1983.
- [12] T. IWANIEC, On L^p-integrability in PDE's and quasiregular mappings for large exponents, Ann. Acad. Sci. Fenn., Ser. A.I., Vol. 7, 1982, pp. 301-322.
- [13] T. IWANIEC, p-Harmonic tensors and quasiregular mappings, Ann. Math., Vol. 136, 1992, pp. 589-624.
- [14] T. IWANIEC and G. MARTIN, Quasiregular mappings in even dimensions, Acta Math., Vol. 170, 1993, pp. 29-81.
- [15] T. IWANIEC and C. SBORDONE, Weak minima of variational integrals, J. rein angew. Math., Vol. 454, 1994, pp. 143-161.
- [16] D. KINDERLEHRER, Remarks about equilibrium configurations of crystals, In Material Instabilities in Continuum Mechanics, (J. M. Ball ed.), Oxford University Press, 1988.
- [17] D. KINDERLEHRER and P. PEDREGAL, Gradient Young measures generated by sequences in Sobolev spaces, J. Geom. Anal., Vol. 4(1), 1994, pp. 59-90.
- [18] C. B. Jr. MORREY, Multiple Integrals in the Calculus of Variations, Springer-Verlag, Berlin, Heidelberg, New York, 1966.
- [19] S. MÜLLER and V. ŠVERÁK, Attainment results for the two well problem by convex integration, 1993, preprint.
- [20] S. MÜLLER, V. ŠVERÁK and B. YAN, Sharp stability results for almost conformal maps in even dimensions, 1995, preprint.
- [21] Yu. G. RESHETNYAK, Space Mappings with Bounded Distortion, Transl. Math. Mono., AMS, Vol. 73, 1989.
- [22] S. RICKMAN, Quasiregular Mappings, Springer-Verlag, Berlin, Heidelberg, New York, 1993.
- [23] V. ŠVERÁK, On regularity for the Monge-Ampère equation without convexity assumptions, Preprint, 1992.
- [24] V. ŠVERÁK, On Tartar's conjecture, Ann. Inst. H. Poincaré, Analyse non linéaire, Vol. 10(4), 1993, pp. 405-412.
- [25] L. TARTAR, The compensated compactness method applied to systems of conservation laws, in *Systems of Nonlinear Partial Differential Equations*, (J. M. Ball ed.), NATO ASI Series, Vol. CIII, D. Reidel, 1983.
- [26] B. YAN, On quasiconvex hulls of sets of matrices and strong convergence of certain minimizing sequences, Preprint, 1993.
- [27] B. YAN, On rank-one convex and polyconvex conformal energy functions with slow growth, 1994, preprint.
- [28] K. ZHANG, Biting theorems for Jacobians and their applications, Ann. Inst. H. Poincaré, Analyse non linéaire, Vol. 7, 1990, pp. 345-365.
- [29] K. ZHANG, A construction of quasiconvex functions with linear growth at infinity, Ann. Scuola Norm. Sup. Pisa, Vol. 19(3), 1992, pp. 313-326.
- [30] K. ZHANG, Monge-Ampère equations and multiwell problems, 1993, preprint.

(Manuscript received September 27, 1994; revised February 8, 1995.)