On the existence of multiple geodesics in static space-times
Annales de l'I.H.P. Analyse non linéaire, Tome 8 (1991) no. 1, pp. 79-102.
@article{AIHPC_1991__8_1_79_0,
     author = {Benci, V. and Fortunato, D. and Giannoni, F.},
     title = {On the existence of multiple geodesics in static space-times},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {79--102},
     publisher = {Gauthier-Villars},
     volume = {8},
     number = {1},
     year = {1991},
     mrnumber = {1094653},
     zbl = {0716.53057},
     language = {en},
     url = {http://www.numdam.org./item/AIHPC_1991__8_1_79_0/}
}
TY  - JOUR
AU  - Benci, V.
AU  - Fortunato, D.
AU  - Giannoni, F.
TI  - On the existence of multiple geodesics in static space-times
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 1991
SP  - 79
EP  - 102
VL  - 8
IS  - 1
PB  - Gauthier-Villars
UR  - http://www.numdam.org./item/AIHPC_1991__8_1_79_0/
LA  - en
ID  - AIHPC_1991__8_1_79_0
ER  - 
%0 Journal Article
%A Benci, V.
%A Fortunato, D.
%A Giannoni, F.
%T On the existence of multiple geodesics in static space-times
%J Annales de l'I.H.P. Analyse non linéaire
%D 1991
%P 79-102
%V 8
%N 1
%I Gauthier-Villars
%U http://www.numdam.org./item/AIHPC_1991__8_1_79_0/
%G en
%F AIHPC_1991__8_1_79_0
Benci, V.; Fortunato, D.; Giannoni, F. On the existence of multiple geodesics in static space-times. Annales de l'I.H.P. Analyse non linéaire, Tome 8 (1991) no. 1, pp. 79-102. http://www.numdam.org./item/AIHPC_1991__8_1_79_0/

[1] S.I. Alber, The Topology of Functional Manifolds and the Calculus of Variations in the Large, Russian Math. Surv., Vol. 25, 1970, p. 51-117. | MR | Zbl

[2] A. Avez, Essais de géométrie Riemanniene hyperbolique: Applications to the relativité générale, Inst. Fourier, Vol. 132, 1963, p. 105-190. | Numdam | MR | Zbl

[3] P. Bartolo, V. Benci, and D. Fortunato, Abstract Critical Point Theorems and Applications to Some Nonlinear Problems with "Strong Resonance" at Infinity,Nonlinear Anal. T.M.A., Vol. 7, 1983, pp. 981-1012. | MR | Zbl

[4] J.K. Beem and P. Erlich, Global Lorentzian Geometry, M. Dekker, Pure Appl. Math., Vol. 67, 1981. | MR | Zbl

[5] V. Benci, Periodic Solutions of Lagrangian Systems on Compact Manifold, J. Diff. Eq., Vol. 63, 1986, pp. 135-161. | MR | Zbl

[6] V. Benci and D. Fortunato, Existence of Geodesics for the Lorentz Metric of a Stationary Gravitational Field, Ann. Inst. H. Poincaré, Anal. non linéaire, Vol. 7, 1990, pp. 27-35. | Numdam | MR | Zbl

[7] V. Benci and D. Fortunato, Periodic Trajectories for the Lorentz Metric of a Static Gravitational Field, Proc. on "Variational Problems", Paris, June 1988 (to appear). | MR | Zbl

[8] V. Benci and D. Fortunato, On the Existence of Infinitely Many Geodesics on Space-Time Manifolds, preprint, Dip. Mat. Univ. Bari, 1989. | MR

[9] V. Benci, D. Fortunato and F. Giannoni, On the Existence of Geodesics in Static Lorentz Manifolds with Nonsmooth Boundary, preprint. Ist. Mat. Appl. Univ. Pisa.

[10] A. Canino, On p-convex Sets and Geodesics, J. Diff. Eq., Vol. 75, 1988, pp. 118-157. | MR | Zbl

[11] G. Galloway, Closed Timelike Geodesics, Trans. Am. Math. Soc., Vol. 285, 1984, pp. 379-388. | MR | Zbl

[12] G. Galloway, Compact Lorentzian Manifolds Without Closed Nonspacelike Geodesics, Proc. Am. Math. Soc., Vol. 98, 1986, pp. 119-124. | MR | Zbl

[13] C. Greco, Periodic Trajectories for a Class of Lorentz Metrics of a Time-Dependent Gravitational Field, preprint, Dip. Mat. Univ. Bari, 1989. | MR

[14] C. Greco, Periodic Trajectories in Static Space-Times, preprint, Dip. Mat. Univ. Bari, 1989. | MR

[15] S.W. Hawking and G.F. Ellis, The Large Scale Structure of Space Time, Cambridge Univ. Press, 1973. | MR | Zbl

[16] J. Milnor, Morse Theory, Ann. Math. Studies, Vol. 51, Princeton Univ. Press, 1963. | Zbl

[17] J. Nash, The Embedding Problem for Riemannian Manifolds, Ann. Math., Vol. 63, 1956, pp. 20-63. | MR | Zbl

[18] B. O'Neil, Semi-Riemannian Geometry with Applications to relativity, Academic Press Inc., New York-London, 1983. | Zbl

[19] R.S. Palais, Critical Point Theory and the Minimax Principle, Global Anal., Proc. Sym. "Pure Math.", Vol. 15, Amer. Math. Soc., 1970, pp. 185-202. | MR | Zbl

[20] R.S. Palais, Morse Theory on Hilbert Manifolds, Topology, Vol. 22, 1963, pp. 299- 340. | MR | Zbl

[21] R. Penrose, Techniques of Differential Topology in Relativity, Conf. Board Math. Sci., Vol. 7, S.I.A.M., Philadelphia, 1972. | MR | Zbl

[22] P.H. Rabinovitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, Reg. Conf. Series, Am. Math. Soc., Vol. 65, 1986. | MR | Zbl

[23] J.T. Schwartz, Nonlinear Functional Analysis, Gordon and Breach, New York, 1969. | MR | Zbl

[24] H.J. Seifert, Global Connectivity by Time-Like Geodesics, Z. Natureforsch, Vol. 22 a, 1970, pp. 1356-1360. | MR | Zbl

[25] J.P. Serre, Homologie singulière des espaces fibres, Ann. Math., Vol. 54, 1951, pp. 425- 505. | MR | Zbl

[26] F. Tripler, Existence of Closed Time-Like Geodesics in Lorentz Spaces, Proc. Am. Math. Soc., Vol. 76, 1979, pp. 145-147. | Zbl

[27] K. Uhlenbeck, A Morse Theory for Geodesics on a Lorentz Manifold, Topology, Vol. 14, 1975, pp. 69-90. | MR | Zbl

[28] M. Vigue-Poirier and D. Sullivan, The Homology Theory of the Closed Geodesic Problem, J. Diff. Geom., Vol. 11, 1979, pp. 633-644. | MR | Zbl