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38 A. M. BLOCH et al.

ABSTRACT. - The main goal of this paper is to prove that if the energy-
momentum (or energy-Casimir) method predicts formal instability of a
relative equilibrium in a Hamiltonian system with symmetry, then with
the addition of dissipation, the relative equilibrium becomes spectrally and
hence linearly and nonlinearly unstable. The energy-momentum method
assumes that one is in the context of a mechanical system with a given
symmetry group. Our result assumes that the dissipation chosen does
not destroy the conservation law associated with the given symmetry
group - thus, we consider internal dissipation. This also includes the special
case of systems with no symmetry and ordinary equilibria. The theorem
is proved by combining the techniques of Chetaev, who proved instability
theorems using a special Chetaev-Lyapunov function, with those of Hahn,
which enable one to strengthen the Chetaev results from Lyapunov insta-
bility to spectral instability. The main achievement is to strengthen
Chetaev’s methods to the context of the block diagonalization version of
the energy momentum method given by Lewis, Marsden, Posbergh, and
Simo. However, we also give the eigenvalue movement formulae of Krein,
MacKay and others both in general and adapted to the context of the
normal form of the linearized equations given by the block diagonal form,
as provided by the energy-momentum method. A number of specific
examples, such as the rigid body with internal rotors, are provided to
illustrate the results.

Key words : Mechanics, stability.

RESUME. - Le but de ce travail est de demontrer que si la methode

d’energie-moment (ou energie-Casimir) entraine l’instabilité formelle pour
un equilibre relatif d’un systeme hamiltonien avec symetries, alors l’addi-
tion de dissipation rend l’instabilité spectrale, et donc lineaire et non-

lineaire, de cet equilibre relatif. Les systemes mecaniques consideres sont
classiques, c’est-a-dire, l’espace des phases est la variete cotangente d’une
variete riemanienne (l’espace des configurations) et l’hamiltonien est la

somme de l’énergie cinetique de la metrique avec 1’energie potentielle
dependant seulement des variables de l’espace des configurations. On
suppose aussi qu’un groupe de symetries agit sur l’espace des configur-
ations et, donc, sur l’espace des phases et que l’hamiltonien est invariant
sous cette action. Notre resultat suppose que la dissipation preserve la loi
de conservation induite par le groupe de symetries - donc nous consi-
derons seulement des dissipations internes. Ce cas inclut aussi tous les

equilibres odinaires et les systemes nonsymetriques. Le theoreme est

demontre par une combinaison des methodes de Chetaev, qui ont donne
des theoremes d’instabilite utilisant une fonction speciale de Chetaev-
Lyapunov, avec celles de Hahn. Notre theoreme permet de generaliser ces
resultats d’instabilite de Lyapunov pour le systeme linearise de Chetaev a
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39DISSIPATION INDUCED INSTABILITIES

l’instabilité spectrale. Le resultat principal est l’adaptation et 1’amelioration
des resultats de Chetaev dans le contexte de la version bloc-diagonale de
la methode d’energie-moment donnee par Lewis, Marsden, Posbergh et
Simo. Nous donnons aussi les formules de Krein, MacKay et autres sur
le mouvement des valeurs propres, en general et adaptees pour la forme
normale de 1’equation linearisee donnee par la forme bloc-diagonale de la
methode d’energie-moment. Pour illustrer la methode generale, nous don-
nons plusieurs exemples, comme le corps rigide avec gyroscopes internes.

1. INTRODUCTION

A central and time honored problem in mechanics is the determination
of the stability of equilibria and relative equilibria of Hamiltonian systems.
Of particular interest are the relative equilibria of simple mechanical
systems with symmetry, that is, Lagrangian or Hamiltonian systems with
energy of the form kinetic plus potential energy, and that are invariant
under the canonical action of a group. Relative equilibria of such systems
are solutions whose dynamic orbit coincides with a one parameter group
orbit. When there is no group present, we have an equilibrium in the
usual sense with zero velocity; a relative equilibrium, however can have
nonzero velocity. When the group is the rotation group, a relative equili-
brium is a uniformly rotating state.
The analysis of the stability of relative equilibria has a distinguished

history and includes the stability of a rigid body rotating about one of its
principal axes, the stability of rotating gravitating fluid masses and other
rotating systems. (See for example, Riemann [1860], Routh [1877], Poin-
care [1885, 1892, 1901], and Chandrasekhar [1977].)

Recently, two distinct but related systematic methods have been devel-
oped to analyze the stability of the relative equilibria of Hamiltonian
systems. The first, the energy-Casimir method, goes back to Arnold [1966]
and was developed and formalized in Holm, Marsden, Ratiu, and
Weinstein [1985], Krishnaprasad and Marsden [1987] and related papers.
While the analysis in this method often takes place in a linear Poisson
reduced space, often the "body frame", and this is sometimes convenient,
the method has a serious defect in that a lack of sufficient Casimir
functions makes it inapplicable to examples such as geometrically exact
rods, three dimensional ideal fluid mechanics, and some plasma systems.

This deficiency was overcome in a series of papers developing and
applying the energy-momentum method; see Marsden, Simo, Lewis and
Posbergh [1989], Simo, Posbergh and Marsden [1990, 1991], Lewis and
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40 A. M. BLOCH et al.

Simo [1990], Simo, Lewis, and Marsden [1991], Lewis [1992], and Wang
and Krishnaprasad [1992]. These techniques are based on the use of the
Hamiltonian plus a conserved quantity. In the energy-momentum method,
the relevant combination is the augmented Hamiltonian. One can think of
the energy momentum method as a synthesis of the ideas of Arnold for
the group variables, and those of Routh and Smale for the internal
variables. In fact, one of the bonuses of the method is the appearance of
normal forms for the energy and the symplectic structure, which makes
the method particularly powerful in applications.
The above techniques are designed for conservative systems. For these

systems, but especially for dissipative systems, spectral methods pioneered
by Lyapunov have also been powerful. In what follows, we shall elaborate
on the relation with the above energy methods.

The key question that we address in this paper is: if the energy momen-
tum method predicts formal instability, i. e., if the augmented energy has
a critical point at which the second variation is not positive definite, is
the system in some sense unstable? Such a result would demonstrate that
the energy-momentum method gives sharp results. The main result of this
paper is that this is indeed true if small dissipation, arising from a Rayleigh
dissipation function, is added to the internal variables of a system. (Dissip-
ation in the rotational variables will be considered in another publication).
In other words, we prove that

If a relative equilibrium of a Hamiltonian system with symmetry is

formally unstable by the energy-momentum method, then it is linearly and
nonlinearly unstable when a small amount of damping (dissipation) is added
to the system.
Some special cases of, and commentaries about, the topics of the present

paper were previously known. As we shall discuss below, one of the main
early references for this topic is Chetaev [1961] ] and some results were
already known to Thomson and Tait [1912] (see also Ziegler [1956], Haller
[1992], and Sri Namachchivaya and Ariaratnam [1985]). The latter paper
shows the effect of dissipation induced instabilities for rotating shafts, and
contains a number of other interesting references. 

’

Next, we outline how the program of the present paper is carried out.
To do so, we first look at the case of ordinary equilibria. Specifically,
consider an equilibrium point Ze of a Hamiltonian vector field XH on a
symplectic manifold P, so that XH (ze) = 0 and H has a critical point at ze.
Then the two standard methodologies for studying stability mentioned
above are as follows:

(a) Energetics - determine if

is a definite quadratic form (the Lagrange-Dirichlet criterion).
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41DISSIPATION INDUCED INSTABILITIES

(b) Spectral methods-determine if the spectrum of the linearized opera-
tor

is on the imaginary axis.
The energetics method can, via ideas from reduction, be applied to

relative equilibria too and this is the basis of the energy-momentum
method alluded to above and which we shall detail in section 3. The

spectral method can also be applied to relative equilibria since under
reduction, a relative equilibrium becomes an equilibrium.
For general (not necessarily Hamiltonian) vector fields, the classical

Lyapunov theorem states that if the spectrum of the linearized equations
lies strictly in the left half plane, then the equilibrium is stable and even
asymptotically stable (trajectories starting close to the equilibrium converge
to it exponentially as t - oo). Also, if any eigenvalue is in the strict right
half plane, the equilibrium is unstable. This result, however, cannot apply
to the purely Hamiltonian case since the spectrum of L is invariant under
reflection in the real and imaginary coordinate axes. Thus, the only
possible spectral configuration for a stable point of a Hamiltonian system
is if the spectrum is on the imaginery axis.
The relation between (a) and (b) is, in general, complicated, but one

can make some useful elementary observations.
Remarks:
1. Definiteness of f2 implies spectral stability (i. e., the spectrum of L is

on the imaginary axis). This is because spectral instability implies (linear
and nonlinear) instability (Lyapunov’s Theorem), while definiteness of 2
implies stability (the Lagrange Dirichlet criterion).

2. Spectral stability need not imply stability, even linear stability. This
is shown by the unstable linear system q = p, p = 0 with a pair of eigenvalues
at zero. Other resonant examples exhibit similar phenomena with nonzero
eigenvalues.

3. If f2 has odd index (an odd number of negative eigenvalues), then L
has a real positive eigenvalue. This is a special case of theorems of Chetaev
[1961] and Oh [1987]. Indeed, in canonical coordinates, and identifying 9
with its corresponding matrix, we have

Thus, det L = det!2 is negative. Since det L is the product of the eigenvalues
of L and they come in conjugate pairs, there must be at least one pair of
real eigenvalues, and since the set of eiganvalues is invariant under reflec-
tion in the imaginary axis, there must be an odd number of positive real
eigenvalues.

4. If P = T* Q with the standard cotangent symplectic structure and if
H is of the form kinetic plus potential so that an equilibrium has the

Vol. 11, n° 1-1994.



42 A. M. BLOCH et al.

form (qe, 0), and if b2 V (qe) has nonzero (even or odd) index, then again
L must have real eigenvalues. This is because one can diagonalize ~2 V (qe)
with respect to the kinetic energy inner product, in which case the eigenva-
lues are evident. In this context, note that there are no gyroscopic forces.
To get more intetresting effects than covered by the above examples,

we consider gyroscopic systems; i. e., linear systems of the form

where M is a positive definite symmetric n X n matrix, S is skew,
and A is symmetric. This system is verified to be Hamiltonian with p = M q,
energy function

and the bracket

Systems of this form arise from simple mechanical systems via reduction;
this form is in fact the normal form of the linearized equations when one
has an abelian group. Of course, one can also consider linear systems of
this type when gyroscopic forces are added ab initio, rather than being
derived by reduction. Such systems arise in control theory, for example;
see Bloch, Krishnaprasad, Marsden, and Sanchez [1991] ] and Wang and
Krishnaprasad [1992].

If the index of V is even (see remark 3) one can get situations where
~2 H is indefinite and yet spectrally stable. Roughly, this is a situation
that is capable of undergoing a Hamiltonian Hopf bifurcation. One of
the simplest systems in which this occurs is in the linearized equations
about a special relative equilibrium, called the "cowboy" solution, of the
double spherical pendulum; see Marsden and Scheurle [1992] and Section 6
below. Another example arises from certain solutions of the heavy top
equations as studied in Lewis, Ratiu, Simo and Marsden [1992]. Other
examples are given in section 6. One of our first main results is the

following:

THEOREM 1. 1. - Dissipation induced instabilities - abelian case. Under
the above conditions, f we modify ( 1.1 ) to

for small E > 0, where R is symmetric and positive definite, then the perturbed
linearized equations

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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where z = (q, p) are spectrally unstable, i. e., at least one pair of eigenvalues
of LE is in the right half plane.

This result builds on basic work of Thomson and Tait [1912], Chetaev
[1961], and Hahn [1967]. The argument proceeds in two steps.

STEP l. Construct the Chetaev function

for small P and use this to prove Lyapunov instability.
This function has the key property that for P small enough, W has the

same index as H, yet W is negative definite, where the overdot is taken in
the dynamics of ( 1. 4). This is enough to prove Lyapunov instability, as
is seen by studying the equation

and choosing (qo, po) in the sector where W is negative, but arbitrarily
close to the origin.

STEP 2. Employ an argument of Hahn [1967] to show spectral instability.
The sketch of the proof of step 2 is as follows. Since E is small and the

original system is Hamiltonian, the only nontrivial possibility to exclude
is the case in which the unperturbed eigenvalues lie on the imaginary axis
at nonzero values and that, after perturbation, they remain on the imagin-
ary axis. Indeed, they cannot all move left by step 1 and LE cannot have
zero eigenvalues since LE z = 0 implies W (z, z)=0. However, in this case,
Hahn [1967] shows the existence of at least one periodic orbit, which
cannot exist in view of (1.6) and the fact that W is negative definite. The
details of these two steps are carried out in section 3 and section 4.

This therorem generalizes in two significant ways. First, it is valid for
infinite dimensional systems, where M, S, R and A are replaced by linear
operators. One of course needs some technical conditions to ensure that
W has the requisite properties and that the evolution equations generate
a semi-group on an appropriate Banach space. For step 2 one requires,
for example, that the spectrum at E = 0 be discrete with all eigenvalues
having finite multiplicity. To apply this to nonlinear systems under lineariz-
ation, one also needs to know that the nonlinear system satisfies some
"principle of linearized stability"; for example, it has a good invariant
manifold theory associated with it.
The second generalization is to systems in block diagonal form but with

a non-abelian group. The system (1.4) is the form that block diagonaliz-
ation gives with an abelian symmetry group. For a non-abelian group,
one gets, roughly speaking, a system consisting of ( 1. 4) coupled with a
Lie-Poisson (generalized rigid body) system. The main step needed in this

Vol. 11, n° 1-1994.



44 A. M. BLOCH et al.

case is a significant generalization of the Chetaev function. This is carried
out in section 3.
A nonabelian example (with the group SO (3)) that we consider in

section 6 is the rigid body with internal momentum wheels.
The formulation of theorem 1.1 and its generalizations is attractive

because of the interesting conclusions that can be obtained essentially
from energetics alone. If one is willing to make additional assumptions,
then there is a formula giving the amount by which simple eigenvalues
move off the imaginary axis. One version of this formula, due to MacKay
[1991], states that ( 1 )

where we write the linearized equations in the form

Here, Àr. is the perturbed eigenvalue associated with a simple
eigenvalue on the imaginary axis at E = o, ~ is a (complex) eigen-
vector for Lo with eigenvalue and (J B)anti is the antisymmetric part
ofJB.

In fact, the ratio of quadratic functions in ( 1. 7) can be replaced by a
ratio involving energy-like functions and their time derivatives including
the energy itself or the Chetaev function. To actually work out (1 . 7) for
examples like ( 1.1 ) can involve considerable calculation (see section 5 for
details).
What follows is a simple example in which one can carry out the

analysis to a large extent directly. We hasten to add that problems like
the double spherical pendulum are considerably more complex algebrai-
cally and a direct analysis of the eigenvalue movement would not be so
simple.

Consider the following gyroscopic system (cf. Chetaev [1961] ] and
Baillieul and Levi [1991] ]

which is a special case of (1. 4). Assume For y = b = 0 this
system is Hamiltonian with symplectic form

(~) As Mark Levi has pointed out to us, formulae like ( 1. 7) go back to Krein [1950] and
Krein also obtained such formulae for periodic orbits (see Levi [1977], formula (18), p. 33).
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45DISSIPATION INDUCED INSTABILITIES

and the bracket (1 . 3) where S = ( )Hamiltonian

Note that for a = P, angular momentum is conserved corresponding to the
S 1 symmetry of H. The characteristic polynomial is computed to be

Let the characteristic polynomial for the undamped system be denoted po:

Since po is quadratic in ~,2, its roots are easily found. One gets:
(i ) If a > o, ~i > o, then H is positive definite and the eigenvalues are

on the imaginary axis; they are coincident in a 1 : resonance for a = ~3.
(ii) If a and P have opposite signs, then H has index 1 and there is

one eigenvalue pair on the real axis and one pair on the imaginary axis.
(iii) If a  0 and ~i  0 then H has index 2. Here the eigenvalues may or

may not be on the imaginary axis.
To determine what happens in the last case, let

be the discriminant, so that the roots of ( 1.13) are given by

Thus we arrive at the following conclusions:
(a) If D  0, then there are two roots in the right half plane and two in

the left.

(b) If D = 0 and g2 + a + P > 0, there are coincident roots on the imagin-
ary axis, and there are coincident roots on the real axis.

(c) If D > 0 and g2 + oc + ~i > o, the roots are on the imaginary axis and
they are on the real axis.

Thus the case in which D ~ 0 and g2 + a + P > 0 (i. e., if

is one to which the dissipation induced instabilities theorem (theorem 1.1 )
applies.
Note that for g2 + a + P > 0, if D decreases through zero, a Hamiltonian

Hopf bifurcation occurs. For example, as g increases and the eigenvalues
move onto the imaginary axis, one speaks of the process as gyroscopic
stabilization.
Now we add damping and get

Vol. 11, n° 1-1994.



46 A. M. BLOCH et al.

PROPOSITION 1. 2. If a  o, ~i  0, D > 0, g2 + a > 0 and at least one of
y, 6 is strictly positive, then for (1 9), there is exactly one pair of eigenvalues
in the strict right half plane.

Proof - We use the Routh-Hurwitz criterion (see Gantmacher [1959,
vol. 2j), which states that the number of strict right half plane roots of
the polynomial

equals the number of sign changes in the sequence

For our case, Pl=Y+Ô>O, p3=y~3+a~0 and
p4 = afi > 0, so the sign sequence (1.14) is

Thus, there are two roots in the right half plane.
This proof confirms the result of theorem 1.1. It gives more informa-

tion, but for complex systems, this method, while instructive, may be
difficult or impossible to implement, while the method of theorem 1.1 is

easy to implement. One can also use methods of Krein and MacKay to
get the result of the above proposition and get, in fact, additional informa-
tion about how far the eigenvalues move to the right as a function of the
size of the dissipation. We shall present this technique in section 5. Again,
this technique gives more specific information, but is harder to implement,
as it requires more hypotheses (simplicity of eigenvalues) and requires one
to compute the corresponding eigenvector of the unperturbed system,
which may not be a simple task.

Example. - An instructive special case of the system ( 1. 9) is the system
of equations describing a bead in equilibrium at the center of a rotating
circular plate driven with angular velocity o and subject to a central
restoring force - these equations may also be regarded as the linearized
equations of motion for a rotating spherical pendulum in a gravitational
field; see Baillieul and Levi [1991]. Let x and y denote the position of the
bead in a rotating coordinate system fixed in the plate. The Lagrangian is
then

and the equations of motion without damping are
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47DISSIPATION INDUCED INSTABILITIES

Thus for the system is gyroscopically stable and the addition of
Rayleigh damping induces spectral instability.

It is interesting to speculate on the effect of damping on the Hamiltonian
Hopf bifurcation in view of these general results and in particular, this
example.
For instance, suppose g2 + a + [i > 0 and we allow D to increase so a

Hamiltonian Hopf bifurcation occurs in the undamped system. Then the
above sign sequence does not change, so no bifurcation occurs in the
damped system; the system is unstable and the Hamiltonian Hopf bifur-
cation just enhances this instability. However, if we simulate forcing or
control by allowing one of y or S to be negative, but still small, then the
sign sequence is more complex and one can get, for example, the Hamil-
tonian Hopf bifurcation breaking up into two nearly coincident Hopf
bifurcations. These remarks are consistent with van Gils, Krupa, and
Langford [1990].
The preceding discussion assumes that the equilibrium of the original

nonlinear equation being linearized is independent of E. In general of
course this is not true, but it can be dealt with as follows. Consider the
nonlinear equation

on a Banach space, say. Assume f (0, 0) = 0 and x (E) is a curve of equilibria
with x (0) = o. By implicitly differentiating f (x (E), E) = 0 we find that the
linearized equations at x (E) are given by

where x’ (o) _ - Dx f (o, 0) -1 f£ (0, 0), assuming that 0) is inverti-
ble ; i. e., we are not at a bifurcation point. In principle then, ( 1. 17) is
computable in terms of data at (0, 0) and our general theory applies.
A situation of interest for KAM theory is the study of the dynamics

near an elliptic fixed point of a Hamiltonian system with several degrees
of freedom. The usual hypothesis is that the equations linearized about
this fixed point have a spectrum that lies on the imaginary axis and that
the second variation of the Hamiltonian at this fixed point is indefinite.
Our result says that these elliptic fixed points become spectrally unstable
with the addition of (small) damping. It would be of interest to investigate
the role of our result, and associated system symmetry breaking results
(see, for example, Guckenheimer and Mahalov [1992]), for these systems
and in the context of Hamiltonian normal forms, more thoroughly (see,
for example, Haller [1992]). In particular, the relation between the results
here and the phenomenon of capture into resonance would be of consider-
able interest.

Vol. 11, n° 1-1994.
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There are a number of other topics that should be investigated in the
future. For example, the present results would be interesting to apply to
some fluid systems. The cases of interest here, in which eigenvalues lie on
the imaginary axis, but the second variation of the relevant energy quantity
is indefinite, occur for circular rotating liquid drops (Lewis, Marsden, and
Ratiu [1987] and Lewis [1989]), for shear flow in a stratified fluid with
Richardson number between 1 /4 and 1 (Abarbanel et al. [1986]), in plasma
dynamics (Morrison and Kotschenreuther [1989], Kandrup [1991], and
Kandrup and Morrison [1992]), and for rotating strings. In each of these
examples, there are essential pde difficulties that need to be overcome,
and we have written the present paper to adapt to that situation as far as
possible. One infinite dimensional example that we consider is the case of
a rotating rod in section 6, but it can be treated by essentially finite
dimensional methods, and the pde difficulties we were alluding to do not
occur. We also point out that some of the same effects as seen here are
also found in reversible (nut non-Hamiltonian) systems; see O’Reilly,
Malhotra and Namamchchivaga [1993].

2. THE ENERGY-MOMENTUM METHOD

Our framework for the energy-momentum method will be that of simple
mechanical systems with symmetry. We choose as the phase space P = TQ
or P = T* Q, a tangent or cotangent bundle of a configuration space Q.
Assume there is a Riemannian metric « , » on Q, that a Lie Group G
acts on Q by isometries (and so G acts symplectically on TQ by tangent
lifts and on T* Q by cotangent lifts). The Lagrangian is taken to be of
the form

or equivalently, the Hamiltonian is

where 11.llq is the norm on Tq Q or the one induced on and where

V is a G-invariant potential.
With a slight abuse of notation, we write either (q, v) or vq for a vector

based at q E Q and z = (q, p) or z=Pq for a covector based at q E Q. The
pairing between T: Q and Tq Q is written
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49DISSIPATION INDUCED INSTABILITIES

Other natural pairings between spaces and their duals are also

denoted ( , ~.
The standard momentum map for simple mechanical G-systems is

or

where 03BEQ denotes the infinitesimal generator of 03BE~g on Q. We use the
same notation for J regarded as a map on either the cotangent or the
tangent space; which is meant will be clear from the context. For future
use, we set 

Assume that G acts freely on Q so we can regard Q -~ Q/G as a
principal G-bundle. A refinement shows that one really only needs the
action of G~ on Q to be free and all the constructions can be done in
terms of the bundle Q ~ Q/G~; here, G~ is the isotropy subgroup for

for the coadjoint action of G on g*. Recall that for abelian groups,
G = G~. However, we do the constructions for the action of the full

group G for simplicity of exposition.
For each q E Q, let the locked inertia tensor be the map 0 (q) : g -~ g*

defined by

Since the action is free, I (q) is indeed an inner product. The terminology
comes from the fact that for coupled rigid or elastic systems, I (q) is the
classical moment of inertia tensor of the corresponding rigid system. Most
of the results of this paper hold in the infinite as well as the finite
dimensional case. To expedite the exposition, we give many of the formulae
in coordinates for the finite dimensional case. For instance,

where we write

relative to coordinates qui, i = l, 2, ... , n on Q and a basis ea,
a=1,2, ...,mofg.

Define the map a : TQ - g which assigns to each (q, v) the correspond-
ing angular velocity of the locked system.:

In coordinates,

The map (2. 8) is a connection on the principal G-bundle Q - Q/G. In
other words, a is G-equivariant and satisfies a (çQ (q)) _ ~, both of which
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are readily verified. In checking equivariance one uses invariance of the
metric, equivariance of J : TQ - g*, and equivariance of 0 in the sense of
a map 0 : Q -~ 2 (g, g*) (i. e., the space of linear maps of g to g*), namely

We call a the mechanical connection, as in Simo, Lewis and Marsden
[1991]. The horizontal space of the connection a is given by

i. e., the space orthogonal to the G-orbits. The vertical space consists of
vectors that are mapped to zero under the projection Q - S = Q/G; i. e.,

For each y e g*, define the 1-form aN on Q by

i. e.,

One sees from a (03BEQ (q))=03BE that 03B1  takes values in J-1 ( ). The horizontal-
vertical decomposition of a vector (q, v) E T q Q is given by

where

Notice that hor : TQ -~ ~ - ~ (0) and as such, it may be regarded as a

velocity shift.
The amended potential is defined by

In coordinates,

We recall from Abraham and Marsden [1978] or Simo, Lewis, and
Marsden [199I] that in a symplectic manifold (P, Q), a point ze~P is called
a relative equilibrium if

i. e., if the Hamiltonian vector field at ze points in the direction of the
group orbit through z~. The Relative Equilibrium Theorem states that if
Ze E P and ze(t) is the dynamic orbit of XH with ze(O)=ze and p,=J(zJ,
then the following conditions are equivalent

1. Ze is a relative equilibrium
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2 . 
3. there is a ~ E g such that Ze (t) = exp ( t ~) ~ Ze
4. there is a ~ E g such that Ze is a critical point of the augmented

Hamilton ian

5. Ze is a critical point of H x J : P - R x g*, the energy-momentum map
6. ze is a critical point of H I J -1 (Jl)
7. Ze is a critical point of H J-1 ((~), where (9 = E g*
8. [ze] E is a critical point of the reduced Hamiltonian H~.
Straightforward algebraic manipulation shows that H~ can be rewritten

as follows

where

and where

These identities show the following.

PROPOSITION 2 .1. - A point ze = (qe, ve) is a relative equilibrium f and
only if there is a ~ E g such that

1. ~,Q (qe) and
2. qe is a critical point 
The functions K~ and V~ are called the augmented kinetic and potential

energies respectively. The main point of this proposition is that it reduces
the job of finding relative equilibria to finding critical points 

Relative equilibria may also be characterized by the amended potential.
One has the following identity:

where

for (q, p) E 3 - ~ (~). This leads to the following:
PROPOSITION 2 . 2. - A point (qe, ve) with J (qe, ve) _ ~, is a relative equili-

brium if and only i, f
~ . ve = ~Q (qe) where ~ _ ~ -1 (q) ~ and
2. qe is a critical point of 
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Next, we summarize the energy-momentum method of Simo, Posbergh
and Marsden [1990, 1991], Simo, Lewis and Marsden [1991], on the purely
Lagrangian side, Lewis [1992], and in a control theoretic context, Wang
and Krishnaprasad [1992]. This is a technique for determining the stability
of relative equilibria and for putting the equations of motion linearized at
a relative equilibrium, into normal form. This normal form is based on a
special decomposition into rigid and internal variables.
We confine ourselves to the regular case; that is, we assume z~ is a

relative equilibrium that is also a regular point (i. e., gZe = ~ 0 ~, or ze has a
discrete isotropy group ) and is a generic point in g* (i. e., its
orbit is of maximal dimension). We are seeking conditions for stability of
z~ modulo G~.
The energy-momentum method is as follows: Choose a subspace

ve) that is also transverse to the G~ orbit of (qe, ve)
(a) find ç E 9 such that 0 H~ (ze) = 0
(b) test b2 H~ (ze) for definiteness on ~.

THEOREM 2 . 3. - The Energy-Momentum Theorem. If 03B42 H03BE (ze) is defi-
nite, then ze is G -orbitally stable in J -1 and G-orbitally stable in P.

For simple mechanical systems, one way to choose g is as follows, Let

the metric orthogonal complement of the tangent space to the G~-orbit in
Q. Let 

"

where 1tQ: T* Q = P - Q is the projection.
If the energy-momentum method is applied to mechanical systems with

Hamiltonian H of the form kinetic energy (K) plus potential (V), under
hypotheses given below, it is possible to choose variables in a way that
makes the determination of stability conditions sharper and more comput-
able. In this set of variables (with the conservation of momentum con-
straint and a gauge symmetry constraint imposed on ~), the second
variation of 82 H~ block diagonalizes; schematically

F’urthermore, the internal vibrational block takes the form
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where V~ is the amended potential defined earlier, and K~ is a momentum
shifted kinetic energy. Thus, formal stability is equivalent to S2 V~ > 0 and
that the overall structure is stable when viewed as a rigid structure, which,
as far as stability is concerned, separates out the overall rigid body motions
from the internal motions of the system under consideration.
To define the rigid-internal splitting, we begin with a splitting in con-

figuration space. Consider (at a relative equilibrium) the space ~ defined
above as the metric orthogonal complement to g; q in Tq Q. Here we
drop the subscript e for notational convenience. Then we split

as follows. Define

where 9; is the orthogonal complement to g~ in g with respect to the
locked inertia metric - this choice of orthogonal complement depends on
q, but we do not include this in the notation. From (2.21) it is clear that

and that j/ RIG has the dimension of the coadjoint orbit

through ~,. Next, define

where § = U (q) -1 ~,. An equivalent definition is

The definition of ’t"’INT has an interesting mechanical interpretation in
terms of the objectivity of the centrifugal force in case G = SO (3); see
Simo, Lewis and Marsden [1991].

Define the Arnold form ~~ : g~ X g) - R by

where JI) : g) - g is defined by ~~ (~) _ ~ (q) -1 ad~ y + ad, 0 (q) -1 y. The
Arnold form appears in Arnold’s [1966] stability analysis of relative equili-
bria in the special case Q = G. At a relative equilibrium, the form sf JI is

symmetric, as is verified either directly or by recognizing it as the second
variation of V~ on  RIG X 
At a relative equilibrium, the form sf JI is degenerate as a symmetric

bilinear form on g; when there is a non-zero ç E g; such that

in other words, when (q) -1: g* - g has a nontrivial symmetry relative to
the (coadjoint, adjoint) action of g (restricted to g~) on the space of linear
maps from g* to g. (When one is not at a relative equilibrium, we say the
Arnold form is non-degenerate when (~, ~) = 0 for all r~ E g~ implies
~ = 0.) This means, for G = SO (3) that d J1 is non-degenerate if Jl is not in

Vol. 11, n° 1-1994.



54 A. M. BLOCH et al.

a multidimensional eigenspace of U -1. Thus, if the locked body is not
symmetric (i. e., a Lagrange top), then the Arnold form is non-degenerate.

PROPOSITION 2.4. - If the Arnold form is non-degenerate, then

Indeed, non-degeneracy of the Arnold form implies n f ~ ~
and, at least in the finite dimensional case, a dimension count gives (2. 25).
In the infinite dimensional case, the relevant ellipticity conditions are
needed.

The split (2. 25) can now be used to induce a split of the phase space

Using a more mechanical viewpoint, Simo, Lewis and Marsden [1991] ]
show how f/ RIG can be defined by extending 1/ RIG from positions to
momenta using superposed rigid motions. For our purposes, the important
characterization of f/ RIG is via the mechanical connection:

so f/ RIG is isomorphic to Since 03B1  maps Q to J -1 and C V,
we get C ~ Define

then (2. 26) holds if the Arnold form is non-degenerate. Next, we write

where WINT and are defined as follows:

where g ~ q = ~ ~Q (q) I ~ E g ~, [g. q~° c Tg Q is its annihilator, and
is the vertical lift of in coordinates,

ver y~) _ p~, 0, The vertical lift is given intrinsically by taking
the tangent to the curve a(s)=z+sy at s = o.

THEOREM 2. 5. - Block Diagonalization Theorem. Assume that the
Arnold form is nondegenerate. Then in the splittings introduced above at a
relative equilibrium, 03B42 H03BE (ze) and the symplectic form 03A9ze have the following
form :
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and

where the columns represent elements and respectively,
the isomorphism given as follows: Let

ver (y) e ~’ NT where y e [g ~ q]° and let ~q e then

As far as stability is concerned, we have the following consequence of
block diagonalization.

THEOREM 2 . 6. - Reduced Energy-Momentum Method. Let ze = (qe, pe)
be a (cotangent) relative equilibrium and assume that the internal variables
are not trivial; i. e., 0}. If 03B42 H03BE (ze) is definite, then it must be

positive definite. Necessary and sufficient conditions for S2 H~ (ze) to be

positive definite are
1. the Arnold form is positive definite on and
2. 03B42V (qe) is positive definite on 

This follows since b2 K~ is positive definite and b2 H~ has the above
block diagonal structure.

In examples, it is this form of the energy-momentum method that is

normally easiest to use.
A straightforward calculation establishes the useful relation

and the correction term is positive. Thus, if b2 V~ (qe) is positive definite,
then so is b2 V~ (qe), but not necessarily conversely. Thus, b2 V~ (qe) gives
sharp conditions for stability (in the sense of theorem 2 . 3), while b2 V~ gives
only sufficient conditions.

Using the notation ç = [D 0 -1 (qe) . E g~ [see the comments following
(2 . 23)], observe that the "correcting term" in (2 . 31 ) is given by
B ~~ ~ > - « ~,Q (R’e)~ ~Q (R’e) ».
One of the most interesting aspects of block diagonalization is that the

rigid-internal splitting also brings the symplectic structure into normal
form. We already gave the general structure of this and here we provide
a few more details. We emphasize once more that this implies that the
equations of motion are also put into normal form and this is useful for
studying eigenvalue movement for purposes of bifurcation theory. For
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example, for abelian groups, the linearized equations of motion take the
gyroscopic form:

where M is a positive definite symmetric matrix (the mass matrix), A is
symmetric (the potential term) and S is skew (the gyroscopic, or magnetic
term). This second order form is particularly useful for finding eigenvalues
of the linearized equations (see, for example, Bloch, Krishnaprasad,
Marsden and Ratiu [1991]).
To make the normal form of the symplectic structure explicit, we need

some preliminary results (see Simo, Lewis and Marsden [1991] for the
proofs).

where 03B6 = 0 (qe) -1 ad * y, ver denotes the vertical lift, and F L denotes the
fiber derivative.

If then it lies in ker DJ, so we get the internal-rigid interaction
terms:

Since these involve only 6q and not 8/?, there is a zero in the last slot in
the first row of Q and so we can define the operator C by (2.34):
~ C (Sg)~ ~~’ ~ : _ Q (ze) ~z).

LEMMA 2. 9. - The rigid-rigid terms in Q are

which is the coadjoint orbit symplectic structure.

Next, we turn to the magnetic terms:

If we define the one form by rtl; (q) = F L (~Q (q)), then the definition
of fINT shows that on this space da~, = da~. This is a useful remark

since is somewhat easier to compute in examples. We also note, as in
an earlier remark, that the magnetic terms can be equivalently computed
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from the magnetic terms of the G~ connection rather that the G connec-
tion. For instance, for the water molecule, this is easier since in that case,

Let us now introduce a change of variables of to 

and of irINT to so that the representations for ~2 H~ (ze)
and QZe will be relative to the space We note at this

point that we could have equally well used the representation relative to
and the results below would not materially change

(replace ir by f where appropriate). Using this representation, introduce
the following notation for the block diagonal form of b2 H~:

where A is the co-adjoint orbit block; i. e., the Arnold form (2 x 2 in the
case of G = SO (3)), A corresponds to the second variation of the amended
potential energy, and M corresponds to the metric on the internal variab-
les.
The corresponding symplectic form for the linearized dynamics is

where S is skew-symmetric, 1 is the identity and where C : 1f/INT - V*RIG
is defined by (2.34). From the earlier remarks, note that in (2.37) and
(2.38), the upper block corresponds to the "rotational" dynamics (L~ is
in fact the co-adjoint orbit symplectic form for G) while the two lower
blocks correspond to the "internal" dynamics. In (2.38) C represents
coupling between the internal and rotational dynamics, while S gives the
Coriolis or gyroscopic forces.
The corresponding linearized Hamiltonian vector field is then given by

which a computation given below reveals to be

where
Thus our linearized equations have the form

where z = (r, q, and XH is given by (2 . 39). See
Lewis [1993] for the explicit expression (in terms of the basic data) of the
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linearized equations. To prove (2. 39) we use the first part of the following
lemma. The remainder of the lemma will be used in our stability cacula-
tions.

LEMMA 2 .11. - Consider a vector space V = V 1 +Q V 2 and a linear opera-
tor M: V - V* given by the partioned matrix

and B22 : V2 --> V2 are
linear maps. Assume Bi is an isomorphism and let

so that N : V - V* , L:V*-~V* and P:V-~V. Then:
(i ) LMP=N;
(ii) M is symmetric if and only if B11 and B22 are symmetric and
T _B12 = B21;

(iii) If M is symmetric so is N;
(iv) If M is symmetric then it is positive definite iff N is positive definite;

more generally, the signatures of M and N coincide.

Proof - (i ) is a computation, while (ii ) and (iii ) are obvious. For (iv),
note first that LT = P. If ( , ) denotes the natural pairing, then

which shows that Nand M have the same signature since P is

invertible.

LEMMA 2 , 1 2. - The linearized Hamiltonian flow with Hamiltonian 03B42 H03BE
is given by (2 . 39).
Proof - We have X03B42 H03BE=(03A9-1)T03B42 H03BE. TO invert Q, Set B11 = Lv, B12

[-CTJ [ 
S 

IJ[C 0], B21 = [ 0 ’ and B22 = [ ]. From part (I ) of lemma 2 , I 1

we have M-1 = VN-1 L which gives

where C = - ST. Noting that
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we obtain

and

Hence we get the result.

3. THE CHETAEV FUNCTION AND LYAPUNOV INSTABILITY

In this section we add a (small) dissipation term to the linear Hamil-
tonian equation (2.40) and show that this results in Lyapunov instability
for the linear system. This is insufficient to prove nonlinear instability of
the original system about the given relative equilibrium. For this we prove
a result on spectral instability, which we do in section 4.
We add dissipation (damping) to the "internal" variables of the system

only, in accordance with the natural physical models. The dissipation is
assumed to occur due to the addition, to the Lagrangian, of a Rayleigh
dissipation function (see e. g. Whittaker [1959]):

where the Rayleigh dissipation matrix R : 1I/INT is symmetric and
positive definite: 
The system of linearized equations (2. 40) becomes

We note that

The presence of dissipation results in the addition of a term - 
to the (3. 3) block of the matrix representation (2.39) of the linear system
(2 . 40) .
To prove Lyapunov instability, we will employ a generalization of the

Chetaev function (Chetaev [1961]; see also Arnold [1987]).
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Before doing the general case, it is instructive to analyze the special
case G = S 1, an abelian group, where our system reduces to the form of
the system originally analyzed by Chetaev and Thomson. This analysis is
relevant, for example, for examining planar rotating systems (see e. g. Oh
et al. [1989]).

In this case the A~ block in (2.37) vanishes and the linearized flow
Xs2 H~ with the addition of (internal ) damping becomes

where R = RT >_ 0 is the Rayleigh dissipation matrix as above and S = - ST
represents the gyroscopic forces in the system.
We shall call (3.4) the Chetaev-Thomson normal form. The example

( 1. 9) analyzed in the introduction is the simplest case of this form.
The basic question addressed by Chetaev is the following. If A has some

negative eigenvalues, yet the spectrum of

is on the imaginary axis, is the system (3 . 4) unstable ? Chetaev showed
that this is indeed the case for strong damping; that is, when R is positive
definite. Our proof is a slight modification of his. Interestingly, no assump-
tion on S or the size of R is explicitly needed.

THEOREM 3. 1. - Suppose A is has one or more negative eigenvalues and
R is positive definite. Then the system (3 . 4) is (Lyapunov) unstable.
The proof is based on the following

LEMMA 3.2 (Lyapunov’s Instability Theorem). - A linear system is

Lyapunov unstable if there is a quadratic function W whose associated
quadratic form has at least one negative eigendirection and is such that W
is negative definite.

See, for example, La Salle and Lefschetz [1963] for the proof of this
lemma.

To utilize this lemma to prove the theorem, we first assume that A is
an isomorphism. Let

where Ho is the Hamiltonian for the undamped system,
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p is a scalar, and B is a linear map, both of which are to be determined.
Write

Calculating the time derivative, we find that

Now choose any positive definite symmetic map K : 1I/INT --~ Our

choice of B will depend on K, but K may be chosen arbitrarily, and this
freedom will be important below. We let

From lemma 2 .11, we see that W is negative definite if and only if

is positive definite. This is clearly true for 03B2>0 sufficiently small since
(MT) -1 RM -1 and A K - 1 A are symmetric and positive definite. On the
other hand, by a similar argument, W has at least one negative eigendirec-
tion for P sufficiently small. Hence by lemma 3 . 2, we have instability.
To prove the general case, in which A is allowed to be degenerate, we

proceed as follows. Split the space

into the direct sum of the kernel of A and its orthogonal complement in the
inner product corresponding to M. This induces a similar decomposition of
the dual spaces using M as an isomorphism. Denote with a subscript 1

the first component in this decomposition and with a subscript 2, the

second component. In this decomposition, we have the block structure

and
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The equations (3.4) in this splitting become

Notice that the first equation for ql decouples from the next three equa-
tions. Now we proceed as above, with the function W (q, p) replaced by
the following function of (q2, p):

where K2 : M (ker is positive definite symmetric.
Note especially that here we are using our freedom to choose K; in

Chetaev, the initial choice K = A was made, which required A to be
invertible. We now compute W as above, and obtain an expression similar
to (3.7) but with the blocks done according to the variables (p, q2), and
in which the top right and lower left expressions are modified, but are
still multiplied by P, and where the lower right hand block is replaced by
the expression 03B2 A2 K-12 A2. Now repeat the argument above.
We now extend our analysis to the general equation (2 . 40) i. e., to an

arbitrary nonabelian symmetry group G. We show that indefiniteness of
~2 H~ at a given relative equilibrium implies Lyapunov instability (again
spectral instability follows from the analysis in section 4).
The main ingredient is a generalization of the Chetaev function (3. 5).

As above, we establish definiteness of the time derivative of the function,
but the analysis is now more complex. Also we need an assumption on
the coupling matrix C between the internal and rotational modes.

THEOREM 3.3. - Suppose A~ is nondegenerate and either A or A~ has
at least one negative eigenvalue. Suppose that R>O and that CT is injective.
Then the system (3 . 2) is Lyapunov unstable.

Proof. - As in the abelian case, we start with the assumption that A is
an isomorphism. In this case, let

where (x, P, and y are scalars and B, D, and E are linear operators, all to
be chosen. We write the matrix representation of W, in the ordering (p,
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After a lengthy computation, we find that the matrix representation of
-W.is:

We now show that - W is positive definite for suitable choices of a, P, y,
B, D, and E. To do this we block diagonalize - W by repeated applications
of lemma 2 .11. Write - W in its partitioned form as
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Then

Multiplying (3 .11 ) by

on the right and by the transpose of (3.12) on the left yields

Then a final application of the lemma to (3 .13) yields the block diagonal
form

where

Now All in (3.10) is positive definite if a and P are small, since R is
positive definite. Choose, as in theorem 3.1, B = MK-1 A, and assume
that y is small. Then A22 - All A 12 = PA K’ ~ A - All A 12. Since
the second term is of higher order in a, P, y, this is positive definite. It
remains to prove positive definiteness of A3 3. Firstly, choose

Then we find:
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To show that A33 is positive definite, we set and write it as a

term linear in a plus higher order terms in a. Then we show the term
linear in a is indeed positive definite for CT injective and a suitable choice
of E.
We now isolate the terms in ~33 that are linear in a. Since

we get A~ 11= M (1 + O (a)). Also A23 and A33 are all D (a).
Hence

and so does not affect definiteness, for small (x. Next,

and so

Also,

and thus
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Hence the term in A33 linear in a is given by

Since A~ L; 1 = - (L; 1 A~)T, the first two terms cancel and we obtain

Now let E = - K-1 C~’. Then ET KE = - 3 and
2 2

hence

which is positive definite since CT is injective and oc > o.
Since W is clearly indefinite and W is negative definite, we have Lyapu-

nov instability by Lyapunov’s instability theorem.
To prove the theorem in the case that A is degenerate, split the

variable q into (qi, q2) as in the proof of the abelina case and note
that the equations (3.2) decouple into equations for ql and (r, p, q2).
Now repeat the argument using the same modifications as in the abelian
case.

For completeness, we give the details in the extreme case A=0. In this
case, the linearized dynamics with added dissipation in the block-diagonal
normal form takes the following "triangular" form:
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where S = S + CT L; 1 C, and R = RT >_ 0 is a matrix of damping coefficients.
Note that projecting out the shape variable q leaves the reduced system
from (3 .18) involving p and;’ only, which can be handled separately. Let

where a is a scalar and D is to be chosen. We will show that a and D
can be so chosen that W (p, r) is a Chetaev function for the reduced

system - the second and third equations of (3.18) i. e. W (p, r) is indefinite
and its total derivative W along trajectories of (3 .18) is negative definite.
This would then establish the Lyapunov instability of the reduced system
and consequently of the full system (3 .18). As above, choose

It is then easy to verify that

where,

By hypothesis Q22 >0. As above, there is a range of a for which the
matrix

is positive definite. Further, since the signature of a hyperbolic matrix is
invariant under small perburbations, one can further choose a in the range
(0, c) such that,

The matrix ( 
1 

) is indefinite by hypothesis. Thus we have a range0 A y yp

of a for which W is a Chetaev function and we have proved Lyapunov
instability..
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Remark. - We leave it to the reader to verify that standard eigenvalue
inequalities lead to the condition

where

and ]] . ]] denote the Euclidiean norm..
. 

An illustration of the instability result of theorem 3. 3 in the case of
A = 0, and of the effective use of the block diagonal normal form will be
given in the examples in section 6.

4. INSTABILITY OF RELATIVE EQUILIBRIA

Our main result shows that if ~2 H~ is indefinite at a given relative
equilibrium, the system is dissipation unstable about that equilibrium. To
do this, it is sufficient to prove spectral instability of the linear system
(3 .2). In section 3 we proved Lyapunov instability of this system. As
discussed in the introduction, this is not sufficient to prove instability of
the nonlinear system. Hence we need to show that we do in fact have
spectral instability. This will follow from the following proposition which
utilizes the eigenstructure of the linearized Hamiltonian system (i. e., with
R = 0) and a key observation of Hahn [1987].

PROPOSITION 4.1. - Let x=XH(x) be a linear Hamiltonian system.
Suppose that one adds a small linear perturbation to XH (in particular, a
damping term) and that for the augmented system there exists a quadratic
form W which has at least one negative eigendirection and which satisfies
W  0 along the flow. Then the augmented system is spectrally unstable.

Proof. - The properties of W imply that the augmented system is

Lyapunov unstable, as we have seen. We now show that it is spectrally
unstable. Henceforth, we shall refer to the augmented system as the

damped system and the perturbation as damping.
We consider firstly the eigenvalue configuration of the undampted linear

Hamiltonian system. From the general properties of Hamiltonian matrices
(see e. g. Abraham and Marsden, [1978]) the possible configurations can
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be grouped into the following for categories:
1. There is at least one quadruplet, i. e., an eigenvalue configuration

shown in figure 4.1.

~ 

FIG. 4.2. - The case of eigenvalues on the real axis.

2. There is at least one pair of real eigenvalues, as in figure 4. 2.
3. Neither 1. nor 2. holds but all the eigenvalues are on the imaginary

axis and are simple.
4. All the eigenvalues are on the imaginary axis and there is at least

one multiple eigenvalue.
Now add the damping terms. In cases 1. and 2. small damping leaves

eigenvalues in the right half plane. Hence we have spectral instability.
Now consider case 3. All eigenvalues cannot move to the left half plane
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since this implies Lyapunov stability and we have instability. They cannot
all remain on the imaginary axis since (for small damping) they remain
distinct and hence all solutions would be periodic and hence stable.

Similarly if some move into the left half plane and some remain (distinct)
on the imaginary axis, the system is still stable. The only remaining
possibility is at least one moves to the right half plane and we thus have
spectral instability.

Finally consider case 4. If any eigenvalues move into the right half
plane we have spectral instability and are done. Now if all eigenvalues
moved to the left half plane the system would be stable and we know it is
unstable. Similarly it is impossible for some to move to the left and for
those that remain on the imaginary axis to be simple, for this again implies
stability.
The only remaining possibilities are a multiple zero eigenvalue or a

multiple pair of conjugate purely imaginary eigenvalues remaining on the
imaginary axis after the addition of damping. We can show that both
situations are impossible for they contradict W  0:

Suppose firstly that there is a zero eigenvalue. Let W = zT Q z and
XH (z) = A z Then W=zT(ATQ+QA)z. But there exists a such that

A z = 0 and hence W(z)==0, contradicting W  0.
Now suppose .there is a pair of conjugate purely imaginary multiple

eigenvalues. Then there exists an invariant subspace for the flow, which is
a subspace of the generalized eigenspace corresponding to the multiple
eigenvalues, which is invariant for the matrix , I

Now we can use the following argument of Hahn [1967]. There exists a
solution of the system corresponding to (4 .1 ) of the form

However, W is a periodic function of t when evaluated on the above
solution. On the other hand.

Since W  o, [ is bounded away from zero on this curve. Hence the

integral would not be bounded as t --~ oo and W cannot be periodic on
this trajectory. Hence we cannot have a pair of conjugate purely imaginary
multiple eigenvalues since this contradicts W  0.
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Thus we see that at least one eigenvalue must be in the right half plane
and the system is spectrally unstable..
Combining our results and using the notation of section 2 we get

THEOREM 4 . 2. - Assume ( for non-abelian groups) CT is injective, and
the second variation of the Energy-Momentum function H~ of the Hamil
tonian system is indefinite at a given relative equilibrium. Then the addition
of strong (internal) Rayleigh dissipation gives spectral instability of the
system about that relative equilibrium.
The arguments we have given are designed especially to be applicable

to infinite dimensional systems, even though we have so far confined
our attention to finite dimensional ones. There need to be appropriate
assumptions on the semigroups involved, and assumptions on the spectra,
but it seems that the main assumption needed for the above analysis to
be valid is that the spectrum of the unperturbed problem be discrete, with
eigenvalues having at most finite multiplicity.
Two interesting problems are the whirling string and the rotating circular

liquid drop. We hope to pursue the analysis of these problems using the
present techniques in another publication. We analyze a simple rotating
beam, where the infinite-dimensional calculation reduces to a finite-dimen-
sional one, in section 6.
We now make some remarks on the condition requiring CT to be

injective. 
Remarks. - 1. Since note it can be injective only if

dim = dim Q - dim G, i. e. dim (Q/G). For exam-
ple, for SO (3), this says that 5 _ dim Q. For a rigid body with rotors and
G = SO (3), this says that there must be at least two rotors.

2. We claim that CT is injective, i. e., C is surjective, if

Proof. - From (2. 34),

Suppose this is zero for all Then and so by
hypothesis, ~Q (qe) = o. By freeness, ~ = 0, and so by lemma 2. 7 ~ = p 
ad * p, where 11 E 9J1e’ and so as 11 E by (2 . 22), ~ = 0, and so by (2. 32),

Notice that the above condition is a hypothesis on fINT being "genu-
inely different" from the "naive" choice of internal space, namely [g . 
Remark on Internal Symmetries. - In some situations, we will have

internal symmetries in the system. In the Hamiltonian case each such
symmetry would enable one to reduce the system by one degree of freedom.
In the presence of damping (dissipation) we cannot of course do this, but
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one can nonetheless eliminate the corresponding configuration variables.
This ensures that the matrix representation of W will be negative semi-
definite rather than definite (with zero eigenvalues due to the symmetry).
The same analysis as before then applies. This situation will be illustrated
in section 6.

5. DISSIPATION-INDUCED MOVEMENT OF EIGENVALUES

In contrast with the method of Routh-Hurwitz that requires explicit
calculations with characteristic polynomials, the methods of the present
paper allow one to predict dissipation-induced instability of relative equili-
bria solely on the basis of signature computations - indefiniteness of b2 H~
and injectivity of CT. In this sense, the present paper is closer in spirit to
the work of Hermite on Hankel quadratic forms, cf the last chapter of
volume 2 of Gantmacher [1959]. However, the classical work of Routh,
Hermite and Hurwitz was aimed at getting more refined information - such
as the number of right half plane eigenvalues - than just predicting instabil-
ity. In the present context, a closely related question is that of determining
speeds of crossing (into the right half plane) of pure imaginary eigenvalues
due to dissipative perturbations of an underlying Hamiltonian system. In
this section we discuss some formulae to compute such speeds and thereby
track in detail the mechanism of instability. Our formulae generalize the
previous work of Krein [1950] and McKay [1991], and when specialized
to the block-diagonal normal form (abelian as well as non-abelian cases)
yield new and explicit formulae for crossing speeds.

Keeping in mind the well-known connections between the asymptotic
stability of a linear system and solutions to the matrix Lyapunov equation,
cf Bellman [1963], Brockett [1970], Taussky [1961], our proofs will have
a definite Lyapunov theory flavor. In particular, we will not need the
Kato perturbation lemma, cf McKay [1991]. We first prove a basic result.

LEMMA 5 .1. - Consider a linear system x = A x and a quadratic form

V(~)= - xT x. Let V (x) denote the total derivative of V along trajectories
of the linear system, evaluated at x. Let ~, = ~,r + i ~,i E spectrum (A). Let

denote an eigenvector of A corresponding to X. Then,
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Proof

and thus

Thus

Now

- Similarly,

Adding suitable multiples of (5.2) and (5. 3) we get,

Therefore,

COROLLARY 5 . 2. - Consider the matrix Lyapunov equation

associated to the linear system x . = A x, where P = P T > 0 is given. Suppose
Q = QT is a solution to (5 . 4). Then,

card {03BB|03BB~spectrum (A), (Q), (5 . 5)

where index (Q) means the number of negative eigenvalues of Q.
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Proof. - In lemma 5.1, choose Q to be a solution of the Lyapunov
equation (5.4). Then,

From lemma (5 .1 ), for any eigenvalue ~, of A,

Since ~,r > 0, this implies ~T Q ~  0. N
Remark. - It is well-known that when spectrum (A) lies in the strict

left half plane, (5. 4) has the unique positive definite solution

it in corollary 5.2, we impose the addtional condition that, for any À,
spectrum (A), ~, + ~ ~ 0, then, the inequality (5 . 5) becomes an equality.

This is a theorem of Taussky [1961].
Suppose the linear system of interest is

where Q = - QT is a nonsingular matrix (e. g. the symplectic structure) of
size 2 n X 2 n, B determines a, possibly dissipative, perturbation, is a
small parameter, and Q = QT determines the energy quadratic form

for the underlying unperturbed system. Along trajectories of (5 . 6)

COROLLARY 5 . 3. - Suppose ~, is a simple eigenvalue of with
eigenvector ~ = xr + Let ~,r denote the real part of the eigenvalue branch
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~,E of A£ = Q + E B emanating from ~.. Then

where

Proof - Substitute E (x) for V (x) in lemma 5 .1 and observe that

simplicity of 03BB ensures smoothness of E (x:), E (xf), etc. with respect to s
ate=0. *

If in corollary 5 . 3, the eigenvalue branch is emanating from a pure
imaginary eigenvalue then the formula (5.9) becomes a formula
for the crossing speed. It is our aim to make this formula explicit for
systems in block-diagonal normal form. As a first step we note

LEMMA 5 . 4. - Under the hypotheses of corollary 5. 3, and if X= im
where m then

where (. )anti denotes the anti-symmetric part.

Proof - Since A (xr + ixi) = i m (xr + we have

and

Then,
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Similarly,

Further,

From (5.12), (5.13), and (5.14) we get,

Remark. - The special case Q = J = ( B-I 0/ ) of formula ( 5 .11 ) appears-I 0
in R. McKay [1991] ] who also gives it an averaging interpretation. We
note that our result is a corollary of the more general formula (5. 9) which
applies to eigenvalues that are not necessarily on the imaginary axis. The
proof presented here does not use the Kato perturbation lemma involving
both right and left eigenvectors - the key tool in McKay’s argument.
Next we compute the average ( E’ (xr) ~ over a cycle of period of

the periodic solution § eirot for the unperturbed system. Recall that at t = 0,
the formula
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holds. For any other t,

Substituting from (5.15) into the average defined by

we get

In evaluating (5 .16) we used fact that for any nonzero
o

integer k. From (5 .14), (5 .11 ), (5.12) and (5.13) we get,

This is the averaging interpretation of the crossing speed given by McKay
in the case Q=J.

In the remainder of this section we show how to adapt the crossing-
speed result (5 .11 ) to the block-diagonal normal form. Recall that the
symplectic structure of the block-diagonal normal form is not canonical.
It is of the form "coadjoint orbit, internal symplectic, magnetic and
coupling terms": 

.

The second variation ~2 H~ takes the form,

and the dissipatively perturbed linear system of interest is [cf equation
(3 . 2)] 

.
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where

Here x = (r, q, p), as in section 3. A key stumbling block in using the
crossing speed formula (5 .11 ) is the need to calculate the eigenvector ç
corresponding to the eigenvalue The following result eases the way a
little.

LEMMA 5. 5. - Consider the quadratic pencil

Then ~,o is a singular point of the pencil, i. e., det = 0, with corre-
sponding null-vector yo = is an eigenvalue of A with eigenvec-
tor 03BE = (ro, qo, 03BB0

Proof - Note the equivalence between the unperturbed system x = A x
and the coupled system consisting of the second-order internal dynamics
together with the first order coadjoint orbit dynamics, in normal form:

Interpret G (~,) as the Laplace transform representation of (5 . 24). This
immediately idenfies singular points of the pencil G (~,) with the spectum
of A. The eigenvector-null vector result is a direct calculation, thus proving
the lemma.

Now, suppose is a pure imaginary eigenvalue of A (singular
point of G (~,)). Let

By lemma 5. 5 and verifying that

we get

Again by lemma 5 . 5 and (5.19),
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Setting,

and substituting in (5.25), (5.26) we get the following "block-diagonal"
version of the crossing speed formula,

Remark. - The crossing speed formula (5.27) can lead to effective
computation provided one has some insight into det and can

compute a null vector of This is still more manageable than
directly computing eigenvectors of A due to the smaller matrices involved.

Remark. - In the abelian case, L~ = 0 = C and the crossing speed
formula (5.27) specializes to

For a similar formula for two degree of freedom systems, see Haller [1992].
Further, if there is no gyroscopic/magnetic term, i. e., S = 0 then (5. 28)
predicts that every pure imaginary eigenvalue of the unperturbed system
is pushed into the left half plane under a strong dissipation R > o. Of
course, this says nothing about any eigenvalues of the unperturbed system
that may be in the right half plane - such eigenvalues are bound to be
present if S = 0 and A is indefinite.

Example. - As we already saw in the introductory section, for the two
degrees of freeedom Chetaev problem (cf. equation ( 1. 9)),

if a and P are both negative, and if we set e=0, then for

all eigenvalues are pure imaginary (the unperturbed
system is gyroscopically stable). But, for strong dissipation, y > o, ~ > 0
and E > o, one pair of eigenvalues crosses into the right half plane and
another pair into the left half plane. This was shown by a Routh-Hurwitz
calculation which, being a counting device, is not capable of telling us
which eigenvalue crosses over to which half plane. Employing the crossing
speed formula (5.28) we are able to address precisely this problem of
tracking eigenvalue movement.
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Note that the Chetaev problem is in the abelian case with

One checks that

which determines two distinct pairs of pure imaginary eigenvalues if

Corresponding to ~, = a null-vector for G is

given by,

Thus ~ _ (0, - ~o + a)T, ~3 = (g ~o, 0)T Substituting in (5.28) we get,

Using the relation (5 . 31 ) we can simplify further to obtain

Suppose ±i03C90 and ±i03C91 are the distinct eigenvalues of the unperturbed
system. Then,

Therefore,

Thus,

By hypothesis, a  o, ~i  o, b > o, y>O. It follows that

Hence the simple eigenvalue ±i03C90 moves to the right (left) half plane
according as to whether 001  see figure 5. 1.
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FIG. 5.1.- The weaker get destabilized.

Example. - The simplest non-abelian case arises when G = SO (3) and
the shape space dimension is 1. A physical example of this is that of a

rigid body with an attached pointmass at the end of a spring, free to
oscillate along a linear guideway. First, note that we can do some basic
calculations without reference to a particular equilibrium about which
block-diagonal normal form is used. Let,

Note that CT is not injective, a case not covered by theorem 3. 3. The
magnetic term S = 2014 S~ == 0, since the shape space dimension is 1 by
hypothesis. Let A = a and M = m be the scalar stiffness and mass respec-
tively. The quadratic pencil of lemma 5 . 5 takes the form

It can be verified that

where
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(because A~ > 0) and

(again because A~ > o).
There are three cases to consider:

(a) If a > o, then the second variation is positive definite and all the
roots (i. e., eigenvalues of the unperturbed Hamiltonian system)
are pure imaginary.

(b) If u=0, then there is a repeated root at the origin and a pure
imaginary pair ±i03C90.

(c) If a  o, two of the roots of p (~,) are real with one root lying in the
right half plane.

In case (a), a dissipative perturbation moves the eigenvalues into the
left half plane. This is already covered by the general theory, but can be
recovered by the crossing-speed formula (5 . 27) with S = 0, a calculation
left to the reader. Case (c) is the odd-index case and the Cartan-Chetaev-
Oh lemma demonstrates instability with or without added dissipation. In
case (b) our crossing speed formula (5.27) applies to the pair of pure
imaginary roots (since they are simple). The details are again left to the
reader.

6. EXAMPLES

Example l. - The Rigid Body with Internal Rotors. Consider a rigid
body with two symmetric rotors. It is assumed that the rotors are subject
to a dissipative/frictional torque and no other forcing. A steady spin about
the minor axis of the locked inertia tensor ellipsoid (i. e., the long axis of
the body), is a relative equilibrium. Without friction, this system can
experience gyroscopic stabilization and the second variation of the aug-
mented Hamiltonian can be indefinite. We aim to show that this is an
unstable relative equilibrium with dissipation added.
The equations of motion are (see Krishnaprased [1985] and Bloch,

Krishnaprasad, Marsden, and Sanchez de Alvarez [1992]):
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In this example, and G = SO (3). Also AeSO(3)
denotes the attitude/orientation of the carrier rigid body relative to an
inertial frame, 03A9~-R3 is the body angular velocity of the carrier, Qr E R3 is
the vector of angular velocities of the rotors in the body frame (with third
component set equal to zero) and 9r is the ordered set of rotor angles in
body frame (again, with third component set equal to zero). Further, Olock
denotes the moment of inertia of the body and locked rotors in the body
frame and rotor is the 3x3 diagonal matrix of rotor inertias. We let

Assume that B 1 > B2 > B3. Finally, R = diag (R1, R2, 0) is the matrix rotor
dissipation coefficients, 

Consider the relative equilibrium for (6 .1 ) defined by, SZe = (0, 0, 
SZr = (0, 0, 0)T and an arbitrary constant. This corresponds to a
steady minor axis spin of the rigid body with the two rotors non-spinning.
Linearization of the SO (3)-reduction of (6 .1 ) about this equilibrium yields,

It is easy to verify that 03B43 = 0. This reflects the choice of relative equili-
brium. Similarly = 0. We will now apply theorem 3. 3 in the case of
A=0.

Dropping the kinematic equations for b8r we have the "reduced" linear-
ized equations

Assume that (nondegeneracy of the relative equilibrium). Then the
above equations are easily verified to be in the normal form (3.18), upon
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making the identifications, p = q = (~SZ1, and,

B 
‘ 

/

Since B1 > B2 > B3, A~ is negative definite. Also, M and R are positive
definite, and CT is injective and thus all the hypotheses of theorem 3. 3
are satisfied. Thus the linearized system (6 . 3) or (6 . 4) displays dissipation-
induced instability.
Remark. - In the body and rotors example, the linearized system was

shown to be in block-diagonal normal form by inspection. Our calculations
also reveal that there is some freedom in the choice of block-diagonal
parameters - for instance the scalar 03C9 could appear in various ways in

L~, C, etc.

Remark. - This example is also instructive in that we can verify the
instability result by a Routh-Hurwitz computation, as in proposition 1. 2.
We sketch the computation here and note that calculations like this can
sometimes be tedious, indicating the usefulness of the general result, even
in this relatively low dimensional case.
A straightforward calculation yields the following characteristic polyno-

mial of the linearized system (6. 3) or (6.4), with no dissipation,

There are two eigenvalues at the origin, consistent with the rank deficit

of 2 in { and under the additional physical assumption

that

the other two eigenvalues are pure imaginary. In fact, we assume both
factors in the preceding equation (6 . 6) are negative, since the rotor inertias
are small. Now consider the case in which R1, R2>0, and are small. The

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire



85DISSIPATION INDUCED INSTABILITIES

full characteristic polynomial is

Now, use the same notation for the characteristic polynomial (6. 7) as in
proposition 1.2. We need to compute the sign changes in the sequence
( 1.14). Clearly p 1 and p4 are positive since R1 and R2 are positive and

A computation shows that

The first two terms are small by assumption and hence p 1 p2 - P3 is

negative. It then follows that

is positive.
Hence the Routh-Hurwitz sign sequence is { +, +, -, +, +} and

thus the addition of dissipation has indeed moved two eigenvalues into
the right half plane, causing a linear instability.
Example 2. - Double Spherical Pendulum. In Marsden and Scheurle

[1992] the double spherical pendulum is discussed. In particular, relative
equilibria, called "cowboy solutions" are found explicitly and have a shape
in which the horizontal projections of the two rods point in opposite
directions. The group in this case is S 1, corresponding to rotations about
the vertical axis. It is verified that indeed the linearized equations are in
our standard form M q + S q + A q = o, but where the 3 x 3 matrices M, S
and A have extra zeros due to discrete symmetries. It is found that in

large regions of parameter space (determined by the pendulum lengths,
masses and angular momentum), that A has signature ( + , - , - ), while
the eigenvalues of the linearized system lie on the imaginary axis. It follows
from theorem 1.1 or 4.2 that if one adds joint friction (so that the total
angular momentum is still conserved) then the cowboy solutions become
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spectrally unstable. This example is a good one in that direct analytical
computation of eigenvalue movement to see this instability would be quite
complicated. We also point out that experiments of John Baillieul (Boston
University) confirm this instability.
We also point out that similar eigenvalue and energetic situations arise

in a number of other examples; among them are:
1. The heavy top - see Lewis, Ratiu, Simo and Marsden [1992];
2. The rotating liquid drop - see Lewis [1989];
3. Shear flow in a stratified fluid with Richardson number between 1 /4

and 1; see Abarbanel et al. [1986].
4. Plasma dynamics; see Morrison and Kotschenreuther [1989], Kan-

drup [1991], and Kandrup and Morrison [1992].
The last three examples mentioned are infinite dimensional, which pro-

vide motivation for extending our methods to cover such cases. One
infinite dimensional example we can handle is the next one.

Example 3. - We now consider a partial differential equation for
which one can analyze dissipation induced instability by finite-dimensional
techniques. We consider a Lagrangian for a model of a nonplanar rotating
beam with "square" cross-section. The beam is assumed to be of Euler-
Bernoulli type. It is fixed to the center of a circular plate rotating with
constant angular velocity co, with undeflected position perpendicular
to the plate along the z-axis of a Cartesian coordinate system fixed in
the plate. The beam is inextensible and can deflect in the x- and y-
directions - the planar version of this model is analyzed in Baillieul and
Levi [1987]. The Lagrangian is chosen to be

where k is an elastic constant. -

The equations of motion with Rayleigh damping and damping
constant y are:

The natural boundary conditions are:

where ’ denotes the z-derivative.
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The equilibrium states are given by and hence

We set k =1 for convenience.
The fourth order operator with the given boundary conditins has com-

pact inverse and hence (see e. g. Baillieul and Levi [1987]) the eigenvalues
of equations (6. 9) are given by ... ~ oo with corresponding
eigenfunctions x (z) = x~ (z) and y (z) = y; (z) respectively. By our choice of
the elastic constants, xi (z) = y~ (z).

Consider now the undamped case, y=0, and write the equations in first
order form, letting q2 = y, p2 = yt~ We obtain:

Let z= [q1 The system is thus of the form where

The stability of the equilibria are determined by the eigenvalues of A. In
addition to the zero eigenvalue, one can check that A has eigenvalues
~ i with corresponding eigenvectors .

Now project the system onto the invariant subspace spanned by the
four eigenvectors corresponding to the We see

that on this subspace we have a gyroscopic system in Chetaev normal
form ( 1. 9). In fact, it is identical to the system describing the rotating
bead given in section 1, with spring constant Hence for ~2 > ~1 we
can see that addition of dissipation causes the system to become spectrally
unstable. In fact, for there are j gyroscopically stable
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Chetaev subsystems whose eigenvalues will be driven into the right-half-
plane on the addition of dissipation.
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