Annales de l'I. H. P., section C

Étienne Sandier
 The symmetry of minimizing harmonic maps from a two dimensional domain to the sphere

Annales de l’I. H. P., section C, tome 10, no 5 (1993), p. 549-559

http://www.numdam.org/item?id=AIHPC_1993__10_5_549_0
© Gauthier-Villars, 1993, tous droits réservés.
L'accès aux archives de la revue «Annales de l'I. H. P., section C » (http://www.elsevier.com/locate/anihpc) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

The symmetry of minimizing harmonic maps from a two dimensional domain to the sphere

by
Étienne SANDIER
Université Pierre-et-Marie-Curie, Laboratoire d'Analyse Numérique, Tour 55-65, 5^{e} étage, 4, place Jussieu, 75252 Paris Cedex 05
France

Abstract. - We show that minimizing harmonic maps from an annulus in \mathbb{R}^{2} to the sphere in \mathbb{R}^{3} that agree on the boundary with the map $u_{0}(x, y)=(x / r, y / r, 0)$ - where $r^{2}=x^{2}+y^{2}$-must be radially symmetric. This result combined with previous results of Jäger-Kaul [JK], BrezisCoron [BC] and of Bethuel-Brezis-Coleman-Hélein [BBCH] shows that for any symmetrical domain in \mathbb{R}^{2} and any symmetrical boundary data with image lying in a closed hemisphere, minimizing harmonic maps must be radially symmetric. We also give an example showing that this no longer has to be true when the boundary data has its image lying in a neighborhood - however small it may be-of a closed hemisphere.

Key words: Liquid crystals, harmonic maps.

Résumé. - On montre que les applications harmoniques minimisantes d'un domaine bidimensionnel vers la sphère sont nécessairement symétriques dès que leur trace est symétrique et à valeur dans un hémisphère fermé. On montre également que ceci devient faux lorsque la trace est à valeurs dans un voisinage arbitrairement petit d'un hémisphère.

[^0]
INTRODUCTION

F. Bethuel, H. Brezis, B. D. Coleman and F. Hélein have studied in a recent paper $[\mathrm{BBCH}]$ minimizing harmonic maps from an annulus

$$
\Omega_{\mathrm{p}}=\left\{(x, y) \in \mathbb{R}^{2} / \rho^{2}<x^{2}+y^{2}<1\right\}
$$

to the unit sphere

$$
\mathbf{S}^{2}=\left\{(x, y, z) \in \mathbb{R}^{3} / x^{2}+y^{2}+z^{2}=1\right\}
$$

that agree on the boundary $\partial \Omega_{\mathrm{p}}$ with the map $u_{0}(x, y)=(x / r, y / r, 0)$, where $r^{2}=x^{2}+y^{2}$. These maps are the minimizers of the problem

$$
\min _{v \in \mathscr{E}_{\rho}} \iint_{\Omega_{\rho}}|\nabla v|^{2}
$$

where $\mathscr{E}_{\mathrm{\rho}}=\left\{v \in \mathrm{H}^{1}\left(\Omega_{\mathrm{\rho}}, \mathrm{~S}^{2}\right) / v_{\mid \partial \Omega_{\mathrm{p}}}=u_{0 \mid \partial \Omega_{\mathrm{\rho}}}\right\}$. They have obtained the following results:

- For $\rho>e^{-\pi}, u_{0}$ is the only minimizer.
- For $\rho \leqq e^{-\pi}$, there is a unique minimizer in the class of radially symmetric maps (or radial maps), and it differs from u_{0} when $\rho<e^{-\pi}$.

A radial map u is a map of the form

$$
u(x, y)=(x / r \sin (\varphi(r)), y / r \sin (\varphi(r)), \cos (\varphi(r)))
$$

where $r^{2}=x^{2}+y^{2}$ and φ is a real valued function.
We start by proving the following theorem
Theorem 1. - Let $0<\rho<1$, and suppose u is a minimizer for the problem

$$
\min _{v \in \mathscr{E}_{\rho}} \iint_{\Omega_{\rho}}|\nabla v|^{2}
$$

then u has radial symmetry.
Putting together previous results in $[J K],[\mathrm{BC}],[\mathrm{BBCH}]$ and our theorem, we can state the following

Theorem 2. - Let Ω be a symmetric domain in \mathbb{R}^{2} and let $\psi: \partial \Omega \rightarrow \mathrm{S}^{2}$ be a radial boundary data with image lying in the closed upper hemisphere $\mathrm{S}_{+}^{2}=\left\{(x, y, z) \in \mathbb{R}^{3} / z \geqq 0\right\}$.

Then any minimizing harmonic map agreeing with ψ on the boundary $\partial \Omega$ is radial.

Remark 1. - It was already known from [JK] that this is true when the boundary data has values in a compact subset of the open upper hemisphere.

Remark 2. - The result of Theorem 2 fails to be true if one replaces S_{+}^{2} by $\mathrm{K}_{\alpha}=\left\{(x, y, z) \in \mathrm{S}^{2} / z \geqq-\alpha\right\}$. We show at the end of this paper that
for any $\alpha>0$, one can find a boundary data with values in K_{α} for which minimizers must break the symmetry.

1. PROOF OF THEOREM 1

The proof goes as follows: first, by an argument of I. Shafrir, we can suppose that the boundary data on the inner part of the annulus is free. Then we define for any minimizing harmonic map u a symmetrized map \tilde{u}. This map has the property that if u is not radial, it has strictly less energy than u on part of the annulus. In the rest of the annulus we are able to still reduce the energy by gluing \tilde{u} with an appropriate conformal map.

Reduction of the problem

Let

$$
\mathscr{E}_{r}=\left\{v \in \mathrm{H}^{1}\left(\Omega_{r}, \mathrm{~S}^{2}\right) / v_{\mid \partial \Omega_{r}}=u_{0 \mid \partial \Omega_{r}}\right\}
$$

and for any $v \in \mathscr{E}_{r}$, and $r<s<1$ let $\mathrm{E}_{s}(v)=\iint_{\Omega_{s}}|\nabla v|^{2}$.
We can state the
Lemma 1 (I. Shafrir). - If $u \in \mathscr{E}_{r}$ and $\mathrm{E}_{r}(u)=\min \mathrm{E}_{r}(v)$, then for all $v \in \mathrm{H}^{1}\left(\Omega_{\sqrt{r}}, \mathrm{~S}^{2}\right)$ such that $v(x, y)=(x, y, 0)$ whenever $x^{2}+y^{2}=1$, we have

$$
\mathrm{E}_{\sqrt{r}}(u) \leqq \mathrm{E}_{\sqrt{r}}(v) .
$$

Remark 3. - This means that the restriction of u to $\Omega_{\sqrt{r}}$ is minimizing in the bigger space $\mathscr{F}_{\sqrt{r}}$ of maps with finite energy that agree with u_{0} only on the outer boundary of $\Omega_{\sqrt{r}}$.

Proof of Lemma 1. - For any $u \in \mathscr{E}_{r_{0}}$, we set

$$
\begin{aligned}
& u_{1}(x, y)=\left\{\begin{array}{cl}
u(x, y) & \text { if } r<x^{2}+y^{2} \leqq 1 \\
u\left(\frac{r x}{x^{2}+y^{2}}, \frac{r y}{x^{2}+y^{2}}\right) & \text { if } r^{2} \leqq x^{2}+y^{2} \leqq r
\end{array}\right. \\
& u_{2}(x, y)=\left\{\begin{array}{cl}
u\left(\frac{r x}{x^{2}+y^{2}}, \frac{r y}{x^{2}+y^{2}}\right) & \text { if } r<x^{2}+y^{2} \leqq 1 \\
u(x, y) & \text { if } r^{2} \leqq x^{2}+y^{2} \leqq r
\end{array}\right.
\end{aligned}
$$

It is easily seen, since the map $(x, y) \rightarrow\left(\frac{r x}{x^{2}+y^{2}}, \frac{r y}{x^{2}+y^{2}}\right)$ is conformal, that

$$
\mathrm{E}_{r}\left(u_{1}\right)=2 \iint_{\Omega_{\sqrt{r}}}|\nabla u|^{2}, \quad \mathrm{E}_{r}\left(u_{2}\right)=2 \iint_{\Omega_{r} \backslash \Omega_{\sqrt{r}}}|\nabla u|^{2}
$$

therefore $2 \mathrm{E}_{r}(u)=\mathrm{E}_{r}\left(u_{1}\right)+\mathrm{E}_{r}\left(u_{2}\right)$. Moreover, $u \in \mathscr{E}_{r}$ implies that $u_{1}, u_{2} \in \mathscr{E}_{r}$.
We now prove the lemma. Suppose u is a minimizer for E_{r} over \mathscr{E}_{r}, we must have $\mathrm{E}_{r}(u)=\mathrm{E}_{r}\left(u_{1}\right)=\mathrm{E}_{r}\left(u_{2}\right)$ for if it were not true either u_{1} or u_{2} would have strictly less energy than u-a contradiction. So u_{1} and u_{2} are both minimizers.

If now v belongs to \mathscr{F}_{r}, we have $\mathrm{E}_{\sqrt{r}}(v) \geqq \mathrm{E}_{\sqrt{r}}(u)$; indeed define

$$
v_{1}(x, y)=\left\{\begin{array}{cl}
v(x, y) & \text { if } r<x^{2}+y^{2} \leqq 1 \\
v\left(\frac{r x}{x^{2}+y^{2}}, \frac{r y}{x^{2}+y^{2}}\right) & \text { if } r^{2} \leqq x^{2}+y^{2} \leqq r
\end{array}\right.
$$

we have $v_{1} \in \mathscr{E}_{r}$ and since u_{1} is a minimizer, $\mathrm{E}_{r}\left(v_{1}\right) \geqq \mathrm{E}_{r}\left(u_{1}\right)$. But $\mathrm{E}_{r}\left(u_{1}\right)=2 \mathrm{E}_{\sqrt{r}}(u)$ and $\mathrm{E}_{r}\left(v_{1}\right)=2 \mathrm{E}_{\sqrt{r}}(v)$, so that $\mathrm{E}_{\sqrt{r}}(v) \geqq \mathrm{E}_{\sqrt{r}}(u)$. Therefore the restriction of u to $\Omega_{\sqrt{r}}$ is a minimizer over $\mathscr{F}_{\sqrt{r}}$.

Hence proving Theorem 1 reduces to proving the following
Theorem 1^{\prime}. - Let $0<\rho<1$, and suppose u is a minimizer for the problem

$$
\min _{v \in \mathscr{F}_{\rho}} \iint_{\Omega_{\rho}}|\nabla v|^{2},
$$

then u has radial symmetry.
Indeed by lemma 1 , and if $u \in \mathscr{E}_{\rho}$ is such that

$$
\mathrm{E}_{\rho}(u)=\min _{v \in \mathscr{E}_{\mathrm{p}}} \iint_{\Omega_{\mathrm{p}}}|\nabla v|^{2}
$$

then Theorem 1^{\prime} would assert that u is radial on the smaller annulus $\Omega_{\sqrt{p}}$. But by a classical result of Morrey, u is analytic in Ω_{p} so that u must be radial everywhere. We now proceed to prove Theorem 1'.

Symmetrization

From now on, ρ is a fixed inner radius, and u is a minimizer for E_{ρ} over the space \mathscr{F}_{ρ}, we further assume that u is not radial. We are going to construct a radial v with strictly less energy than u and the theorem will be proved. First we define the symmetrized function of u, namely \tilde{u}.

For $r>0$, set $\gamma_{r}=\left\{(x, y) \in \mathbb{R}^{2} / x^{2}+y^{2}=r^{2}\right\}$, and

$$
\sigma_{r}=\iint_{\Omega_{r}}\left|u \cdot\left(\frac{\partial u}{\partial x} \wedge \frac{\partial u}{\partial y}\right)\right|,
$$

that is, σ_{r} is the area - counted positively - spanned by $u(x, y)$ when (x, y) spans $\Omega_{1} \backslash \Omega_{r}$. Now \tilde{u} is defined as the only map satisfying the following requirements:
$-\tilde{u}$ is radial,
$-\tilde{u}$ has its image lying in S_{+}^{2},

- for any $\rho \leqq r \leqq 1, \tilde{u}\left(\gamma_{r}\right)$ is the perimeter of a surface having area $2 \pi-\sigma_{r}$ if $\sigma_{r} \leqq 2 \pi$, and $u_{\mid \gamma_{r}}=(0,0,1)$ otherwise.

Note that the fact that \tilde{u} is radial implies that $\tilde{u}\left(\gamma_{r}\right)$ is in fact a circle parallel to the equator $\mathrm{S}^{1}=\left\{(x, y, 0) \in \mathbb{R}^{3} / x^{2}+y^{2}=1\right\}$.

Let us now show that for some $\varepsilon>0, \tilde{u}$ has strictly less energy than u on the annulus $\Omega_{1-\varepsilon}$. For this we need to split the energy in the following way: let (s, θ) be polar coordinates in \mathbb{R}^{2}. For any $\rho \leqq r \leqq 1$, we get

$$
\mathrm{N}_{r}(u)=\int_{\gamma_{r}}\left|u_{s}\right|^{2}, \quad \mathrm{~T}_{r}(u)=\frac{1}{r} \int_{\gamma_{r}}\left|u_{\theta}\right|^{2},
$$

where u_{s} and u_{θ} denote the partial derivatives of u with respect to the variables s and θ. We define in a similar way $\tilde{\mathrm{T}}_{r}$ and $\tilde{\mathrm{N}}_{r}$, the tangential and normal energies of \tilde{u} on the circle γ_{r}. Note that $\mathrm{T}_{r}, \mathrm{~N}_{r}, \tilde{\mathrm{~T}}_{r}, \widetilde{\mathrm{~N}}_{r}$ are continuous functions of r. We have

$$
\left.\begin{array}{l}
\mathrm{E}_{r}(u)=\iint_{\Omega_{r}}|\nabla u|^{2}=\int_{r}^{1} \mathrm{~T}_{s}+\mathrm{N}_{s} d s, \\
\mathrm{E}_{r}(\tilde{u})=\iint_{\Omega_{r}}|\nabla \tilde{u}|^{2}=\int_{r}^{1} \tilde{\mathrm{~T}}_{s}+\tilde{\mathrm{N}}_{s} d s \tag{1}
\end{array}\right\}
$$

On the other hand, from the definition of σ_{r} and \tilde{u}, we have

$$
\begin{equation*}
\left|\frac{d \sigma_{r}}{d r}\right| \leqq \int_{\gamma_{r}}\left|u \cdot\left(u_{s} \wedge \frac{u_{\theta}}{r}\right)\right|, \quad\left|\frac{d \sigma_{r}}{d r}\right|=\left|\int_{\gamma_{r}} \tilde{u} \cdot\left(\tilde{u}_{s} \wedge \frac{\tilde{u}_{\theta}}{r}\right)\right| . \tag{2}
\end{equation*}
$$

We need two lemmas:
Lemma 2. - For all $\rho \leqq r \leqq 1$ we have

$$
\left|\frac{d \sigma_{r}}{d r}\right| \leqq\left(\mathrm{T}_{r} \mathrm{~N}_{r}\right)^{1 / 2}, \quad\left|\frac{d \sigma_{r}}{d r}\right|=\left(\widetilde{\mathrm{T}}_{r} \tilde{\mathrm{~N}}_{r}\right)^{1 / 2} .
$$

Moreover, if $u_{\mid \gamma_{r}}=\tilde{u}_{\mid \gamma_{r}}$ then the first inequality is strict. More precisely, equality in the inequality implies that u is radial.

Proof. - We first prove the inequality. We know by (2) that

$$
\left|\frac{d \sigma_{r}}{d r}\right| \leqq \int_{\gamma_{r}}\left|u_{s}\right|\left|\frac{u_{\theta}}{r}\right| \leqq\left(\mathrm{T}_{r} \mathrm{~N}_{r}\right)^{1 / 2},
$$

by Cauchy-Schwarz inequality. For \tilde{u}, equality holds in all inequalities since by radiality $\tilde{u}_{s} \perp \tilde{u}_{\theta}$ and $\left|\tilde{u}_{s}\right|,\left|\tilde{u}_{\theta}\right|$ are constant on γ_{r}.

To prove the last assertion, let us suppose that $u_{\mid \gamma_{r}}=\tilde{u}_{1 \gamma_{r}}$ and that equality holds in the above inequalities for u also. It is not difficult to see that this implies that \tilde{u} and u coincide as well as their first derivatives on the circle γ_{r}. Now for some $\varepsilon>0$, one can find a radial harmonic map defined on $\Omega_{r-\varepsilon} \backslash \Omega_{r}$ that agrees with \tilde{u} as well as its first derivatives on γ_{r} : it suffices to find a local solution to an ordinary differential equation of second order with initial conditions. Call this map v and set

$$
w(x, y)=\left\{\begin{array}{ccc}
u(x, y) & \text { if } \quad r<x^{2}+y^{2} \leqq 1 \\
v(x, y) & \text { if } & (r-\varepsilon)^{2} \leqq x^{2}+y^{2} \leqq r^{2}
\end{array}\right.
$$

Since w is a C^{1} harmonic map, it is analytic and thus it is identically equal to u. Hence u is radial.

Lemma 3. - For any $\rho \leqq r \leqq 1$, we have

$$
\tilde{\mathrm{T}}_{r} \leqq \mathrm{~T}_{r}
$$

Moreover, equality holds if and only if for some rotation or anti rotation R of \mathbb{R}^{3} we have $\mathrm{R}{ }^{\circ} u_{\mid \gamma_{r}} \equiv \tilde{u}_{\mid \gamma_{r}}$.

Proof. - This is a consequence of an isoperimetric inequality. $\tilde{u}\left(\gamma_{r}\right)$ is by definition the boundary of a surface having area $2 \pi-\sigma_{r}$ while we claim that $u\left(\gamma_{r}\right)$-when it is a smooth path-is the boundary of two disjoint surfaces both having area greater than $2 \pi-\sigma_{r}$. Suppose this is true, then since $\tilde{u}\left(\gamma_{r}\right)$ is a circle it is by isoperimetric inequality a curve of shorter length then $u\left(\gamma_{r}\right)$. Call \tilde{l} and l these two lengths, we have

$$
\int_{\gamma_{r}}\left|\frac{\tilde{u}_{\theta}}{r}\right|=\tilde{l} \leqq l \leqq \int_{\gamma_{r}}\left|\frac{u_{\theta}}{r}\right| .
$$

The first inequality comes from the radiality of \tilde{u}. But $\left|\tilde{u}_{\theta}\right|$ is constant on γ_{r} and so by Cauchy-Schwartz inequality the left hand side is equal to $\left(\widetilde{\mathrm{T}}_{r} \times 2 \pi r\right)^{1 / 2}$ while the right hand side is less than $\left(\mathrm{T}_{r} \times 2 \pi r\right)^{1 / 2}$. The last assertion of the lemma follows by looking at the cases where equality holds.

Now we prove that $u\left(\gamma_{\mathrm{r}}\right)$ - when it is a smooth path - is the boundary of two disjoint surfaces both having area greater than $2 \pi-\sigma_{r}$. Via stereographic projection, we can define the winding number of $u\left(\gamma_{r}\right)$ with respect to a point in S^{2}, and we call $\Sigma_{e}(r)$ resp. $\left.\Sigma_{0}(r)\right]$ the set of points in S^{2} for which this number is even (resp. odd). We have $u\left(\gamma_{r}\right)=\partial \Sigma_{e}(r)=\partial \Sigma_{0}(r)$.

Because of the boundary data, we know that $\left|\Sigma_{e}(1)\right|=\left|\Sigma_{0}(1)\right|=2 \pi$, and if x doesn't belong to $u\left(\Omega_{1} \backslash \Omega_{r}\right)$, then $x \in \Sigma_{e}(1)$ iff $x \in \Sigma_{e}(r)$: indeed the path $u\left(\gamma_{r}\right)$ depends continuously on r so that if $u\left(\gamma_{1}\right)$ is deformed into $u\left(\gamma_{r}\right)$ without touching x, the winding number of both paths with respect to x is the same. Now we can conclude that

$$
\left|\Sigma_{e}(r)\right| \geqq 2 \pi-\sigma_{\tau}, \quad\left|\Sigma_{0}(r)\right| \geqq 2 \pi-\sigma_{r},
$$

and our claim is proved when $u\left(\gamma_{r}\right)$ is a smooth path. If it isn't, we get the result by approximation.

To summarize we have the following: u and \tilde{u} agree on γ_{1} so Lemma 1 gives us $\mathrm{T}_{1} \mathrm{~N}_{1}>\tilde{\mathrm{T}}_{1} \tilde{\mathrm{~N}}_{1}$ but $\mathrm{T}_{1}=\widetilde{\mathrm{T}}_{1}$ and so $\mathrm{N}_{1}>\tilde{\mathrm{N}}_{1}$. By continuity of $\mathrm{N}_{r}, \widetilde{\mathbf{N}}_{r}$, we know that for some $\varepsilon>0$ and for any $1-\varepsilon<r \leqq 1$ we have $\mathrm{N}_{r}>\tilde{\mathrm{N}}_{r}$. On the other hand $\widetilde{\mathrm{T}}_{r} \leqq \mathrm{~T}_{r}$ always holds. Therefore by (1) we have

$$
\mathrm{E}_{1-\varepsilon}(\tilde{u})<\mathrm{E}_{1-\varepsilon}(u) .
$$

From now on we call δ the difference between these two energies.
Set

$$
r_{0}=\inf \left\{s \in[\rho, 1] ; \text { there is a radial } v \in \mathscr{F}_{s} \text { s.t. }\left\{\begin{array}{ll}
\text { (i) } & v_{\mid \partial \Omega_{s}}=\tilde{u}_{\mid \partial \Omega_{s}} \tag{3}\\
\text { (ii) } & \mathrm{E}_{s}(v)+\delta \leqq \mathrm{E}_{s}(u)
\end{array}\right\} .\right.
$$

Then we have $r_{0} \leqq 1-\varepsilon$ for some $\varepsilon>0$. We now show that there is a $v \in \mathscr{F}_{r_{0}}$ satisfying conditions (i) and (ii) above with $s=r_{0}$ - that is the inf is achieved. Indeed, from the definition of r_{0}, there is a sequence $\left(r_{i}\right)$ of real numbers decreasing to r_{0}, and a sequence (v_{i}) of radial maps satisfying (i) and (ii) above with $s=r_{i}$. For each i we set

$$
\tilde{v}_{i}(x, y)=\left\{\begin{array}{lll}
v_{i}(x, y) & \text { if } & r_{i}^{2} \leqq x^{2}+y^{2} \leqq 1 \\
\tilde{u}(x, y) & \text { if } & r_{0}^{2} \leqq x^{2}+y^{2} \leqq r_{i}^{2}
\end{array} .\right.
$$

Then \tilde{v}_{i} is radial, agrees with \tilde{u} on $\partial \Omega_{r_{0}}$, and

$$
\mathrm{E}_{r_{0}}\left(\tilde{v_{i}}\right)=\mathrm{E}_{r_{i}}\left(v_{i}\right)+\left(\mathrm{E}_{r_{0}}(\tilde{u})-\mathrm{E}_{r_{i}}(\tilde{u})\right) .
$$

It is then easily seen that the sequence $\left(\tilde{v}_{i}\right)$ will converge in $\mathrm{H}^{1}\left(\Omega_{r_{0}}, \mathrm{~S}^{2}\right)$ to a map v which is as desired.

Now if $r_{0}=\rho$, Theorem 1^{\prime} is proved: v is a radial map in \mathscr{F}_{ρ} with strictly less energy then u. If not, we proceed to extend v with a conformal map.

Continuation

Let r_{0} and v be as in the previous section and set, for $\varepsilon>0$,

$$
v_{\varepsilon}(x, y)=\left\{\begin{array}{cc}
v(x, y) & \text { if } r_{0}^{2} \leqq x^{2}+y^{2} \leqq 1 \\
\tilde{u}(x, y) & \text { if }
\end{array}\left(r_{0}-\varepsilon\right)^{2} \leqq x^{2}+y^{2} \leqq r_{0}^{2} .\right.
$$

Then by (3), v_{ε} has more energy than u on $\Omega_{r_{0}-\varepsilon} \backslash \Omega_{r_{0}}$, and so

$$
\int_{r_{0}-\varepsilon}^{r} \mathrm{~T}_{s}+\mathrm{N}_{s} d s<\int_{r_{0}-\varepsilon}^{r} \tilde{\mathrm{~T}}_{s}+\tilde{\mathrm{N}}_{s} d s
$$

Letting ε go to 0 we get $\mathrm{T}_{r_{0}}+\mathrm{N}_{r_{0}} \leqq \widetilde{\mathrm{~T}}_{r_{2}}+\widetilde{\mathrm{N}}_{r_{0}}$. But we know that $\mathrm{T}_{r_{0}} \geqq \widetilde{\mathrm{~T}}_{r_{0}}$ so that $\mathrm{N}_{r_{0}} \leqq \tilde{\mathrm{~N}}_{r_{0}}$ and then $\mathrm{T}_{r_{0}}-\mathrm{N}_{r_{0}} \leqq \mathrm{~T}_{r_{0}}-\mathrm{N}_{r_{0}}$.

In fact this is a strict inequality, for suppose $\mathrm{T}_{r_{0}}=\tilde{\mathrm{T}}_{r_{0}}$ and $\mathrm{N}_{r_{0}}=\tilde{\mathrm{N}}_{r_{0}}$ then for some rotation or anti rotation R of \mathbb{R}^{3} we have $\tilde{u}_{\mid \gamma_{r_{0}}}=R \cdot u_{\mid \gamma_{\gamma_{0}}}$ (see Lemma 3). Now we can adapt the proof of Lemma 2 to conclude that $\mathrm{R} \cdot u$ is radial. But then $\mathrm{R} \cdot u$ and u coincide on γ_{1} so that R is either the identity or the reflection across the $x y$ plane. In both cases u is radial.

From $\mathrm{T}_{r_{0}}+\mathrm{N}_{r_{0}} \leqq \tilde{\mathrm{~T}}_{r_{0}}+\tilde{\mathrm{N}}_{r_{0}}$ and $\mathrm{T}_{r_{0}} \mathrm{~N}_{r_{0}} \geqq \tilde{\mathrm{~T}}_{r_{0}} \tilde{\mathrm{~N}}_{r_{0}}$ we conclude that $\left(\mathrm{T}_{r_{0}}-\mathrm{N}_{r_{0}}\right)^{2} \leqq\left(\tilde{T}_{r_{0}}-\tilde{\mathrm{N}}_{r_{0}}\right)^{2}$. Finally, and this is what we were getting at

$$
\begin{equation*}
\tilde{\mathrm{T}}_{r_{0}}>\tilde{\mathrm{N}}_{r_{0}} \tag{4}
\end{equation*}
$$

This fact will allow us to extend v.
Let \hat{u} be the conformal mapping such that
$-\hat{u}_{\mid \gamma_{r_{0}}}=\tilde{u}_{\mid \gamma_{r_{0}}}$
$-\int_{\gamma_{r_{0}}}^{\hat{u}} \hat{r^{\prime}}\left(\hat{u}_{s} \wedge \frac{\hat{u}_{\theta}}{r_{0}}\right) \geqq 0$.

This \hat{u} is given, for an appropriate $\lambda \in \mathbb{R}$ by

$$
\hat{u}(x, y)=\frac{1}{1+\lambda^{2} x^{2}+\lambda^{2} y^{2}}\left(2 \lambda x, 2 \lambda y, 1-\lambda^{2} x^{2}-\lambda^{2} y^{2}\right)
$$

From now on, \tilde{v} will denote the gluing together of v and \hat{u} that is \tilde{v} is equal to v on $\Omega_{r_{0}}$ and to \hat{u} on $\Omega_{\rho} \backslash \Omega_{r_{0}}$. The reason for using a conformal mapping is that it spans a given area with less energy than any other map. More precisely, define for any $\rho \leqq r \leqq r_{0}$

$$
\hat{\sigma}(r)=\iint_{\Omega_{r} \backslash \Omega_{r_{0}}}\left|\hat{u} \cdot\left(\hat{u}_{s} \wedge \frac{\hat{u}_{\theta}}{r}\right)\right|,
$$

and define similarly $\tilde{\sigma}(r)$, the area (counted positively) spanned by $\tilde{u}(x, y)$ when (x, y) spans $\Omega_{r} \backslash \Omega_{r_{0}}$. Then

$$
\begin{equation*}
\tilde{\sigma}(r) \leqq 2\left(\mathrm{E}_{r}(\tilde{u})-\mathrm{E}_{r_{0}}(\tilde{u})\right), \quad \hat{\sigma}(r)=2\left(\mathrm{E}_{r}(\hat{u})-\mathrm{E}_{r_{0}}(\hat{u})\right) . \tag{5}
\end{equation*}
$$

This comes from the inequality $|\alpha \wedge \beta| \leqq \frac{1}{2}\left(|\alpha|^{2}+|\beta|^{2}\right)-$ which holds for any two vectors α, β-applied pointwise to the derivatives of \tilde{u} and \hat{u}; equality holds for conformal maps. Note that from the definition of \tilde{u}, the area-counted positively - spanned by $u(x, y)$ when (x, y) spans $\Omega_{r} \backslash \Omega_{r_{0}}$ is equal to $\tilde{\sigma}(r)$, so we also have

$$
\begin{equation*}
\tilde{\sigma}(r) \leqq 2\left(\mathrm{E}_{\mathrm{r}}(u)-\mathrm{E}_{\mathrm{r}_{0}}(u)\right) \tag{6}
\end{equation*}
$$

Now we have $\hat{\sigma}\left(r_{0}\right)=\tilde{\sigma}\left(r_{0}\right)=0$, and

$$
\left|\frac{d \tilde{\sigma}}{d r}\left(r_{0}\right)\right|=\int_{r_{r_{0}}}\left|\tilde{u} \cdot\left(\tilde{u}_{s} \wedge \frac{\tilde{u}_{\theta}}{r_{0}}\right)\right|
$$

note that on the righthand side, the absolute value could as well be placed outside the integral since \tilde{u} is radial. We have a similar formula for $\left|\frac{d \hat{\sigma}}{d r}\left(r_{0}\right)\right|$. From these two formulas, using the radiality of \tilde{u} and \hat{u} and the conformality of \hat{u}, we get:

$$
\left|\frac{d \tilde{\sigma}}{d r}\left(r_{0}\right)\right|=\left(\tilde{\mathrm{T}}_{r_{0}} \tilde{\mathrm{~N}}_{r_{0}}\right)^{1 / 2}, \quad\left|\frac{d \hat{\sigma}}{d r}\left(r_{0}\right)\right|=\left(\tilde{\mathrm{T}}_{r_{0}} \tilde{\mathrm{~T}}_{r_{0}}\right)^{1 / 2}
$$

Thus we can use (4) to conclude that

$$
\begin{equation*}
\left|\frac{d \tilde{\sigma}}{d r}\left(r_{0}\right)\right|>\left|\frac{d \hat{\sigma}}{d r}\left(r_{0}\right)\right| \tag{7}
\end{equation*}
$$

Thus for $\varepsilon>0$ small enough and $r_{0}-\varepsilon<s<r_{0}$, we have $\hat{\sigma}(s)<\tilde{\sigma}(s)$. Let s_{0} be the smallest number in $\left[\rho, r_{0}\right.$] for which the last inequality is true for all $s_{0}<s<r_{0}$. We see by (5) and (6) that

$$
\mathrm{E}_{s_{0}}(\hat{u})-\mathrm{E}_{r_{0}}(\hat{u}) \leqq \mathrm{E}_{s_{0}}(u)-\mathrm{E}_{r_{0}}(y),
$$

and so

$$
\mathrm{E}_{s_{0}}(\tilde{v})+\delta \leqq \mathrm{E}_{s_{0}}(u)
$$

Then if $s_{0}=\rho$, the proof is over because then \tilde{v} is a radial map in \mathscr{F}_{ρ} with strictly less energy than u.

But this must be true: if s_{0} were greater than ρ, then we would have $\hat{\sigma}\left(s_{0}\right)=\tilde{\sigma}\left(s_{0}\right)$. In turn this would mean that \hat{u} and \tilde{u} agree on $\gamma_{s_{0}}$. Now \tilde{v} would agree with conditions (i) and (ii) of (3), with $s=s_{0}$. But this is impossible since $s_{0}<r_{0}$. The proof of Theorem 1' is complete.

Remark. - After we announced our Theorem 1 (see [S]), a simpler proof has been found by S . Kaniel [K]. It relies on a different symmetrization and does not require a continuation argument.

2. PROOF OF THEOREM 2, AND AN EXAMPLE

Proof of Theorem 2

We have a given domain Ω in \mathbb{R}^{2} invariant under rotations of the plane, and a boundary data $\varphi: \partial \Omega \rightarrow S_{+}^{2}$, having radial symmetry. We want to show that a minimizing harmonic map with boundary data φ must have
radial symmetry. But a connected component of Ω is either conformal through a dilatation to the unit disk $\mathrm{D}^{2}=\left\{(x, y) \in \mathbb{R}^{2} / x^{2}+y^{2}<1\right\}$ or to some annulus $\Omega_{\mathrm{\rho}}$ with $\rho>0$. Moreover the Dirichlet integral is invariant under conformal transformations so that it suffices to prove the theorem in these two cases.

For the case where Ω is the disk, the result has been proved in [BC], so we are left with the case of an annulus Ω_{p}.

Now if φ has values in the open hemisphere, the result follows from [JK], see also [BBCH]. If φ is the restriction to $\partial \Omega_{\mathrm{p}}$ of the map u_{0}, our Theorem 1 gives the result. The only case left is therefore one where the restriction of φ to one of the connected components of $\partial \Omega_{\mathrm{p}}$-we can assume without loss of generality that it is the outer boundary γ_{1}-is equal to u_{0}, while on the other component - say the inner boundary $\gamma_{\rho}-$, φ is given by $\forall(x, y) \in \gamma_{\rho}$

$$
\varphi(x, y)=\left(\mathrm{R} x / \rho, \mathrm{R} y / \rho, \sqrt{1-\mathrm{R}^{2}}\right)
$$

for some $0 \leqq R<1$.
In this case, arguments similar to those in [BBCH] tell us that there is a radial minimizing harmonic map having such boundary data, we call it v, with image lying in S_{+}^{2}. Now v can be extended to a radial harmonic map \tilde{v} defined on a bigger annulus $\Omega_{\rho-\varepsilon}$ whose image still lies in S_{+}^{2}. Hence by $[\mathrm{BBCH}] \tilde{v}$ is minimizing. Suppose u is another minizing harmonic map on Ω_{ρ} with φ as boundary data, then we can set

$$
w(x, y)=\left\{\begin{array}{ccc}
u(x, y) & \text { if } \quad \rho^{2} \leqq x^{2}+y^{2} \leqq 1 \\
\tilde{v}(x, y) & \text { if } & (\rho-\varepsilon)^{2} \leqq x^{2}+y^{2} \leqq \rho^{2}
\end{array}\right.
$$

It is obvious that w is minimizing, hence analytic. Since \tilde{v} also is, $w \equiv \tilde{v}$ and $u \equiv v$. Therefore v is the only minimizing harmonic map with boundary data φ and the proof of Theorem 2 is completed.

An example

We show in this section that Theorem 2 cannot be improved in an obvious way. More precisely, set for any positive real α,

$$
\mathbf{K}_{\alpha}=\left\{(x, y, z) \in \mathbf{S}^{2} / z \geqq-\alpha\right\} .
$$

Then for any $\alpha>0$, there is a radius $\rho>0$ and a radial boundary data $\varphi: \partial \Omega_{\rho} \rightarrow K_{\alpha}$ such that minimizing harmonic maps having φ as boundary data cannot be radial.

Indeed, fix $\alpha>0$ and set $\forall(x, y) \in \gamma_{1}, \varphi(x, y)=(0,0,1)$, and $\forall(x, y) \in \gamma_{\rho}$, $\varphi(x, y)=(\lambda x, \lambda y,-\alpha)$, where $\lambda=1 / \rho \sqrt{1-\alpha^{2}}$. Then if u is a radial map
on Ω_{ρ} having boundary data φ, u must cover all of K_{α} and therefore

$$
\iint_{\Omega_{\rho}}|\nabla u|^{2} \geqq 2(2 \pi+\beta)
$$

where $\beta>0$ and $2 \pi+\beta$ is the area of K_{α}. This is true for any ρ, therefore we will choose ρ later on.

On the other hand, for r small enough, we can find a map v (which will not be radial) such that (i) $v_{\mid \gamma_{1}} \equiv(0,0,1)$, (ii) $v_{\mid \gamma_{r}} \equiv(0,0,-1)$, and

$$
\iint_{\Omega_{r}}|\nabla v|^{2}<\beta / 2
$$

(See [BG].)
Moreover if ρ is chosen small enough, then by deforming slightly a conformal map we may construct a map w such that (i) $w_{\mid \gamma_{r}} \equiv(0,0,-1)$, (ii) $v_{\mid \gamma_{\rho}}=\varphi_{\mid \gamma_{\rho}}$, and

$$
\iint_{\Omega_{\rho} \backslash \Omega_{r}}|\nabla w|^{2}<2(2 \pi-\beta)+\beta / 2,
$$

note that $2 \pi-\beta$ is the area of $S^{2} \backslash K_{\alpha}$.
Then we can glue v and w to get a map defined on Ω_{p} with strictly less energy then any radial map agreeing with it on the boundary of Ω_{ρ}.

ACKNOWLEDGEMENTS

I wish to thank I. Shafrir for helpful discussions and F. Bethuel, H. Brezis, B. D. Coleman and F. Hélein for suggesting this problem to me. I also wish to thank Professor J. F. Tolland for pointing out to me a problem in an earlier version of the proof of Theorem 1.

REFERENCES

[BBCH] F. Bethuel, H. Brezis, B. D. Coleman and F. Hélein, Bifurcation Analysis of Minimizing Harmonic Maps Describing the Equilibrium of Nematic Phases Between Cylinders, Archive for Rat. Mech. Anal (to appear).
[BG] F. Bethuel and J. M. Ghidaglia, Improved Regularity of Elliptic Equations Involving Jacobians and Applications, (to appear).
[BC] H. Brezis and J. M. Coron, Large Solutions for Harmonic Maps in Two Dimensions, Comm. Math. Phys., Vol. 92, 1983, pp. 203-215.
[JK] W. JÄGER and H. KaUl, Uniqueness and Stability of Harmonic Maps and their Jacobi Fields, Manuscripta Math., Vol. 28, 1979, pp. 269-291.
[K] S. Kaniel, Personal communication.
[S] E. SANDIER, Symétrie des applications harmoniques minimisantes d'une couronne vers la sphère, C.R. Acad. Sci. Paris, t. 313, série I, 1991, pp. 435-440.
(Manuscript received April 13, 1992.)

[^0]: A.M.S. Classification: 35.

