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ABSTRACT. - We consider the Dirichlet problem for the equation
-Au = ~~c + with h changing sign. In particular, we study
existence of nontrivial solutions in the case where f has superlinear growth,
but is not assumed to be odd. Two different approaches are used: one
involving Morse theory and one using min-max methods.

Nous etudions Ie probleme de Dirichlet pour 1’ equation
-Au = ~~ + of h est une fonction qui change de signe.
En particulier, nous etablissons 1’ existence de solutions non triviales quand
f est surlineaire, mais pas necessairement impair. Nous nous servons de
deux approches differentes, l’une basee sur la theorie de Morse, et l’autre
sur les methodes d’ enlacement.
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96 S. ALAMA AND M. DEL PINO

1. INTRODUCTION

In this paper we seek nontrivial solutions for:

where S2 c RN is a bounded open set with smooth boundary, h E 
changes sign in H, and f is a continuous function which satisfies certain
superlinear, subcritical growth conditions. We mainly focus on the case
A > where denotes the smallest Dirichlet eigenvalue of -A
in S2.

The existence of positive solutions to with indefinite h has

already been established in various contexts. If the domain 52 is replaced
by a compact manifold of dimension N > 3, the critical exponent
case, f ( u ) = arises in the prescribed scalar curvature problem
(see Kazdan &#x26; Warner [14]). For manifolds carrying scalar-flat metrics,
sufficient conditions for the existence of positive solutions were given by
Escobar &#x26; Schoen [12]. Ouyang [16] studied (1.1)a on a compact manifold
with homogeneous nonlinearities f (u) _ p > 2, via bifurcation
analysis. Results for more general subcritical f were obtained by Alama &#x26;
Tarantello [1] and by Berestycki, Capuzzo-Dolcetta &#x26; Nirenberg ([5], [7]). 
For instance, it is proven in [1] that if near zero, and

(where ei denotes the eigenfunction corresponding then there
is a finite value A > a 1 ( SZ ) such that equation admits a positive
solution for A E (~ 1 (SZ) , A), but has no positive solutions for any
A > A. If in addition f satisfies the estimate (1.7) given below, then ( 1.1 ) a
admits a second positive solution for A E (À1 (0), A). In fact, condition
(1.2) is an essential assumption when finding positive solutions of 
with A > in the sense that it is necessary for their existence in case

f (u) _ (See also Berestycki, Capuzzo-Dolcetta &#x26; Nirenberg [6],
and Tehrani [19] for related results.) Without the sign condition (1.2) but
assuming that f is odd, Alama &#x26; Tarantello [1] also prove the existence of
infinitely many nontrivial solutions for (nearly) every A E IL
Our objective is to find nontrivial (possibly changing-sign) solutions

of ( 1.1 ) a, without imposing either a symmetry assumption on f or a sign
condition on h (such as (1.2)). We conjecture that ( 1.1 ) a admits a nontrivial
solution for all A G R, assuming only superlinear growth at zero and power
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97SOLUTIONS OF ELLIPTIC EQUATIONS

growth at infinity (see (1.3) and (1.7) introduced below). In this paper
we provide some progress in this direction. We introduce the usual action
functional,

where F ( u ) = / f ( t ) dt, and seek nontrivial critical points on 
The main difficulty which arises in this problem lies in devising a min-

max critical value for Ja when A > ~ 1 ( SZ ) . Typically, one seeks a manifold
whose boundary r links with a subset > ~ > 0~, and for which
supr Jx  6-. Then a positive critical value may be defined by a min-max
over all surfaces having common boundary F. When h(x) > 0 these sets are
easily constructed, using linear subspaces of eigenfunctions of the Laplacian,
and (when f has subcritical growth) the equation admits a nontrivial
solution for any A E It (cf. Rabinowitz [17]). If /z(~)  0 the results are

quite different, but existence (and, in this case, nonexistence) theorems
can likewise be derived from a judicious choice of linear subspaces (see
[11] and [2]). When h changes sign both the quadratic and superquadratic
terms of are indefinite, and it is not clear whether there exist linear

subspaces on which both terms have the correct sign. The special case
of odd f is simpler since it is not necessary to construct these linking
sets explicitly. This is because the Krasnoselskii genus provides for a

stronger intersection property of symmetric sets, based on the Borsuk-Ulam
Theorem (see [17], [1]).
A second difficulty created by the indefiniteness of h is in verifying the

Palais-Smale condition for the functional Jx . As has already been remarked
in [I], when h changes sign familiar inequality conditions relating F and
f = F’ are not helpful in deriving estimates on Palais-Smale sequences.
In this paper, we follow [1] in imposing sufficient conditions on h or f in
order to ensure that the (PS) condition holds for (See Proposition 2.6.)

In order to deal with the first difficulty we use topological arguments in the
spirit of earlier work by Hofer [13], Z. Q. Wang [20], and K. C. Chang [9].
Before stating our first two results, we introduce the following hypotheses
and definitions: f satisfies

and for some p with 2  p  2*,

Vol. 13, n° 1-1996.



98 S. ALAMA AND M. DEL PINO

In addition, we suppose that h has a "thick" zero-set,

Finally, as in Ouyang [16] we define

Remark 1.1.- Straightforward arguments show that:

and by 03BB1 ( SZo ) the first Dirichlet eigenvalue in 03A90.
(c) One may find functions h for which ~* is arbitrarily large. We provide

an example to illustrate this fact in the Appendix (Section 4).

Under the above hypotheses we prove the following two existence and
multiplicity results:

THEOREM 1. 2. - Assume ( 1. 3 ), ( 1. 4 ), and ( 1. 5 ) hold, h E Ca ( SZ ) changes
sign in  03BB*, and 03BB is not a Dirichlet eigenvalue in Q. Then

admits a nontrivial solution.

Combining the topological information provided in the proof of
Theorem 1.2 with previous results of Wang [20] and Alama &#x26; Tarantello [ 1 ],
we may obtain some multiplicity results for ( 1.1 ) a :
THEOREM 1.3. - Assume (1.3), (1.4), and (1.5) hold, and h E Ca ( SZ )

changes sign in Q.
i. If 03BB  03BB1 (S2), then admits at least three nontrivial solutions.

ii. If

for some q > 2, and (1.2) holds, then there exists ~ > such that

( 1.1 ) a admits at least five nontrivial solutions for 03BB E (03BB1(03A9), 03BB).
Remark 1.4. - Note that when ~  ~ 1 ( SZ ) the functional ~T~ exhibits a

mountain-pass structure, and hence the first two solutions (one positive and
one negative) found in part (a) of Theorem 1.3 may be obtained under the
less stringent conditions of Proposition 2.6. Likewise, four of the solutions
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99SOLUTIONS OF ELLIPTIC EQUATIONS

(two positive and two negative) claimed in part (b) of Theorem 1.3 may be
derived via Theorem 2.7 of [1] under slightly weaker hypotheses.
Under the assumptions above, when A  A* we may explicitly compute

the topology of negative sublevel sets of Jx and argue indirectly using
the Morse inequalities. The hypotheses (1.4) and (1.5) play a central
but technical role in constructing a homotopy equivalence between these
sublevel sets and an infinite dimensional sphere. Indeed, condition (1.5)
was also introduced in a technical capacity in [1] (also [3]) in verifying
the Palais-Smale condition for variational problems associated to indefinite
semilinear problems. (See Proposition 2.6.) Rather different conditions
on the zero-set of h were employed by Berestycki, Capuzzo-Dolcetta &#x26;

Nirenberg [5] in studying positive solutions to (1.1)a. There they consider
general f (satisfying (1.6) and (1.2)), but replace condition (1.5) with
non-degeneracy conditions such as 0 on S2o. The methods of [5] are
based on a priori estimates and fixed point arguments, and hence differ
considerably from our variational approach to the theorems stated above.
Indeed, the methods of [6] can not be expected to apply directly in our
setting, since the multiplicity result of [1, Theorem 3.1] (in the symmetric
case f (-u) _ - f (u)) demonstrates that (changing-sign) solutions of 
are not in general a priori bounded.

Denote by ~2(52) the second (min-max) eigenvalue of -A in 
In Section 3 we present a different approach, based on linking, to treat

when  ~  ~2(S2). This approach has the advantage that
it demands fewer hypotheses on f and h, although it may well be that
A* > ~2(SZ) for certain functions h. We prove:

THEOREM 1.5. - Suppose (1.3) holds,

for some 2  p  2 *, and h E Ca ( SZ ) changes sign in S~.  ~ 

03BB2(03A9) and 03BB is not a Dirichlet eigenvalue of -0 in Qo, then(1.1)a admits
a nontrivial solution.
The requirement that ~ not be a Dirichlet eigenvalue in no is

related to the Palais-Smale condition (see Proposition 2.6).
Finally, we note that the each of the above results continues to hold 

is replaced by any symmetric, uniformly elliptic operator with self-adjoint
boundary condition, or if ( 1.1 ) a is posed on a compact manifold.

Vol. 13, n° 1-1996.



100 S. ALAMA AND M. DEL PINO

2. THE CASE A  A*

We define the Dirichlet Laplacian on any measurable subset c S2
as the unique self-adjoint operator associated to the quadratic form

with form domain

When dcv is smooth Hb(w) coincides with and we obtain the
classical Laplace operator with Dirichlet condition on 8w. Throughout
the paper we will denote the (Dirichlet) spectrum of -A on w as

a(w) = i = l, 2, ...}. Also, the letter c will be indiscriminately
used to denote various constants whose exact value is irrelevant.
We collect here the hypotheses for Theorem 1.2 and Theorem 1.3. First,

f is superlinear at zero, i.e., f satisfies (1.3). At infinity, we require f to be
asymptotically homogeneous in the sense of (1.4) : for some 2  p  2*

we have,

(As usual, we define 2* = when N > 3 and 2* = +oo for N = 1,2.)
As consequences, we have:

as -~ oo. In addition, we assume that:

and we rewrite (1.5) as

The first step in proving Theorem 1.2 and Theorem 1.3 is to develop
the connection between A* and the topology of the sublevel sets of the
functional 

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire



101SOLUTIONS OF ELLIPTIC EQUATIONS

LEMMA 2.1. - Assume that f satisfies (2.1) and 03BB  03BB*. There exists a
constant Kl > 0 such that if K > Kl and Ja(u)  -K, then

Proof - We suppose the contrary: for all n > 0 there exists un with

-n and J 0. First note that -j oo. Indeed,

-n implies:

using (2.3) Taking 6- sufficiently small, we have ~un~2 - oc as claimed.
Set vn = We have

Using (2.2), we see

since we are assuming that J  0. Hence, (2.5) yields

and in with = 1 and

Moreover, from (2.3), (2.5) we have

Vol. 13, n° 1-1996.



102 S. ALAMA AND M. DEL PINO

Hence,

But when A  ~*, (2.6) contradicts the definition of A* .
We introduce the notation

Then, Lemma 2.1 implies that there exists a constant Ki such that

for all K > Ki. In fact, we will show that is a retract of A for

all K sufficiently large.
Note that if u E A, then Ja(tu) - -x as t ~ x. We will now show

that there is a continuous choice of T = T(u) for which  2014~"

for any large K and for all u E A. Then we may use this construction
to define our retraction.

LEMMA 2.2. - Suppose f satisfies (2.1) and 03BB  03BB*. Then there exists a
constant K2 > Kl such that whenever Ja(u)  -K2, then

Proof - From Lemma 2.1, if K > Ki and  -K, then u E A.

Suppose (to obtain a contradiction) that for every n > Ki there exists
Un E A with  -n and

Then,

As in Lemma 2.1, we claim that - oo. Indeed, if along some

subsequence C, then

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire



103SOLUTIONS OF ELLIPTIC EQUATIONS

(via hypothesis (2.3)). Hence, a subsequence in and

which is impossible. Therefore ~un~2 ~ oo.
As before, we set vn = Then (2.7), (2.8) yield:

Hence, vn-vo in and A. Combining (2.7) and (2.8)
in a different way we have

and so (in view of (2.1) and (2.2)) we obtain:

Since vo strongly in we must have

But  ~  ~*> so this contradicts the definition of ~*. ~

We may now construct our retraction. Let u E A. By Lemma 2.2, there
is a unique T = T(u) such that Jx(Tu) = -K2. Moreover, by applying
the Implicit Function Theorem to the map

at (t, u) = (T(u), u) it follows that T(u) is a continuous function on A.
Set T(u) = 1}, also a continuous function on A. Then, define:

Vol. 13, n° 1-1996.



104 S. ALAMA AND M. DEL PINO

Clearly, = u for all u e A, and by Lemma 2.2, = T (u)u e
J;K2 for all u E A. Furthermore, Lemma 2.2 and the definition of T( u)
ensure that = u for all u E J~ K2 . In conclusion, we have shown
that ~ : [0,1] x A -~ J;K2 is a strong deformation retraction:

LEMMA 2.3. - Suppose f satisfies ( 2 .1 ) and 03BB  03BB* . Then, is a

strong retract of A. In particular, and A are homotopically equivalent.
Now we examine the topology of the set A. Namely, we will show

that A is homotopically equivalent to an infinite dimensional sphere (and
hence is contractible.)

LEMMA 2.4. - Suppose ( 2 .4) holds. Then, B = H~ ( SZ+ ) ~ ~ 0 ~ is a retract
of A. (In particular, A and Bare homotopically equivalent. )

Proof - The retraction will be constructed in two steps: first we
use hypothesis (2.4) to truncate u E A to have support only in

Hi := {x h(x) > 0~. (This is not in itself a retraction.) Then
we project the resulting function linearly into 
By (2.4), there is a function ~ E which satisfies:

Consider also the projection operator P : Ho (S2) --> HD(52+). Then, define

Clearly, _ ~z if u E A and = u for all u E HD (52+) and for
all s E [0,1]. It remains only to show that u) E A for all s E ~0; 1~,
and that ~r~(l, u) E HD(S2+) B {0}.

First, note that if u E A and 0 :S s  2 ,

When 2  s  1, then clearly > 0. If equality holds,

then u) = 0 on SZ+. But, in that case,

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire



105SOLUTIONS OF ELLIPTIC EQUATIONS

This can only be the case if = 0, and hence (from the definition of
03C8 in (2.9)) we have u = 0 on S2+. But this is impossible, since u E A.
Hence we may conclude that E A for all s E ~0, 1~ and u E A. A
similar argument shows that

Hence, ri is a retraction. J

Putting Lemma 2.4 and Lemma 2.3 together, we obtain:

PROPOSITION 2.5. - Suppose f satisfies (2.1 ) and 03BB  03BB*. Let K2 be
chosen as in Lemma 2. 2. Then is homotopically equivalent to an
infinite dimensional sphere ,S’°°.
At this point, we will use the topological information obtained in

Lemmas 2.3 and 2.4 to infer the existence of nontrivial solutions of equation
( 1.1 ) a, via Morse Theory. An essential step is these arguments is the Palais-
Smale condition for the functional Although our hypotheses assume
subcritical growth for J~ at infinity, (PS) is a nontrivial issue in this

problem. We will use the following version of (PS), derived in [1].

PROPOSITION 2.6. - Suppose ~ ~ Then, JÀ satisfies (PS) provided
either of the following two conditions hold:

i. For some p, 2  p  2*, and constants A, B > 0 we have:

ii. Hypothesis (2.4) holds, and f satisfies

for some p, 2  p  2*, with A, B > 0 constants.

(Recall that 03C3(03A90) denotes the collection of Dirichlet eigenvalues of
-A in Ho.) For the reader’s convenience, we provide a short proof of
Proposition 2.6 assuming condition i. in Section 4.

Proof of Theorem 1.2. - By hypothesis (1.4) and the fact ~*  ~1 (Qo)
(see Remark 1.1) we may conclude from Proposition 2.6 that the Palais-
Smale condition holds under the given assumptions. Denote by Hk (X, Y)
the kth relative homology group with integer coefficients. For v an isolated
critical point with = c and Uv a neighborhood of v, set

Vol. 13, n° 1-1996.



106 S. ALAMA AND M. DEL PINO

the kth critical group at the critical point v. If Jx has only finitely many
critical points ul , ... , ~cn with a   b, we define the Morse
numbers of the pair by

Then, if (3k = J).a) are the Betti numbers of the pair ( J~ , J~ ),
the Morse inequalities require that:

(For a derivation of (2.11) and other facts from infinite-dimensional Morse
Theory see Mawhin &#x26; Willem [15] or Chang [9].)
To prove Theorem 1.2, we argue by contradiction and assume that 0 is

the only critical point of Ja. By hypothesis ~ ~ ~(S2), and hence the Morse
numbers of the pair are

where m is the Morse index of the (non-degenerate) critical point 0. On the
other hand, from Proposition 2.5 and Proposition 2.6, J;K2 is contractible
in In particular,

and so the Betti numbers of the pair J;K2) all vanish, ,~~ = 0,
k = 1, 2, .... But this contradicts the Morse inequality (2.11), and hence

must admit a nontrivial critical point. 0

Remark 2.7. - Extending the proof of Theorem 1.2 to include the case
where A is an eigenvalue in H depends on obtaining some additional
information about the critical groups C~ ( ~Ia , 0) . For example, if f satisfies a
estimate such as (1.6) we may determine 0) and obtain a solution at

A = 03BB1(03A9) when dx is nonzero. In general, however, one cannot

expect that critical points with Morse index m > 1 have nontrivial critical
groups: consider ~) _ ~3 - x2 for which all critical groups are trivial.

Remark 2 .8 . - Theorem 1.2 may also be proven via min-max arguments.
If A we may obtain two solutions by a straightforward application
of the Mountain Pass Theorem (see Remark 1.1), so we assume that the

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire



107SOLUTIONS OF ELLIPTIC EQUATIONS

Morse index of 0 is m > 1. Since 0 is a nondegenerate critical point,
we can decompose = X - (B X + by the eigenspaces with

dim X- = m, and

for some choice of E, 6 > 0. Now, if JÀ has no critical points other than
zero, there exists a deformation (obtained by a negative pseudogradient flow)
~ : [0,1] x -~ such that r~(0, v) = v, v))  -K2
for all v ~ S03B4 n X-, ~(t,.) is a homeomorphism for each t, and

v))  -e  0 for all (t, v) E ~0, l~ x (Sb n X-). Moreover,
note that {~(t, v) : t E [0, 1], v ~ S03B4 n X-} defines a smooth manifold of
dimension m in Define a surface Ei by:

By Proposition 2.5, = ~r~( 1, v) : v ~ S~ f1 X - ~ is contractible in

J,~ K2 , so we may "close" ~ 1 to form a surface E with supr Ja  0,
and which links the sphere S8 n X+. The linking theorem of Benci &#x26;
Rabinowitz [4] would then give a nontrivial critical point of Jx . The details
are left to the interested reader.

Proof of Theorem 1.3. - To prove part i. we follow Wang [20] (see also
Theorem 111.2.3 of Chang [9].) When A Proposition 2.6
applies and hence the Palais-Smale condition is satisfied by Jx . Moreover,
when A  and p  zero is a strict local minimum for so

:= dim 0) = 
The first two nontrivial solutions will be obtained via the Mountain-pass

Theorem. Define

where u+ = > 0, u- =  0. Clearly there
exists vo > 0 such that =  0. Since A  

(PS) holds for Ja, and also for J~. Applying familiar arguments
we obtain critical points u+ > 0 of J+ and u-  0 for J_, which are
nontrivial solutions of (1.1) A and critical points for Ja.
To obtain the third solution, we must determine the critical groups of
By Corollary 8.5 in [15], if these are the only nontrivial solutions of

we have:

Vol. 13, n° 1-1996.
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Denote by J, Jt the restrictions of Jx and J~ (respectively) to By
Theorem 1 in [10] (see also Corollary III.1.2 in [9]), the critical groups of
U-x are the same in HJ (n) as in the dense subspace 

On the other hand, J = ~T~ when restricted to a small CJ neighborhood of
u~, so = C~ ( ~I~ , u~ ), and hence

Now, if 0, were the only critical points of Ja, we would have

Since A   A*, by Proposition 2.5 we again have Betti numbers
(3k = 0, k = 0,1,2,..., and the Morse inequality (2.11) is violated. This

proves i.

Finally, we prove ii. Assume that (1.6) and (1.2) hold, and A > 
In [1] it is proven that there exists A+ > such that admits
a pair of positive solutions for each A E (~1(S2), A+). By the exact same
arguments there exists A- > such that admits a pair of
negative solutions for each A E (~1(S2),A_). In order to obtain the fifth
nontrivial solution we must determine the critical groups for each of these
four solutions, and so we briefly review their derivation in [1].
Let A = Recall from Remark 1.1 that

hypothesis (1.2) ensures that A* > À1 (0), and hence A > À1 (0). Moreover
we have A G A*  so (PS) holds for Jx when A  A. Furthermore,
if A E (~1(52). ~), we have

It is easy to see that for all A there exists to = > 0 such that

for 0  t  = tei is a subsolution and w = -tel is a supersolution
of ( 1.1 ) ~, . In addition, a positive solution v of ( 1.1 ) ~, with /~ > A is a

supersolution for ( 1.1 ) a, while a negative solution w of (1.1)  with  > A
is a subsolution for By choosing t > 0 sufficiently small so that
0  v  v  0 we may determine a positive solution ut > 0
and a negative solution u~  0 to via minimization,

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire



109SOLUTIONS OF ELLIPTIC EQUATIONS

(See [18].) Since ut represent minimizers of Ja in the topology, by
a result of Brezis &#x26; Nirenberg [8] they are also minimizers in We

assume that both uf are isolated minima, (otherwise, we obtain infinitely
many solutions), and hence

(See also [10].) 
"

To obtain the second pair of single-sign solutions, we appeal to the
Mountain-pass Theorem. Define functionals

where (as before) v+ = 0} > 0, v- = min{ v(x), 0}  0.

Note that if v > 0 or v  0, then = + v) - 
Simple calculations show that: v = 0 is a strict local minimum for It;
there exists vo > 0 such that and II
satisfy the Palais-Smale condition. (See Section 2 of [1] for the detailed
computations.) Applying the Mountain-pass Theorem to II we obtain
nontrivial critical points v+ > 0, v- G 0 which give rise to solutions of

(and hence critical points of Jx,) wt = n,~ + v+ > 0 and

zua + v-  0.

Now we repeat the analysis of part i. to calculate the corresponding
critical groups. Restricted to a neighborhood of we have

II(v) = + v) - Therefore we may apply Corollary 8.5
of [15] and Theorem 1 of [10] to obtain

Hence, if 0, u , w were the only solutions of ( 1.1 ) ~, we would have
Morse numbers

Again, this contradicts the Morse inequality (2.11) over (Ho (S~), ~T~ K2 ),
and so there must exist another nontrivial solution. 0

Vol. 13, n° 1-1996.



110 S. ALAMA AND M. DEL PINO

3. A LINKING APPROACH

We prove the following, which includes Theorem 1.5 :

THEOREM 3.1. - Suppose f satisfies the hypotheses of Proposition 2.6 and
 a  ~~(SZ). Then (l.l)a possesses at least one nontrivial solution.

Define the linear subspace V = (span e1~)| and let w 1, w2 E 
be fixed functions with supp w1, supp w2 disjoint. Choose R > 0 sufficiently
large so that

Since f has superlinear growth at 0, there exists a radius p > 0 and
constant a > 0 with

Introduce the modified functionals

Standard arguments show that a critical point of J~ corresponds to a

positive (respectively, negative) solution of Set

Clearly, ~3~ > 0. If either > 0, then we obtain a positive (respectively,
negative) solution to ( 1.1 ) a with critical value > 0, and hence a
nontrivial solution to ( 1.1 ~ ~, .

Suppose that both = 0. Then there exist curves ~y~ E r~ with

Without loss, we may suppose that y~ are simple curves, and that ~y+(t) > 0,
~y_(t)  0 for all t E ~0, l~, with 0 if and only if t = 0. Since
V is characterized by

we have ~y~ (t) E Bp n V if and only if t = 0.

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire



111SOLUTIONS OF ELLIPTIC EQUATIONS

Finally, we connect Rwi to -Rwi by a path -yo C with

To do this, choose T > 0 such that

Then, let

Since w2 have disjoint supports, = + 

and the choice of Rand T ensure that  0 for all t e [0, 1].
Let C be the closed curve obtained by joining y+ to yo to ~y_. By

construction, C intersects Sp n V only at 0. Parametrize C by a one-to-one
map 03C8 : : C C with = 0, and set

(where we write D2 to represent the unit disk in with boundary
c~D 2 = s 1 ). Then, we have

Let

If we can show that Sp n V links with C, then we may conclude that
b > a > 0 is a critical value of J~ with nontrivial critical point.

LEMMA 3.2. - For all a E E,

Proof. - Assume the contrary: there exist a E ~ such that ~(B2) n Sp n
V = 0. We define a family of maps,

Note that (by assumption above), if {z, ~) e 8((Bp n V) x =

(Sp n V) x ,S’~, then Ft(z, ~) ~ 0. Hence deg(Ft, (Bp ~1 V) x 0) is

Vol. 13, n° 1-1996.



112 S. ALAMA AND M. DEL PINO

a constant for all t E [0,1]. By reparametrizing D~ if necessary, we may
assume that a(O) ft Bp n V. Hence, Fo(z, ~) = z - 0 for all
z E Bp n V, and hence

On the other hand, when t = 1, Fl(z, ~) = z - cr(~) = z - ~(~). By the
construction of the curve C, = 0 has the unique solution z = 0
and 0 = 0. By the excision property of the degree,

To calculate this degree, deform the arc e (-e, ~) to the straight
segment, Then, we have

a contradiction. o
In conclusion, Sp n V links with C, so by the linking theorem of Benci

&#x26; Rabinowitz [4], b > 0 is a critical value of J~, . This completes the
proof of Theorem 3.1.

4. APPENDIX

First, we show by an example that, depending on the function h, the
value A* could be arbitrarily large. Without loss of generality, suppose that
Bg(0) cO, for some c > 0. Define a sequence ~ hn ~ of smooth functions
on with -1  h ( x )  1 and

Clearly, > 0 for all n sufficiently large, and hence the

corresponding values A* = > Suppose  M for all

n. Each minimization problem is attained at some vn E Ho (SZ) with

= ~ Cn)  M, = 1, and = 0. For some
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subsequence we have in with = 1. Since 1 in

for all t  oo and p  we have 11 dx = 0, a contradiction.

We conclude with a proof of the Palais-Smale condition (Theorem 2.6
under the hypothesis i., which suffices for Theorems 1.2, 1.3, and 1.5. Note
that (2.10) implies in addition,

as

Let be a (PS) sequence,

where zn ~ 0 in and cp E is any fixed function. First, we
claim ~un~2  C. Suppose the contrary, and set vn = From

(4.3), (4.4), and hypothesis (4.2) we have,

Hence, vn is bounded in and a subsequence (which we still denote
by vn) converges weakly in From (4.4) and (2.10) and for
each fixed cp E we obtain:
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In particular

for all cp E Hence, vo E and = 1, so vo fl 0.

Finally, taking cp E we apply (4.4) again to obtain:

which yields a contradiction unless ~ E We conclude that
m ~ i _ r"

Now, combining (4.3) and (4.4) and using (4.2) we have:

Therefore, is uniformly bounded, and the subcritical growth of
F ensures that there is a strongly convergent subsequence. 0
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