Annales de l'I. H. P., SECTION C

Yves Richard

Laurent Veron

Isotropic singularities of solutions of nonlinear elliptic inequalities

Annales de l'I. H. P., section C, tome 6, n 1 (1989), p. 37-72

http://www.numdam.org/item?id=AIHPC_1989__6_1_37_0
© Gauthier-Villars, 1989, tous droits réservés.
L'accès aux archives de la revue « Annales de l'I. H. P., section C » (http://www.elsevier.com/locate/anihpc) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Isotropic singularities of solutions of nonlinear elliptic inequalities

by
Yves RICHARD and Laurent VERON
Département de Mathématiques, Faculté des Sciences, Parc de Grandmont 37200 Tours

Abstract. - If g is nondecreasing function satisfying the weak singularities existence condition then all the positive solutions of $\Delta u \leqslant g(u)+f$ in $B_{1}(0) \backslash\{0\}$ where f is radial and integrable in $B_{1}(0)$ are isotropic in measure near 0 . We apply this result to solutions of $\Delta u \pm g(u)=0$ in particular when $g(r) \sim r|r|^{q-1}, g(r) \sim e^{\beta r}$, or $g(r)=r\left(\mathrm{~L}_{n}^{+} r\right)^{\alpha}$.

Key words: Elliptic equations, fundamental solutions, singularities, convergence in measure.

Résumé. - Si g est une fonction croissante sur \mathbb{R} vérifiant la condition d'existence de singularités faibles et f une fonction intégrable radiale dans $\mathrm{B}_{1}(0)$, alors toutes les solutions positives de $\Delta u \leqslant g(u)+f$ dans $\mathrm{B}_{1}(0) \backslash\{0\}$ sont isotropes en mesure près de 0 . Nous appliquons ce résultat aux solutions de $\Delta u \pm g(u)=0$, en particulier quand $g(r) \sim r|r|^{q-1}, g(r) \sim e^{\beta r}$ ou $g(r)=r\left(\mathrm{~L}_{n}^{+} r\right)^{\alpha}$.

0. INTRODUCTION

Let Ω be an open subset of $\mathbb{R}^{\mathbf{N}}$ containing 0 and $\Omega^{\prime}=\Omega \backslash\{0\}$. In the past few years many results about the behaviour near 0 of a positive function $u \in C^{2}\left(\Omega^{\prime}\right)$ satisfying

$$
\begin{equation*}
\Delta u=u^{q} \tag{0.1}
\end{equation*}
$$

or

$$
\begin{equation*}
\Delta u=-u^{q} \tag{0.2}
\end{equation*}
$$

($q>1$) in Ω^{\prime} have been published ([1], [2], [7], [8], [11], [23]). Although those equations are very different (existence or nonexistence of a comparison principle between their solutions), there exists a great similarity between them in the case $N \geqq 3$ and $1<q<N /(N-2)$ in the sense that there always exist solutions satisfying

$$
\begin{equation*}
\lim _{x \rightarrow 0}|x|^{N-2} u(x)=\gamma \tag{0.3}
\end{equation*}
$$

with $\gamma>0$, which implies that

$$
\begin{equation*}
\Delta u=u^{q}-\mathbf{C}(\mathrm{N}) \gamma \delta_{0} \tag{0.4}
\end{equation*}
$$

or

$$
\begin{equation*}
\Delta u=-u^{q}-\mathrm{C}(\mathrm{~N}) \gamma \delta_{0} \tag{0.5}
\end{equation*}
$$

holds in $\mathbf{D}^{\prime}(\Omega)$ ([23], [11]) where δ_{0} is the Dirac measure at 0 and $C(N)=(N-2)\left|S^{N-1}\right|$ if $N \geqq 3, C(2)=2 \pi$, but the two proofs of this phenomenon run very differently. In fact the main point to notice is that for a u satisfying (0.3) u^{q} is integrable near 0 and this leads us to a new type of isotropy which is the key-stone for the study of isolated singularities of positive solutions of nonlinear elliptic inequalities of the following type

$$
\begin{equation*}
\Delta u \leqq g(u)+f . \tag{0.6}
\end{equation*}
$$

Assume $\mathrm{N} \geqq 3, g$ is a continuous nondecreasing function defined on $[0,+\infty)$ satisfying the weak singularities existence condition

$$
\begin{equation*}
\int_{0}^{1} g\left(r^{2-N}\right) r^{N-1} d r<+\infty \tag{0.7}
\end{equation*}
$$

$f \in \mathrm{~L}_{\mathrm{loc}}^{1}(\Omega)$ is radial near 0 and $u \in \mathrm{C}^{2}\left(\Omega^{\prime}\right)$ is a positive solution of (0.6) in Ω^{\prime}. Then
(i) either there exists $\gamma \in[0,+\infty)$ such that $r^{N-2} u(r,$.$) converges in$ measure on $\mathrm{S}^{\mathrm{N}-1}$ to γ as r tends to 0 ,
(ii) or $\lim _{x \rightarrow 0}|x|^{N-2} u(x)=+\infty$.

In the case $\mathrm{N}=2$ it is necessary to introduce the exponential order of growth of g [20]

$$
\begin{equation*}
a_{g}^{+}=\inf \left\{a>0: \int_{0}^{+\infty} e^{-a r} g(r) d r<+\infty\right\} \tag{0.8}
\end{equation*}
$$

and we prove that under the same conditions on f and u satisfying (0.6) in Ω^{\prime}; then

- if $a_{g}^{+}=0$ we have either (i) or (ii) with $|x|^{2-\mathrm{N}}$ replaced by $\operatorname{Ln}(1 /|x|)$
- if $a_{g}^{+}>0$ we have
(iii) either there exists $\gamma \in\left[0,2 / a_{g}^{+}\right)$such that $u(r,.) / \operatorname{Ln}(1 / r)$ converges in measure to γ on S^{1} as r tends to 0 ,
(iv) or $\lim _{x \rightarrow 0} u(x) / \operatorname{Ln}(1 /|x|) \geqq 2 / a_{g}^{+}$.

Those results play an important role for the description of isolated singularities of nonnegative solutions of

$$
\begin{equation*}
\Delta u=g(u) . \tag{0.9}
\end{equation*}
$$

For example, when $\mathrm{N} \geqq 3$ we prove that if g is nondecreasing and satisfies the weak singularities existence condition, then any $u \in \mathrm{C}^{2}\left(\Omega^{\prime}\right)$ nonnegative and satisfying (0.9) in Ω^{\prime} is such that $|x|^{\mathbf{N}-2} u(x)$ converges to some $\gamma \in \mathbb{R}^{+} \cup\{+\infty\}$ as x tends to 0 . This result extends to the case $N=2$ with some minor modifications. An other important tool for proving this type of result is Serrin and Ni's symmetry theorem [12].

When g has nonpositive values we prove that when $\mathrm{N} \geqq 3$ any nonnegative solution $u \in C^{2}\left(\Omega^{\prime}\right)$ of (0.9) is such that $r^{N-2} u(r,$.$) converges in L^{1}\left(S^{N-1}\right)$ to some $\gamma \in[0,+\infty)$ as r tends to 0 . Under a moderate growth assumption on g we prove that $\lim _{x \rightarrow 0}|x|^{N-2} u(x)=\gamma$. When $N=2$ the situation is quite more complicated. Using a result due to John and Nirenberg we prove that when g has nonpositive values and is of exponential or subexponential type any nonnegative solution u of (0.9) in Ω^{\prime} satisfies

$$
\begin{equation*}
\lim _{x \rightarrow 0} u(x) / \operatorname{Ln}(1 /|x|)=\gamma \in\left[0,2 / a_{g}^{+}\right) . \tag{0.10}
\end{equation*}
$$

The last section is devoted to the study of the behavior near 0 of positive solutions of

$$
\begin{equation*}
\Delta u=u\left(\mathrm{~L}^{+} u\right)^{\alpha} \tag{0.11}
\end{equation*}
$$

in $\Omega^{\prime}(\alpha>0)$. This equation reduces to a Hamilton-Jacobi equation in setting $v=\mathrm{Ln}^{+} u$ and v satisfies

$$
\begin{equation*}
\Delta v+|\mathrm{D} v|^{2}=v^{\alpha} \tag{0.12}
\end{equation*}
$$

on $\left\{x \in \Omega^{\prime}: u(x) \geqq 1\right\}$. If we set $g(r)=r\left(\mathrm{~L}^{+} r\right)^{\alpha}$, it is clear that (0.7) is always satisfied, hence for any $\gamma \geqq 0$ there always exist solutions satisfying (0.3); however Vazquez a priori estimate condition

$$
\begin{equation*}
\int_{r_{0}}^{+\infty} \frac{d s}{\sqrt{s g(s)}}<+\infty \tag{0.13}
\end{equation*}
$$

for some $r_{0}>0$ is satisfied if and only if $\alpha>2$ and we prove the following:
Assume $\mathrm{N} \geqq 3$ and $u \in \mathrm{C}^{2}\left(\Omega^{\prime}\right)$ is a nonnegative solution of (0.11) in Ω^{\prime}; then

- if $0<\alpha \leqq 2$
(i) either u can be extended to Ω as a C^{2} solution of (0.11) in Ω
(ii) or there exists $\gamma>0$ such that $\lim _{x \rightarrow 0}|x|^{N^{-2}} u(x)=\gamma$.
- if $\alpha>2$
(iii) either u behaves as in (i) or (ii)
(iv) or $u(x)=\gamma(\alpha, \mathrm{N}) \quad e^{\gamma(\alpha)|x|^{2 /(2-\alpha)}}\left(1+O\left(|x|^{2 /(\alpha-2)}\right) \quad\right.$ near $0 \quad$ with $\gamma(\alpha)=\left(\frac{2}{\alpha-2}\right)^{2 /(\alpha-2)}$ and $\gamma(\alpha, \mathrm{N})=e^{(\alpha-(\mathrm{N}-1)(\alpha-2)) / 2 \alpha}$. This result extends in dimension 2.

The contents of this article is the following:

1. Isotropic solutions of elliptic inequalities
2. Singular solutions of $\Delta u= \pm g(u)$
3. Singularities of $\Delta u=u\left(\mathrm{Ln}^{+} u\right)^{\alpha}$.

1. ISOTROPIC SOLUTIONS OF ELLIPTIC INEQUALITIES

Throughout this section Ω is an open subset of $\mathbb{R}^{\mathbf{N}}, \mathbf{N} \geqq 2$ containing 0 , $\Omega^{\prime}=\Omega \backslash\{0\}$ and g is a nondecreasing function. For the sake of simplicity we shall assume that g is continuous. If $\mathrm{N} \geqq 3$ it is wellknown that the following condition

$$
\begin{equation*}
\int_{0}^{1} g\left(r^{2-N}\right) r^{\mathrm{N}-1} d r<+\infty \tag{1.1}
\end{equation*}
$$

is a necessary and sufficient condition for the existence for any $\gamma \geqq 0$ of a solution ψ belonging to some appropriate Marcinkiewicz space of

$$
\begin{equation*}
-\Delta \psi+g(\psi)=\mathrm{C}(\mathrm{~N}) \gamma \delta_{0} \tag{1.2}
\end{equation*}
$$

in $\mathbf{D}^{\prime}(\Omega)$ [3], or equivalently of a solution of

$$
\begin{equation*}
-\Delta \psi+g(\psi)=0 \tag{1.3}
\end{equation*}
$$

in Ω^{\prime} with a weak singularity at 0 , that is such that

$$
\begin{equation*}
\lim _{x \rightarrow 0}|x|^{N-2} u(x)=\gamma \tag{1.4}
\end{equation*}
$$

[22]. Moreover $g(\psi) \in \mathrm{L}_{\mathrm{loc}}^{1}(\Omega)$.
If $\mathrm{N}=2$ the situation is more complicated and we define the exponential order of growth of g

$$
\begin{equation*}
a_{g}^{+}=\inf \left\{a>0: \int_{0}^{+\infty} e^{-a r} g(r) d r<+\infty\right\} \tag{1.5}
\end{equation*}
$$

[20], and the condition $\gamma \in\left[0,2 / a_{g}^{+}\right]$is a necessary and sufficient condition for the existence of a function $\psi \in C^{2}\left(\Omega^{\prime}\right)$ satisfying (1.3) in Ω^{\prime} and

$$
\begin{equation*}
\lim _{x \rightarrow 0} \psi(x) / \operatorname{Ln}(1 /|x|)=\gamma . \tag{1.6}
\end{equation*}
$$

Moreover for such a $\psi, g(\psi) \in \mathrm{L}_{\text {loc }}^{1}(\Omega)$ and (1.2) holds in $\mathbf{D}^{\prime}\left(\Omega^{\prime}\right)$ [21]. Our first result is the following

Proposition 1.1. - Assume $\overline{\mathbf{B}}_{\mathrm{R}}=\left\{x \in \mathbb{R}^{\mathbf{N}}:|x| \leqq \mathrm{R}\right\} \subset \Omega, \quad g(0)=0$, $f \in \mathrm{~L}_{\mathrm{loc}}^{1}(\Omega)$ is nonnegative and $u \in \mathrm{C}^{2}\left(\Omega^{\prime}\right)$ is a nonnegative solution of

$$
\begin{equation*}
\Delta u \leqq g(u)+f \tag{1.7}
\end{equation*}
$$

in Ω^{\prime}. If $v \in \mathrm{C}^{2}\left(\overline{\mathrm{~B}}_{\mathrm{R}} \backslash\{0\}\right)$ is a radial nonnegative solution of

$$
\begin{equation*}
\Delta v=g(v) \tag{1.8}
\end{equation*}
$$

in $\mathrm{B}_{\mathbf{R}} \backslash\{0\}$ such that $g(v+\bar{\delta}) \in \mathrm{L}^{1}\left(\mathrm{~B}_{\mathbf{R}}\right)$ for some $\bar{\delta}>0$, then there exists $\alpha \geqq 0$ such that for any $q \in[1, \infty)$

$$
\begin{equation*}
\lim _{x \rightarrow 0}|x|^{1-N} \int_{|y|=|x|}|\alpha-\omega(y) / \mu(y)|^{q} d S=0 \tag{1.9}
\end{equation*}
$$

where $\omega=\inf (u, v), \mu(x)=|x|^{2-N}$ if $\mathrm{N} \geqq 3$ and $\mu(x)=\operatorname{Ln}(1 /|x|)$ if $\mathrm{N}=2$.
The main ingredient for proving this result is the following theorem due to Brezis and Lions [5].

Lemma 1. 1. - Assume $\mathrm{N} \geqq 2, \omega \in \mathrm{~L}_{\mathrm{loc}}^{1}\left(\Omega^{\prime}\right)$ satisfies
$\Delta \omega \in \mathrm{L}_{\mathrm{loc}}^{1}\left(\Omega^{\prime}\right)$ in the sense of distributions in Ω^{\prime},

$$
\begin{gather*}
\omega \geqq 0 \text { a.e. in } \Omega^{\prime}, \tag{1.10}\\
\Delta \omega \leqq a \omega+\mathrm{F} \text { a.e. in } \Omega^{\prime},
\end{gather*}
$$

where a is some nonnegative constant and $\mathrm{F} \in \mathrm{L}_{\mathrm{loc}}^{1}(\Omega)$. Then $\omega \in \mathrm{L}_{\mathrm{loc}}^{1}(\Omega)$ and there exist $\alpha \geqq 0$ and $\Phi \in L_{\text {loc }}^{1}(\Omega)$ such that

$$
\begin{equation*}
-\Delta \omega=\Phi+\alpha C(N) \delta_{0} \tag{1.11}
\end{equation*}
$$

in $D^{\prime}(\Omega)$.
Lemma 1.2. - Assume $\mathrm{N} \geqq 2, h \in \mathrm{~L}^{1}\left(\mathrm{~B}_{\mathrm{R}}\right)$ is radial and φ is a nonnegative radial solution of

$$
\begin{equation*}
-\Delta \varphi=h \tag{1.12}
\end{equation*}
$$

in $\mathrm{D}^{\prime}\left(\mathrm{B}_{\mathrm{R}} \backslash\{0\}\right)\left[\right.$ resp. in $\left.\mathrm{D}^{\prime}\left(\mathrm{B}_{\mathrm{R}}\right)\right]$. Then there exists $\mathrm{v} \in[0,+\infty)$ such that $\lim \varphi(x) / \mu(x)=v[r e s p . \lim \varphi(x) / \mu(x)=0]$.

$$
x \rightarrow 0 \quad x \rightarrow 0
$$

Proof. - From Lemma 1.1 there exists $v \geqq 0$ such that

$$
\begin{equation*}
-\Delta \varphi=h+v C(N) \delta_{0} \tag{1.13}
\end{equation*}
$$

in $\mathbf{D}^{\prime}\left(B_{R}\right)$ and $\tilde{\varphi}=\varphi-v \mu$ satisfies (1.12) in $D^{\prime}\left(B_{R}\right)$. Without any loss of generality we can assume that h is nonnegative in $B(0, R)$, hence $r \mapsto r^{N-1} \tilde{\varphi}_{r}(r)$ is nonincreasing and then keeps a constant sign near 0.

Case 1. $-r^{N-1} \tilde{\varphi}_{r}(r)>0$ on $(0, \varepsilon]$. For n large enough define

$$
1 \quad \text { if } \quad 0 \leqq r \leqq \frac{1}{n}
$$

$$
\begin{gather*}
\eta_{n}(r)=\frac{1}{2}\left(1+\cos \left(n \pi\left(r-\frac{1}{n}\right)\right) \text { if } \frac{1}{n} \leqq r \leqq \frac{2}{n},\right. \tag{1.14}\\
0 \quad \text { if } \frac{2}{n} \leqq r \leqq \varepsilon .
\end{gather*}
$$

$0 \leqq \eta_{n} \leqq 1$ on $[0, \varepsilon]$ and $\int_{0}^{\varepsilon} \eta_{n r}(r) d r=-1$. From (1.12) we get

$$
\left|\int_{0}^{\varepsilon} \tilde{\varphi}_{r}(r) \eta_{n r}(r) r^{N-1} d r\right|=\int_{0}^{\varepsilon} h(r) \eta_{n}(r) r^{N-1} d r
$$

Using the monotonicity of $r^{N-1} \varphi_{r}(r)$ we deduce

$$
\begin{equation*}
0 \leqq\left(\frac{2}{n}\right)^{\mathrm{N}-1} \tilde{\varphi}_{r}\left(\frac{2}{n}\right) \leqq\left|\int_{1 / n}^{2 / n} \tilde{\varphi}_{r}(r) \eta_{m r}(r) r^{\mathrm{N}-1} d r\right| \leqq \int_{0}^{2 / n} h(r) r^{\mathrm{N}-1} d r \tag{1.15}
\end{equation*}
$$

which implies $\lim _{n \rightarrow+\infty}\left(\frac{2}{n}\right)^{\mathrm{N}-1} \tilde{\varphi}_{r}\left(\frac{2}{n}\right)=0$ and

$$
\begin{equation*}
\lim _{r \rightarrow 0} r^{N-1} \tilde{\varphi}_{r}(r)=0 \tag{1.16}
\end{equation*}
$$

Case 2. $-r^{\mathrm{N}-1} \tilde{\varphi}_{r}(r) \leqq 0$ on $(0, \varepsilon]$. Using the same method as above we get

$$
\begin{equation*}
0 \leqq-\left(\frac{1}{n}\right)^{\mathrm{N}-1} \tilde{\varphi}_{r}\left(\frac{1}{n}\right) \leqq \int_{0}^{2 / n} h(r) r^{\mathrm{N}-1} d r \tag{1.17}
\end{equation*}
$$

which again implies (1.16).
From (1.16) it is clear that $\lim _{x \rightarrow 0} \tilde{\varphi}(x) / \mu(x)=0$.
Proof of Proposition 1.1. - Let p be the $\mathbf{C}^{1,1}$ even convex function defined on \mathbb{R} by

$$
p(t)=\left\{\begin{array}{rll}
|t|-\delta / 2 & \text { for } & |t| \geqq \delta>0 \\
t^{2} / 2 \delta & \text { for } & |t| \leqq \delta
\end{array}\right.
$$

and let ω_{δ} be $\frac{1}{2}(u+v-p(u-v))$. Then

$$
\begin{equation*}
\Delta \omega_{\delta}=\frac{1}{2} \Delta(u+v)-\frac{1}{2} p^{\prime}(u-v) \Delta(u-v)-\frac{1}{2} p^{\prime \prime}(u-v)|\nabla(u-v)|^{2} \tag{1.18}
\end{equation*}
$$

It is clear that $\Delta \omega_{\delta} \in L_{\text {loc }}^{1}\left(B_{R} \backslash\{0\}\right)$ and $0 \leqq \omega \leqq \omega_{\delta} \leqq \omega+\delta / 4$. Moreover

$$
\begin{equation*}
\Delta \omega_{\delta} \leqq \frac{1}{2} \Delta(u+v)-\frac{1}{2} p^{\prime}(u-v) \Delta(u-v)=\mathrm{F} . \tag{1.19}
\end{equation*}
$$

We now set $B_{R} \backslash\{0\}=G_{1} \cup G_{2} \cup G_{3}$ with

$$
\begin{gather*}
\mathrm{G}_{1}=\left\{x \in \mathrm{~B}_{\mathrm{R}} \backslash\{0\}:(u-v)(x)>\delta\right\} \\
\mathrm{G}_{2}=\left\{x \in \mathrm{~B}_{\mathrm{R}} \backslash\{0\}:(u-v)(x)<-\delta\right\} \tag{1.20}\\
\mathrm{G}_{3}=\left\{x \in \mathrm{~B}_{\mathrm{R}} \backslash\{0\}:|(u-v)(x)| \leqq \delta\right\} .
\end{gather*}
$$

On $G_{1}, p^{\prime}(u-v)=1$ and $\mathrm{F}=\Delta v=g(v)=g\left(\omega_{\delta}-\frac{\delta}{4}\right)$. On $\mathrm{G}_{2}, p^{\prime}(u-v)=-1$ and

$$
\mathrm{F}=\Delta u \leqq g(u)+f=g\left(\omega_{\delta}-\frac{\delta}{4}\right)+f \leqq g(v)+f .
$$

On $\mathrm{G}_{3}, p^{\prime}(u-v)=(u-v) / \delta$, hence
(1.21) $\mathrm{F}=\frac{1}{2}\left(1-\frac{u-v}{\delta}\right) \Delta u+\frac{1}{2}\left(1+\frac{u-v}{\delta}\right) \Delta v$

$$
\leqq \frac{1}{2}\left(1-\frac{u-v}{\delta}\right) g(u)+\frac{1}{2}\left(1+\frac{u-v}{\delta}\right) g(v)+f
$$

and by the continuity of g there exists $\theta=\theta(x) \in[0,1]$ such that $\mathrm{F} \leqq g(\theta u+(1-\theta) v)+f$. If we assume for example that $v \leqq u \leqq v+\delta$, then $\mathrm{F} \leqq g(u)+f$ and $0 \leqq u-\omega_{\delta} \leqq \frac{3}{4} \delta$ which implies that

$$
\mathrm{F} \leqq g\left(\omega_{\delta}+\frac{3}{4} \delta\right)+f \leqq g(v+\delta)+f
$$

We do the same if $u \leqq v \leqq u+\delta$ and finally

$$
\begin{equation*}
\Delta \omega_{\delta} \leqq g\left(\omega_{\delta}+\frac{3}{4} \delta\right)+f \leqq g(v+\delta)+f \tag{1.22}
\end{equation*}
$$

holds in $\mathbf{B}_{\mathbf{R}} \backslash\{0\}$. We take now $\delta \leqq \bar{\delta}$, so the right-hand side of (1.22) is integrable in $\mathbf{B}_{\mathbf{R}}$ and there exists $\alpha \geqq 0$ such that

$$
\begin{equation*}
-\Delta \omega_{\delta}=\Phi+\alpha \mathrm{C}(\mathrm{~N}) \delta_{0} \tag{1.23}
\end{equation*}
$$

in $D^{\prime}\left(B_{R}\right)$ with $\Phi \in L_{\text {loc }}^{1}\left(B_{R}\right)$.
From Lemma 1.2. $\omega_{\delta}(x) / \mu(x)$ remains bounded near 0 and it is the same with $\varphi_{\delta}=\omega_{\delta}-\alpha \mu$. Moreover φ_{δ} satisfies

$$
\begin{equation*}
-\Delta \varphi_{\delta}=\Phi \tag{1.24}
\end{equation*}
$$

in $\mathbf{D}^{\prime}\left(B_{R}\right)$. Let

$$
\bar{\varphi}_{\delta}(r)=\frac{1}{\left|S^{N^{-1}}\right|} \int_{S^{N-1}} \varphi_{\delta}(r, \sigma) d \sigma
$$

and

$$
\bar{\Phi}(r)=\frac{1}{\left|S^{\mathbf{N}-1}\right|} \int_{\mathbf{S}^{\mathbf{N}-1}} \Phi(r, \sigma) d \sigma
$$

be the spherical averages of φ_{δ} and Φ respectively, (r, σ) being the spherical coordinates in $\mathbb{R}^{\mathbf{N}} \backslash\{0\}$, then

$$
\begin{equation*}
-\Delta \bar{\varphi}_{\delta}=\bar{\Phi} \leqq|\bar{\Phi}| \tag{1.25}
\end{equation*}
$$

Applying Lemma 1.2 we deduce that $\lim _{r \rightarrow 0} \bar{\varphi}(r) / \mu(r)=0$. As a consequence

$$
\lim _{r \rightarrow 0} \int_{S^{N-1}}\left|\omega_{\delta}(r, .) / \mu(r)-\alpha\right| d \sigma=0
$$

which implies (with the uniform boundedness)

$$
\begin{equation*}
\lim _{r \rightarrow 0} \int_{S^{N-1}}\left|\omega_{\delta}(r, .) / \mu(r)-\alpha\right|^{q} d \sigma=0 \tag{1.26}
\end{equation*}
$$

for any $q \in[1,+\infty)$. As $0 \leqq \omega \leqq \omega_{\delta} \leqq \omega+\delta / 4$ we deduce

$$
\begin{equation*}
\lim _{r \rightarrow 0} \int_{S^{N-1}}|\omega(r, .) / \mu(r)-\alpha|^{q} d \sigma=0 \tag{1.27}
\end{equation*}
$$

which is (1.9).
Remark 1.1. - As $\left\{\Delta \omega_{\delta}\right\}=\Phi$ is integrable in $\mathbf{B}_{\mathbf{R}}$ and $\Phi=\Delta \omega_{\delta}=\mathrm{F}-\frac{1}{2} p^{\prime \prime}(u-v)|\nabla(u-v)|^{2}$ we get

$$
\begin{equation*}
\frac{1}{2} p^{\prime \prime}(u-v)|\nabla(u-v)|^{2} \leqq \Phi+g(v+\delta)+f \tag{1.28}
\end{equation*}
$$

and then $p^{\prime \prime}(u-v)|\nabla(u-v)|^{2} \in \mathrm{~L}^{1}\left(\mathrm{~B}_{\mathrm{R}}\right)$.
Definition 1.1. - Assume (E, Σ, μ) is an abstract measure space where Σ is a σ-algebra of subsets of E and μ a positive σ-additive and complete measure such that $\mu(\mathrm{E})<+\infty$, and $\left\{\psi_{r}\right\}_{r \in(0, R)}$ a subset of measurable functions (for the measure μ) with value in \mathbb{R}. We say that $\left\{\psi_{r}\right\}$ converges in measure to some measurable function ψ as r tends to 0 if for any $\varepsilon>0$ we have

$$
\begin{equation*}
\lim _{r \rightarrow 0} \mu\left(\left\{x \in \mathrm{E}:\left|\psi_{r}(x)-\psi(x)\right|>\varepsilon\right\}\right)=0 \tag{1.29}
\end{equation*}
$$

It is equivalent to say that from any sequence $\left\{r_{n}\right\}$ converging to 0 we can extract a subsequence $\left\{r_{n_{k}}\right\}$ such that $\left\{\psi_{r_{n_{k}}}\right\}$ converges to $\psi \mu-a$ a.e. on E as n_{k} goes to $+\infty$.

The generic isotropy result is the following
Theorem 1.1. - Assume $\mathrm{N} \geqq 3$, g satisfies (1.1), $f \in \mathrm{~L}_{\mathrm{loc}}^{1}\left(\Omega^{\prime}\right)$ is radial near 0 and $u \in \mathrm{C}^{2}\left(\Omega^{\prime}\right)$ is nonnegative and satisfies

$$
\begin{equation*}
\Delta u \leqq g(u)+f \tag{1.30}
\end{equation*}
$$

in Ω^{\prime}. Then we have the following
(i) either $r^{\mathrm{N}-2} u(r,$.$) converges in measure on \mathrm{S}^{\mathrm{N}-1}$ to some nonnegative real number γ as r tends to 0 ,
(ii) or

$$
\begin{equation*}
\lim _{x \rightarrow 0}|x|^{N-2} u(x)=+\infty \tag{1.31}
\end{equation*}
$$

Proof. - We recall that $(r, \sigma) \in(0,+\infty) \times S^{N-1}$ are the spherical coordinates in $\mathbb{R}^{N} \backslash\{0\}$. For $\lambda>0$ let v_{λ} be the solution of

$$
\begin{gather*}
\Delta v_{\lambda}=g\left(v_{\lambda}\right)+|f| \quad \text { in } \mathrm{B}_{\mathrm{R}} \backslash\{0\} \subset \Omega^{\prime} \\
v_{\lambda}=0 \text { on } \partial \mathrm{B}_{\mathrm{R}} \tag{1.32}\\
\lim _{x \rightarrow 0}|x|^{\mathrm{N}-2} v_{\lambda}(x)=\lambda .
\end{gather*}
$$

Such a v_{λ} exists, is radial and positive near 0 . As $|f|$ is radial it does not affect the behaviour of v_{λ} near 0 (see Lemma 1.2).

From Proposition 1.1 there exists $v(\lambda) \geqq 0$ such that

$$
\begin{equation*}
\lim _{r \rightarrow 0} r^{\mathrm{N}-2} \inf \left(u(r, .), v_{\lambda}(r)\right)=v(\lambda) \tag{1.33}
\end{equation*}
$$

in $L^{q}\left(S^{N-1}\right), 1 \leqq q<+\infty$, and $v(\lambda) \leqq \lambda$ from convexity. Moreover the function $\lambda \mapsto v(\lambda)$ is nondecreasing.

Case 1. - Assume $\lim _{\lambda \rightarrow+\infty} v(\lambda)=\gamma<+\infty$. For $\lambda>\gamma$ we have (1.33).
Assume $\left\{r_{n}\right\}$ is some sequence converging to 0 , then there exists a subsequence $\left\{r_{n_{k}}\right\}$ such that

$$
\begin{equation*}
\lim _{n_{k} \rightarrow+\infty} r_{n_{k}}^{\mathrm{N}-2} \inf \left(u\left(r_{n_{k}}, \sigma\right), v_{\lambda}\left(r_{n_{k}}\right)\right)=v(\lambda) \quad \text { a.e. on } \mathrm{S}^{\mathrm{N}-1} . \tag{1.34}
\end{equation*}
$$

As $v(\lambda)<\gamma$ and $\lim _{n_{k} \rightarrow+\infty} r_{n_{k}}^{\mathrm{N}-2} v_{\lambda}\left(r_{n_{k}}\right)=\gamma$ we deduce that

$$
\inf \left(u\left(r_{n_{k}}, \sigma\right), v_{\lambda}\left(r_{n_{k}}\right)\right)=u\left(r_{n_{k}}, \sigma\right) \quad \text { a.e. on } \mathrm{S}^{N-1}
$$

for n_{k} large enough and

$$
\begin{equation*}
\lim _{n_{k} \rightarrow+\infty} r_{n_{k}}^{\mathrm{N}-2} u\left(r_{n_{k}}, \sigma\right)=v(\lambda) \text { a.e. on } \mathrm{S}^{\mathrm{N}-1} \tag{1.35}
\end{equation*}
$$

For $\lambda^{\prime}>\lambda$ we repeat this operation with $\left\{r_{n}\right\}$ replaced by $\left\{r_{n_{k}}\right\}$ and there exists a subsequence $\left\{r_{n_{k_{i}}}\right\}$ such that

$$
\begin{equation*}
\lim _{n_{k_{i}} \rightarrow+\infty} r_{n_{k_{i}}}^{N-2} u\left(r_{n_{k_{i}}}, \sigma\right)=v\left(\lambda^{\prime}\right) \text { a.e. on } S^{N-1} \tag{1.36}
\end{equation*}
$$

From (1.35) and (1.36) we deduce that $v\left(\lambda^{\prime}\right)=v(\lambda)=\gamma$ for $\lambda>\gamma$ which implies (i).

Case 2. - Assume $\lim _{\lambda \rightarrow+\infty} v(\lambda)=+\infty$. For $\delta>0$ we call p the function introduced in the proof of Proposition 1.1 and for $\lambda>0$, $\tilde{\omega}_{\delta}=\frac{1}{2}\left(u+v_{\lambda}-p\left(u-v_{\lambda}\right)\right)+\frac{3}{4} \delta$. From (1.22) we have

$$
\begin{equation*}
\Delta \tilde{\omega}_{\delta} \leqq g\left(\tilde{\omega}_{\delta}\right)+|f| . \tag{1.37}
\end{equation*}
$$

Moreover $r^{N-2} \tilde{\omega}_{\delta}(r,$.$) converges to v(\lambda)$ in $L^{q}\left(S^{N-1}\right)(1 \leqq q<+\infty)$ as r tends to 0 . We consider now $w=v_{v(\lambda)}$ the solution of (1.32) and we set

$$
\begin{gathered}
s=\frac{r^{\mathrm{N}-2}}{\mathrm{~N}-2}, \\
w^{\prime}(s)=r^{\mathrm{N}-2} w(r), \tilde{\omega}_{\delta}^{\prime}(s, \sigma)=r^{\mathrm{N}-2} \tilde{\omega}_{\delta}(r, \sigma), \varphi(s)=f(r) .
\end{gathered}
$$

Then (1.32) and (1.37) become

$$
\begin{gather*}
s^{2}\left(\omega_{\delta}^{\prime}\right)_{s s}+\frac{1}{(\mathrm{~N}-2)^{2}} \Delta_{\mathrm{s}^{\mathrm{N}-1}} \tilde{\omega}_{\delta}^{\prime} \leqq k s^{\mathrm{N} /(\mathrm{N}-2)}\left(g\left(\frac{\tilde{\omega}_{\delta}^{\prime}}{s(\mathrm{~N}-2)}\right)+\varphi\right) \tag{1.38}\\
s^{2} w_{s s}^{\prime}=k s^{\mathrm{N} /(\mathrm{N}-2)}\left(g\left(\frac{w^{\prime}}{s(\mathrm{~N}-2)}\right)+|\varphi|\right)
\end{gather*}
$$

where $k=k(\mathrm{~N})=(\mathrm{N}-2)^{(4-\mathrm{N}) /(\mathrm{N}-2)}$ and $\Delta_{\mathrm{S}^{\mathrm{N}-1}}$ is the Laplace-Beltrami operator on S^{N-1}. Consider a C^{∞} function ρ such that $\rho \in L^{\infty}(\mathbb{R}), \rho \equiv 0$ on $(-\infty, 0), \rho^{\prime}>0$ on $(0,+\infty)$ and $j(r)=\int_{0}^{r} \rho(\tau) d \tau$. From convexity and monotonicity we have

$$
\begin{equation*}
s^{2} \frac{d^{2}}{d s^{2}} \int_{\mathrm{s}^{N-1}} j\left(w^{\prime}-\omega_{\delta}^{\prime}\right) d \sigma \geqq 0 \tag{1.39}
\end{equation*}
$$

As $\int_{S^{N-1}} j\left(w^{\prime}-\omega_{\delta}^{\prime}\right) d \sigma \leqq \mathrm{C} \int_{S^{N-1}}\left|w^{\prime}-\omega_{\delta}^{\prime}\right| d \sigma$ and as $w^{\prime}(s)$ and $\tilde{\omega}_{\delta}^{\prime}(s,$. converges to $v(\lambda)$ in $L^{1}\left(S^{N-1}\right)$ as s tends to 0 we deduce that $\int_{S^{N-1}} j\left(w^{\prime}-\omega_{\delta}^{\prime}\right) d \sigma=0$ on $\left(0, \mathrm{R}^{\mathrm{N}-2} /(\mathrm{N}-2)\right]$ and $w^{\prime} \leqq \tilde{\omega}_{\delta}^{\prime}$ or

$$
\begin{equation*}
v_{v(\lambda)}(r) \leqq \omega_{\delta}(r, \sigma) \leqq \omega(r, \sigma)+\delta / 4 \tag{1.40}
\end{equation*}
$$

which implies

$$
\begin{equation*}
v(\lambda) \leqq \lim _{x \rightarrow 0}|x|^{N-2} \omega(x) \leqq \lim _{x \rightarrow 0}|x|^{N-2} u(x) \tag{1.41}
\end{equation*}
$$

and we get (1.31).
Remark 1.2. - If u satisfies (i) then $v_{\gamma}(x) \leqq u(x)$ in $\mathrm{B}_{\mathrm{R}} \backslash\{0\}$.

Remark 1.3. - If u is a radial solution of (1.29), $u \geqq 0$, in $B_{R} \backslash\{0\}$, then a simple adaptation of the proof of Theorem 1.1 shows that $|x|^{\mathbf{N}-2} u(x)$ admits a limit in $[0,+\infty]$ as x tends to 0 .

The 2-dimensional version of Theorem 1.1 is the following
Theorem 1.2. - Assume $\mathrm{N}=2, f \in \mathrm{~L}^{1}(\Omega)$ is radial near 0 and $u \in \mathrm{C}^{2}\left(\Omega^{\prime}\right)$ is a nonnegative solution of (1.29) in Ω^{\prime}. Then

- If $a_{g}^{+}=0$ the alternative of Theorem 1.1 holds with $|x|^{2-N}$ replaced by $\operatorname{Ln}(1 /|x|)$.
- If $a_{g}^{+}>0$, we have the following alternative
(i) either there exists a nonnegative real number $\gamma \in\left[0,2 / a_{g}^{+}\right)$such that $u(r,.) / \operatorname{Ln}(1 / r)$ converges in measure on S^{1} to γ as r tends to 0 ,
(ii) or

$$
\begin{equation*}
\lim _{x \rightarrow 0} u(x) / \operatorname{Ln}(1 /|x|) \geqq 2 / a_{g}^{+} \tag{1.43}
\end{equation*}
$$

Proof. - Case 1. - Assume $a_{g}^{+}=0$. We define $v(\lambda)$ as

$$
\begin{equation*}
\lim _{r \rightarrow 0}(\operatorname{Ln}(1 / r))^{-1} \inf \left(u(r, .), v_{\lambda}(r)\right)=v(\lambda) \tag{1.44}
\end{equation*}
$$

As $v(\lambda)$ is nondecreasing and v_{λ} exists for every $\lambda>0$ we can proceed as in the proof of Theorem 1.1 if $\lim _{\lambda \rightarrow+\infty} v(\lambda)=\gamma<+\infty$. If
$\lim _{x \rightarrow+\infty} v(\lambda)=+\infty$ we introduce $\tilde{\omega}_{\delta}$ and $v_{v(\lambda)}=w$ as in Theorem 1.1 and make the following change of variable

$$
\begin{gather*}
t=\mathrm{Ln}(1 / r) \tag{1.45}\\
w^{\prime}(t)=w(r), \quad \tilde{\omega}_{\delta}^{\prime}(t, \sigma)=\tilde{\omega}_{\delta}(r, \sigma), \quad f^{\prime}(t)=f(r) .
\end{gather*}
$$

Hence w^{\prime} and $\tilde{\omega}_{\delta}^{\prime}$ satisfies

$$
\begin{gather*}
\left(\tilde{\omega}_{\delta}^{\prime}\right)_{t t}+\left(\tilde{\omega}_{\delta}^{\prime}\right)_{\theta \theta} \leqq e^{-2 t}\left(g\left(\omega_{\delta}^{\prime}\right)+f^{\prime}\right) \tag{1.46}\\
w_{t t}^{\prime}=e^{-2 t}\left(g\left(w^{\prime}\right)+|f|\right)
\end{gather*}
$$

on $(\mathrm{T},+\infty) \times \mathrm{S}^{1}$ and with the same function j as before

$$
\begin{equation*}
\frac{d^{2}}{d t^{2}} \int_{\mathrm{S}^{1}} j\left(w^{\prime}-\omega_{\delta}^{\prime}\right) d \theta \geqq 0 \tag{1.47}
\end{equation*}
$$

As $t^{-1}\left(w^{\prime}-\omega_{\delta}^{\prime}\right)$ converges to 0 in $\mathrm{L}^{1}\left(\mathrm{~S}^{1}\right)$ we deduce that $j\left(w^{\prime}-\omega_{\delta}^{\prime}\right)=0$ and we get finally

$$
\begin{equation*}
\lim _{x \rightarrow 0} u(x) / \operatorname{Ln}(1 /|x|)=+\infty \tag{1.48}
\end{equation*}
$$

Case 2. - Assume $a_{g}^{+}>0$ and set $\gamma=\lim v(\lambda)$. Clearly $\gamma \leqq 2 / a_{g}^{+}$. If $\lambda+2 / a_{g}^{+}$ $\gamma<2 / a_{g}^{+}$we can proceed as in Theorem 1.1. If $\gamma=2 / a_{g}^{+}$we get as in Case 1

$$
\begin{equation*}
\inf \left(u(x), v_{\lambda}(x)\right) \geqq v_{v(\lambda)}(x)-\frac{\delta}{4} \tag{1.49}
\end{equation*}
$$

for any $\lambda \leqq \frac{2}{a_{g}^{+}}$and $x \in \mathrm{~B}_{\mathrm{R}} \backslash\{0\}$. We can take in particular $\lambda=\frac{2}{a_{g}^{+}}=v(\lambda)$ and we get (ii).

2. SINGULAR SOLUTIONS OF $\Delta u= \pm g(u)$

The first application of Theorem 1.1 is the following
Theorem 2.1. - Assume $\mathrm{N} \geqq 3, g$ is a nondecreasing locally Lipschitz continuous function satisfying (1.1) and $u \in \mathrm{C}^{2}\left(\Omega^{\prime}\right)$ is a nonnegative solution of

$$
\begin{equation*}
\Delta u=g(u) \tag{2.1}
\end{equation*}
$$

in Ω^{\prime}. Then $|x|^{\mathrm{N}-2} u(x)$ admits a limit in $[0,+\infty]$ as x tends to 0 .
Proof. - From Theorem 1.1 we can assume that there exist $\gamma \in[0,+\infty)$ and a sequence $\left\{r_{n}\right\}$ converging to 0 such that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} r_{n}^{\mathrm{N}-2} u\left(r_{n}, .\right)=\gamma \quad \text { a.e. in } \mathrm{S}^{\mathrm{N}-1} \tag{2.2}
\end{equation*}
$$

Case 1. - Assume $\gamma>0$. For $\varepsilon>0$ set w_{ε} the solution of

$$
\begin{gather*}
\Delta w_{\varepsilon}=g\left(w_{\varepsilon}\right) \quad \text { in } \Gamma_{\varepsilon, R}=\left\{x \in \mathbb{R}^{N}: \varepsilon<|x|<\mathbf{R}\right\} \\
w_{\varepsilon}=u \text { on } \partial \mathbf{B}_{\varepsilon} \\
w_{\varepsilon}=\max _{x \in \partial \mathbf{B}_{\mathbf{R}}} u(x) \text { on } \partial \mathbf{B}_{\mathbf{R}} \tag{2.3}
\end{gather*}
$$

(we may assume that $\overline{\mathbf{B}}_{\mathbf{R}} \subset \Omega$). From maximum principle $u \leqq w_{\varepsilon}$ in $\Gamma_{\varepsilon, R}$. Let $u^{s}=u+w_{\varepsilon}(R)$, then

$$
\begin{equation*}
-\Delta u^{s}+g\left(u^{s}\right) \geqq 0 \tag{2.4}
\end{equation*}
$$

and finally $u \leqq w_{\varepsilon} \leqq u^{s}$ in $\Gamma_{\varepsilon, R}$ and there exists a sequence $\left\{\varepsilon_{\mathrm{n}}\right\}$ converging to 0 and a function $w \in C^{2}\left(\bar{B}_{R} \backslash\{0\}\right)$ satisfying $-\Delta w+g(w)=0$ in $\mathbf{B}_{\mathrm{R}} \backslash\{0\}$ such that $\left\{\boldsymbol{w}_{\varepsilon_{n}}\right\}$ converges to w in the $\mathrm{C}_{\text {loc }}^{1}$-topology of $\overline{\mathbf{B}}_{\mathbf{R}} \backslash\{0\}$.

Moreover

$$
\begin{equation*}
u \leqq w \leqq u^{1}=u+\max _{\partial \mathrm{B}_{\mathrm{R}}} u(x) \tag{2.5}
\end{equation*}
$$

From Remark $1.2 \underset{x \rightarrow 0}{\lim _{x \rightarrow 0}}|x|^{N^{-2}} w(x)=\gamma$, hence we deduce from Serrin and Ni's results [12] that w is radial and from (2.2) and (2.5)

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} r_{n}^{N-2} w\left(r_{n}\right)=\gamma \tag{2.6}
\end{equation*}
$$

If $w^{\prime}(s)=w^{\prime}\left(r^{\mathrm{N}-2} /(\mathrm{N}-2)\right)=r^{\mathrm{N}-2} w(r)$, then

$$
\begin{equation*}
s^{2} w_{s s}^{\prime}=k(\mathrm{~N}) s^{\mathrm{N} /(\mathrm{N}-2)} g\left(w^{\prime} / s(\mathrm{~N}-2)\right) \tag{2.7}
\end{equation*}
$$

we deduce that $s \rightarrow w^{\prime}(s)-k(N)(N-2)^{2} /(2 N) s^{\mathrm{N} /(\mathrm{N}-2)} g(0)$ is convex and

$$
\begin{equation*}
\lim _{r \rightarrow 0} r^{\mathrm{N}-2} w(r)=\gamma=\lim _{x \rightarrow 0}|x|^{\mathrm{N}-2} u(x) \tag{2.8}
\end{equation*}
$$

Case 2. - Assume $\gamma=0$. For $\varepsilon>0$ and $v>0$ set $w_{\varepsilon, v}$ the solution of

$$
\begin{gather*}
\Delta w_{\varepsilon, v}=g\left(w_{\varepsilon}, v\right) \text { in } \Gamma_{\varepsilon, R} \\
w_{\varepsilon, v}=u+v \varepsilon^{2}-v \tag{2.9}\\
w_{\varepsilon, v}=\operatorname{mox}_{x \in \partial \mathbf{B}_{\mathbf{R}}}\left(u(x)+v|x|^{2-N}\right) \text { on } \partial \mathbf{B}_{\mathrm{R}} .
\end{gather*}
$$

As in case 1 we have

$$
\begin{equation*}
u(x) \leqq w_{\varepsilon, v}(x) \leqq u(x)+v|x|^{2-N}+w_{\varepsilon, v}(\mathbf{R}) \tag{2.10}
\end{equation*}
$$

in $\Gamma_{\varepsilon, R}$. For $0<v^{\prime}<v$ let $v_{v^{\prime}}$ be the radial solution of $-\Delta v_{v^{\prime}}+g\left(v_{v^{\prime}}\right)=\mathbf{C}(\mathbf{N}) v^{\prime} \delta_{0}$ in $\mathbf{D}^{\prime}\left(\mathrm{B}_{\mathrm{R}}\right)$ such that $v_{v^{\prime}}=0$ on $\partial \mathrm{B}_{\mathrm{R}}$. As $\lim _{x \rightarrow 0}|x|^{N^{-2}} v_{v^{\prime}}(x)=v^{\prime}$ we deduce that for ε small enough $v_{v^{\prime}}<w_{\varepsilon, v}$ on $\partial \mathrm{B}_{\varepsilon}$ and finally

$$
\begin{equation*}
w_{\varepsilon, v} \geqq v_{v^{\prime}} \tag{2.11}
\end{equation*}
$$

In $\Gamma_{\varepsilon, R}$ and as in Case 1 there exists a subsequence $\left\{\varepsilon_{n}\right\}$ such that $\lim \varepsilon_{n}=0$ and a function w^{v} satisfying $-\Delta w^{v}+g\left(w^{v}\right)=0$ in B_{R} such that $w_{\varepsilon, v}$ converges to \boldsymbol{w}^{v} in the $\mathbf{C}_{\text {loc }}^{1}$ topology of $\bar{B}_{\mathbf{R}} \backslash\{0\}$ and we have

$$
\begin{equation*}
\max \left(u, v_{v^{v}}\right) \leqq w^{v} \leqq u+v|x|^{2-N}+\max _{\partial B_{\mathbf{R}}} u(x) \tag{2.12}
\end{equation*}
$$

Applying again [12] we deduce that w^{v} is radial and as in Case 1 we get that

$$
\begin{equation*}
\varlimsup_{x \rightarrow 0}|x|^{N-2} u(x) \leqq \lim _{x \rightarrow 0}|x|^{N-2} w^{v}(x)=v \tag{2.13}
\end{equation*}
$$

As v is arbitrary $\lim _{x \rightarrow 0}|x|^{N-2} u(x)=0$ and u can be extended to Ω as a C^{2} solution of (2.1) in Ω.

In the same way we can prove the two dimensional case
Theorem 2.2. - Assume $\mathrm{N}=2$ and g is a nondecreasing locally Lipschitz continuous function defined on \mathbb{R}^{+}. If $u \in \mathrm{C}^{2}\left(\Omega^{\prime}\right)$ is a nonnegative solution of (2.1) in Ω^{\prime}, we have the following:

- if $a_{g}^{+}=0 u(x) / \operatorname{Ln}(1 /|x|)$ admits a limit in $[0,+\infty]$ as x tends to 0 ;
- if $a_{g}^{+}>0$ and g satisfies
(2.14) for any $a \geqq 0 \lim _{r \rightarrow+\infty} e^{-a r} g(r)$ exists in $[0,+\infty]$,
$u(x) / \operatorname{Ln}(1 /|x|)$ admits a limit in $\left[0,2 / a_{g}^{+}\right]$as x tends to 0.
Proof. - If $a_{g}^{+}=0$ we proceed as in Theorem 2.1. If $a_{g}^{+}=+\infty$ and g satisfies (2.14), u can be extended to Ω as a C^{2} solution of (2.1) in Ω [21]. If $0<a_{g}^{+}<+\infty$ we have two cases
(i) either there exists $\gamma \in\left[0,2 / a_{g}^{+}\right.$) and a sequence $\left\{r_{n}\right\}$ converging to 0 such that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} u\left(r_{n}, .\right) / \operatorname{Ln}\left(1 / r_{n}\right)=\gamma \quad \text { a.e. in } S^{1} \tag{2.15}
\end{equation*}
$$

(ii) or $\lim _{x \rightarrow 0} u(x) / \operatorname{Ln}(1 /|x|) \geqq 2 / a_{g}^{+}$.

In case (i) we have $\lim _{x \rightarrow 0} u(x) / \operatorname{Ln}(1 /|x|)=\gamma$ as in Theorem 2.1. In case (ii) we have an a priori estimate thanks to (2.14) [21]:

$$
\begin{equation*}
u(x) \leqq\left(\frac{2}{a_{g}^{+}}+\varepsilon\right) \operatorname{Ln}(1 /|x|)+\mathrm{B}(\varepsilon) \tag{2.16}
\end{equation*}
$$

near 0 for any $\varepsilon>0$. This clearly implies

$$
\begin{equation*}
\lim _{x \rightarrow 0} u(x) / \operatorname{Ln}(1 /|x|)=2 / a_{g}^{+} \tag{2.17}
\end{equation*}
$$

Theorem 2.3. - Assume $\mathrm{N} \geqq 3, g$ is a continuous function defined on
 nonnegative solution of

$$
\begin{equation*}
-\Delta u=g(u) \tag{2.18}
\end{equation*}
$$

in Ω^{\prime}. Then there exists $\gamma \in[0,+\infty)$ such that

$$
\begin{equation*}
\lim _{x \rightarrow 0}|x|^{1-N} \int_{|y|=|x|}\left|\gamma-|x|^{N-2} u(y)\right| d S=0 \tag{2.19}
\end{equation*}
$$

$g(u) \in \mathrm{L}_{\mathrm{loc}}^{1}(\Omega)$ and u solves

$$
\begin{equation*}
-\Delta u=g(u)+\mathrm{C}(\mathrm{~N}) \gamma \delta_{0} \tag{2.20}
\end{equation*}
$$

in $\mathrm{D}^{\prime}(\Omega)$. If we assume moreover that

$$
\begin{equation*}
\int_{0}^{1} \inf \left(g\left(\alpha r^{2-\mathrm{N}}\right), g\left(\beta r^{2-\mathrm{N}}\right)\right) r^{\mathrm{N}-1} d r=+\infty \tag{2.21}
\end{equation*}
$$

for any $\alpha, \beta>0$, then $\gamma=0$.
Proof. - The fact that $g(u) \in \mathrm{L}_{\text {loc }}^{1}(\Omega)$ and u satisfies (2.20) for some $\gamma \geqq 0$ is proved in [5]. If $\bar{u}(r)$ [res. $\overline{g(u)}(r)$] is the spherical average of u [resp. $g(u)$] then

$$
\begin{equation*}
\Delta \bar{u}=\overline{g(u)} \tag{2.22}
\end{equation*}
$$

in $B_{R} \backslash\{0\} \subset \Omega^{\prime}$ and we deduce from Lemma 1.2 that

$$
\begin{equation*}
\lim _{x \rightarrow 0}|x|^{1-\mathrm{N}} \int_{|y|=|x|}\left|\gamma^{\prime}-|x|^{\mathrm{N}-2} u(y)\right| d \mathrm{~S}=0 \tag{2.23}
\end{equation*}
$$

for some $\gamma^{\prime} \geqq 0$ and \bar{u} solves

$$
\begin{equation*}
-\Delta \bar{u}=\overline{g(u)}+\mathrm{C}(\mathrm{~N}) \gamma^{\prime} \delta_{0} \tag{2.24}
\end{equation*}
$$

in $D^{\prime}\left(B_{R}\right)$. Whence $\gamma=\gamma^{\prime}$. Let us assume now that $\gamma>0$ and g satisfies (2.21) for any $\alpha, \beta>0$. As $r^{N-2} u(r,$.$) converges to \gamma$ in $L^{1}\left(S^{N-1}\right)$ it converges in measure and for any $\eta \in\left(0,\left|S^{N^{-1}}\right|\right)$ there exists $r_{0} \in(0, R)$ such that for any $r \in\left(0, r_{0}\right)$ there exists a measurable subset $\omega(r) \subset S^{N-1}$ such that $|\omega(r)| \geqq \eta$ and $\left|r^{\mathrm{N}-2} u(r, \sigma)-\gamma\right|<\gamma / 2$ for $\sigma \in \omega(r)$. As $g(r) \geqq \mathrm{K}^{\prime} r-\mathrm{L}$ and $u \in \mathrm{~L}_{\mathrm{loc}}^{1}\left(\mathrm{~B}_{\mathrm{R}}\right)$ there is no loss of generality to assume that $g(r) \geqq 0$ on $(0,+\infty)$, hence
(2.25)

$$
\int_{\mathrm{B}_{r_{0}}} g(u) d x=\int_{0}^{r_{0}} \int_{S^{N-1}} g(u) r^{N-1} d \sigma d r \geqq \int_{0}^{r_{0}} \int_{\infty(r)} g(u) r^{\mathrm{N}-1} d \sigma d r
$$

For $\rho \in\left(0, r_{0}\right]$ and $\sigma \in \omega(\rho), \frac{\gamma}{2} \rho^{2-N} \leqq u(\rho, \sigma)<2 \gamma \rho^{2-N}$ and as g is continuous, $g(u(\rho, \sigma)) \geqq \inf \left(g\left(\frac{\gamma}{2} \rho^{2-N}\right), g\left(2 \gamma \rho^{2-N}\right)\right)$. As g satisfies (2.21)we
get

$$
\begin{equation*}
\int_{\mathrm{B}_{r_{0}}} g(u) d x \geqq \eta \int_{0}^{r_{0}} \inf \left(g\left(\frac{\gamma}{2} r^{2-\mathrm{N}}\right), g\left(2 \gamma r^{2-\mathrm{N}}\right)\right) r^{\mathrm{N}-1} d r=+\infty, \tag{2.26}
\end{equation*}
$$

contradiction. Hence $\gamma=0$.
Under an assumption of monotonicity on g we get a much more accurate result:

Proposition 2.1. - Assume $\mathrm{N} \geqq 3, g$ is a nondecreasing locally Lipschitz continuous function defined on $[0,+\infty)$ and $u \in \mathrm{C}^{2}\left(\Omega^{\prime}\right)$ is a nonnegative solution of (2.18) in Ω^{\prime}. Assume also that $\overline{\mathbf{B}}_{\mathrm{R}} \subset \Omega$ and that there exists a radial continuous function Φ defined in $\overline{\mathbf{B}}_{\mathbf{R}} \backslash\{0\}$ and satisfying

$$
\begin{gather*}
-\Delta \Phi \geqq g(\Phi) \text { in } \mathbf{D}^{\prime}\left(\mathbf{B}_{\mathbf{R}} \backslash\{0\}\right), \tag{2.27}\\
\Phi \geqq \boldsymbol{u} \text { in } \overline{\mathbf{B}}_{\mathbf{R}} \backslash\{0\} .
\end{gather*}
$$

Then $|x|^{\mathrm{N}-2} u(x)$ converges to some nonnegative real number γ when x tends to 0.

Proof. - From Remark 1.3 $|x|^{\mathrm{N}-2} \Phi(x)$ converges to some $\gamma^{\prime} \geqq 0$ as x tends to 0 . If $\gamma^{\prime}=0$ then $\lim _{x \rightarrow 0}|x|^{N-2} u(x)=0$. Let us assume that $\gamma^{\prime}>0$. From Brezis and Lions' result

$$
-\Delta \Phi=-\{\Delta \Phi\}+\mathrm{C}(\mathrm{~N}) \gamma^{\prime} \delta_{0}
$$

with $-\{\Delta \Phi\} \in \mathrm{L}_{\text {loc }}^{1}\left(\mathrm{~B}_{\mathrm{R}}\right)$ which implies that $g(\Phi) \in \mathrm{L}^{1}\left(\mathrm{~B}_{\mathrm{R}}\right)$ and g satisfies (1.1). From Theorem 2.3 there exists $\gamma \in\left[0, \gamma^{\prime}\right]$ such that $r^{\mathrm{N}-2} u(r,$. converges to γ in $\mathrm{L}^{1}\left(\mathrm{~S}^{\mathrm{N}-1}\right)$ as r tends to 0 . We consider now the sequence of functions $\left\{u^{N}\right\}$ defined by $u^{0}=\Phi$ and for $N \geqq 1$

$$
\begin{gather*}
-\Delta u^{\mathrm{N}}=g\left(u^{\mathrm{N}-1}\right)+\mathrm{C}(\mathrm{~N}) \gamma \delta_{0} \quad \text { in } \mathbf{D}^{\prime}\left(\mathrm{B}_{\mathrm{R}}\right) \tag{2.28}\\
u^{\mathrm{N}}=\Phi \quad \text { on } \partial \mathrm{B}_{\mathrm{R}} .
\end{gather*}
$$

Then u^{N} is radial and $u \leqq u^{\mathrm{N}} \leqq u^{\mathrm{N}-1}<\Phi$. It is clear that $\left\{u^{\mathrm{N}}\right\}$ converges in $\mathrm{C}_{\text {loc }}^{1}\left(\overline{\mathrm{~B}}_{\mathrm{R}} \backslash\{0\}\right)$ to a radial function \bar{u} which satisfies

$$
\begin{equation*}
-\Delta \bar{u}=g(\bar{u})+\mathbf{C}(\mathbf{N}) \gamma \delta_{0} \quad \text { in } \mathbf{D}^{\prime}\left(\mathbf{B}_{\mathbf{R}}\right) \tag{2.29}
\end{equation*}
$$

and $\bar{u} \geqq u$. As a consequence of Lemma $1.2 \lim _{x \rightarrow 0}|x|^{N-2} \bar{u}(x)=\gamma$. From Remark $1.2 \underset{x \rightarrow 0}{\lim _{x \rightarrow 0}}|x|^{N^{-2}} u(x)=\gamma$ which ends the proof.

Remark 2.1. - The hypothesis of radiality of Φ which is rather restrictive can be withdrown if we know that $\lim _{x \rightarrow 0} u(x)=+\infty$ and
$\Phi \geqq \sup _{|x|=\mathrm{R}} u(x)$. In that case we can consider the following iterative scheme with $\Phi^{0}=\Phi$ and

$$
\begin{align*}
&-\Delta \Phi^{N}=g\left(\Phi^{N-1}\right)+\mathbf{C}(\mathbf{N}) \gamma^{\prime} \delta_{0} \text { in } \mathbf{D}^{\prime}\left(\mathbf{B}_{\mathrm{R}}\right) \\
& \Phi^{N} \underset{|x|=\mathrm{R}}{ } \sup _{\mid x)} \text { on } \partial \mathbf{B}_{\mathrm{R}} . \tag{2.30}
\end{align*}
$$

Then $u \leqq \Phi^{N} \leqq \Phi^{N-1} \leqq \Phi$ and $\left\{\Phi^{N}\right\}$ converges in $C_{\text {loc }}^{1}\left(\overline{\mathrm{~B}}_{\mathrm{R}} \backslash\{0\}\right)$ to some Φ^{-}satisfying

$$
\begin{gather*}
-\Delta \Phi^{-}=g\left(\Phi^{-}\right)+\mathrm{C}(\mathrm{~N}) \gamma^{\prime} \delta_{0} \text { in } \mathbf{D}^{\prime}\left(\mathrm{B}_{\mathrm{R}}\right) \\
\Phi^{-}=\sup _{|x|=\mathrm{R}} u(x) \text { on } \partial \mathrm{B}_{\mathrm{R}} \tag{2.31}
\end{gather*}
$$

and $\Phi^{-} \geqq u$. As $\lim _{x \rightarrow 0} \Phi^{-}(x)=+\infty$ we deduce from Serrin and Ni' results [12] that Φ^{-}is radial and we can apply Lemma 1.2.

Proposition 2.2. - Assume $\mathrm{N} \geqq 3, g$ is a nondecreasing locally Lipschitz continuous function defined on $[0,+\infty)$ satisfying for some $q>\mathrm{N} / 2$.

$$
\begin{equation*}
\sup \left(g^{\prime}(\varphi), g^{\prime}(\psi)\right) \in \mathrm{L}_{\mathrm{loc}}^{q}(\Omega) \tag{2.32}
\end{equation*}
$$

for any φ and ψ continuous and nonnegative in Ω^{\prime} such that $g(\varphi)$ and $g(\psi) \in \mathrm{L}_{\mathrm{loc}}^{1}(\Omega)$. If $u \in \mathrm{C}^{2}\left(\Omega^{\prime}\right)$ is a nonnegative solution of (2.18) in Ω^{\prime}, then $|x|^{\mathrm{N}^{-2}} u(x)$ converges to some nonnegative real number γ as x tends to 0 .

Proof. - From Theorem 2.3 we have (2.20) for some $\gamma \geqq 0$ and $g(u) \in \mathrm{L}_{\mathrm{loc}}^{1}(\Omega)$.
Case 1. $-\gamma=0$. Without any restriction we can assume that $u>\varepsilon$ in $\overline{\mathrm{B}}_{\mathrm{R}} \backslash\{0\} \subset \Omega^{\prime}$ and we write (2.20) as

$$
\begin{equation*}
\Delta u+d u+g(0)=0 \tag{2.33}
\end{equation*}
$$

in $\mathrm{B}_{\mathrm{R}} \backslash\{0\}$ where $d(x)=(g(u)-g(0)) / u$. As $g(u) \in \mathrm{L}^{1}\left(\mathrm{~B}_{\mathrm{R}}\right)(2.32)$ implies that $d \in \mathrm{~L}^{q}\left(\mathrm{~B}_{\mathrm{R}}\right)$ and we deduce from [18] that either u has a removable singularity at 0 or

$$
\begin{equation*}
0<\lim _{x \rightarrow 0}|x|^{N-2} u(x)<\varlimsup_{x \rightarrow 0}|x|^{N-2} u(x)<+\infty, \tag{2.34}
\end{equation*}
$$

which is impossible as $\gamma=0$.
Case 2. $-\gamma>0$. Let v_{γ} be the solution of

$$
\begin{gather*}
-\Delta v_{\gamma}=g\left(v_{\gamma}\right)+\mathrm{C}(\mathrm{~N}) \gamma \delta_{0} \quad \text { in } \mathbf{D}^{\prime}\left(\mathrm{B}_{\mathrm{R}}\right), \tag{2.35}\\
v_{\gamma}=0 \\
\text { on } \partial \mathrm{B}_{\mathrm{R}}
\end{gather*}
$$

v_{γ} is constructed using an increasing sequence of approximate solutions as in [11], $0 \leqq v_{\gamma} \leqq u$ in $B_{R} \backslash\{0\}$ and v_{γ} is radial. Let w be $u-v_{\gamma}$, then

$$
\begin{equation*}
\Delta w+d w=0 \tag{2.36}
\end{equation*}
$$

in $\mathrm{B}_{\mathrm{R}} \backslash\{0\}$ with $d=\left(g(u)-g\left(v_{\gamma}\right)\right) /\left(u-v_{\gamma}\right) \in \mathrm{L}^{q}\left(\mathrm{~B}_{\mathrm{R}}\right)$. Then we deduce from [18] that either w has a removable singularity at 0 or

$$
\begin{equation*}
0<\lim _{x \rightarrow 0}|x|^{\mathrm{N}-2} w(x) \leqq \varlimsup_{x \rightarrow 0}|x|^{\mathrm{N}-2} w(x) \tag{2.37}
\end{equation*}
$$

which is impossible as

$$
\begin{equation*}
\gamma=\lim _{x \rightarrow 0}|x|^{\mathrm{N}-2} v_{\gamma}(x)=\lim _{x \rightarrow 0}|x|^{\mathrm{N}-2} u(x) \tag{2.38}
\end{equation*}
$$

Remark 2.2. - Under the hypotheses of Proposition 2.2 two nonnegative solutions $u_{i}(i=1,2)$ of

$$
\begin{equation*}
-\Delta u=g(u)+C(N) \gamma \delta_{0} \tag{2.39}
\end{equation*}
$$

in $\mathbf{D}^{\prime}(\Omega)$ are such that $u_{1}-u_{2} \in \mathrm{~L}_{\mathrm{loc}}^{\infty}(\Omega)$. As for the solvability of (2.39) we have

Proposition 2.3. - Assume $\mathrm{N} \geqq 3, \Omega$ is bounded with a \mathbf{C}^{1} boundary $\partial \Omega$ and g is a nondecreasing function defined on $[0,+\infty)$, satisfying (1.1) and $g(r)=o(r)$ near 0 . Then there exists $\gamma^{*} \in(0,+\infty]$ with the following properties:
(i) for any $\gamma \in\left[0, \gamma^{*}\right)$ there exists at least one nonnegative function $u \in \mathrm{C}^{1}(\bar{\Omega} \backslash\{0\})$ vanishing on $\partial \Omega$ solution of (2.39) in $\mathbf{D}^{\prime}(\Omega)$,
(ii) for $\gamma>\gamma^{*}$ no such u exists.

Proof. - Step 1. Assume $\Omega=\mathrm{B}_{\mathrm{R}}$. - A function u vanishing on $\partial \mathrm{B}_{\mathrm{R}}$ is a radial solution of (2.40) in $\mathbf{D}^{\prime}\left(\mathrm{B}_{\mathrm{R}}\right)$ if and only if the function $v(t)=u(r)$, with $t=r^{2-N}$, satisfies

$$
\begin{gather*}
v_{t t}+\frac{1}{(\mathrm{~N}-2)^{2}} t^{-2(\mathrm{~N}-1) /(\mathrm{N}-2)} g(v)=0 \quad \text { on }\left(\mathrm{R}^{2-\mathrm{N}},+\infty\right), \\
v\left(\mathrm{R}^{2-\mathrm{N}}\right)=0, \tag{2.40}\\
\lim _{t \rightarrow+\infty} v(t) / t=\gamma .
\end{gather*}
$$

As v is concave the last condition is equivalent to

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} v_{t}(t)=\gamma \tag{2.41}
\end{equation*}
$$

For $\alpha>0$, let v^{α} be the solution of the initial value problem defined on a maximal interval $\left[\mathrm{R}^{\mathbf{2 - N}}, \mathrm{T}^{*}\right.$)

$$
\begin{align*}
& v_{t t}^{\alpha}+\frac{1}{(\mathrm{~N}-2)^{2}} t^{-2(\mathrm{~N}-1) /(\mathrm{N}-2)} g\left(v^{\alpha}\right)=0 \quad \text { on }\left(\mathrm{R}^{2-\mathrm{N}}, \mathrm{~T}^{*}\right) \tag{2.42}\\
& v^{\alpha}\left(\mathrm{R}^{2-\mathrm{N}}\right)=0 \\
& v_{t}^{\alpha}\left(\mathrm{R}^{2-\mathrm{N}}\right)=\alpha .
\end{align*}
$$

If $\mathrm{T}^{*}<+\infty$ then $\lim v^{\alpha}(t)=0$ as a consequence of concavity and there $t \uparrow T$
exists $\mathrm{T} \in\left(\mathrm{R}^{2-\mathrm{N}}, \mathrm{T}^{*}\right)$ such that $v_{t}(\mathrm{~T})=0$. If $\mathrm{T}^{*}=+\infty$ and $\lim _{t \rightarrow+\infty} v_{t}(t)=0$ then the same relation holds with $T=+\infty$. As a consequence if no solution v^{α} of (2.42) satisfies (2.41) with $\gamma>0$ we have

$$
\begin{equation*}
(\mathrm{N}-2)^{2} \alpha=\int_{\mathbf{R}^{2-N}}^{\mathrm{T}} t^{-2(\mathrm{~N}-1) /(\mathrm{N}-2)} g\left(v^{\alpha}(t)\right) d t \tag{2.43}
\end{equation*}
$$

and the right-hand side of (2.43) is majorized by $\int_{\mathbf{R}^{2-N}}^{+\infty} t^{-2(N-1) /(N-2)} g\left(\alpha\left(t-R^{2-N}\right)\right) d t$, which implies

$$
\begin{equation*}
(\mathrm{N}-2)^{2} \alpha \mathrm{R}^{-\mathrm{N}}<\int_{0}^{+\infty}(t+1)^{-2(\mathrm{~N}-1) /(\mathrm{N}-2)} g\left(\alpha \mathrm{R}^{2-\mathrm{N}} t\right) d t \tag{2.44}
\end{equation*}
$$

or

$$
\begin{equation*}
(\mathrm{N}-2)^{2} \mathrm{R}^{-2}<\int_{0}^{+\infty} t(t+1)^{-2(\mathrm{~N}-1) /(\mathrm{N}-2)} \frac{g\left(\alpha \mathrm{R}^{2-\mathrm{N}} t\right)}{\alpha \mathrm{R}^{2-\mathrm{N}} t} d t \tag{2.45}
\end{equation*}
$$

For $\varepsilon>0$ there exists $\eta>0$ such that $\alpha R^{2-N} t<\eta$ implies $g\left(\alpha \mathrm{R}^{2-\mathrm{N}} t\right)<\varepsilon \alpha \mathrm{R}^{2-\mathrm{N}} t$. Hence the right-hand side of (2.45) is majorized by

$$
\begin{aligned}
& \frac{\mathrm{R}^{\mathrm{N}-2}}{\alpha} \int_{\mathrm{R}^{\mathrm{N}-2} \eta / \alpha}^{+\infty}(t+1)^{-2(\mathrm{~N}-1) /(\mathrm{N}-2)} g\left(\alpha \mathrm{R}^{2-\mathrm{N}} t\right) d t \\
& \\
& \quad+\varepsilon \int_{0}^{\mathbf{R}^{\mathrm{N}-2} \eta / \alpha} t(t+1)^{-2(\mathrm{~N}-1) /(\mathrm{N}-2)} d t
\end{aligned}
$$

or

$$
\begin{aligned}
& \alpha^{2(N-1) /(N-2)} \int_{\eta}^{+\infty}\left(\mathrm{R}^{\mathrm{N}-2} s+\alpha\right)^{-2(\mathrm{~N}-1) /(\mathrm{N}-2)} g(s) d s \\
& \\
& \quad+\varepsilon \int_{0}^{+\infty} t(t+1)^{-2(\mathrm{~N}-1) /(\mathrm{N}-2)} d t
\end{aligned}
$$

Consequently

$$
\begin{equation*}
\lim _{\alpha \rightarrow 0} \int_{0}^{+\infty} t(t+1)^{-2(N-1) /(N-2)} \frac{g\left(\alpha \mathrm{R}^{2-\mathrm{N}} t\right)}{\alpha \mathrm{R}^{2-\mathrm{N}} t} d t=0 \tag{2.46}
\end{equation*}
$$

contradicting (2.45). As a consequence there exists $\alpha^{*}>0$ such that for any $\alpha \in\left(0, \alpha^{*}\right)$ the solution v^{α} of (2.42) is defined on $\left[\mathrm{R}^{2-N},+\infty\right)$ and satisfies (2.41) for some $\gamma>0$.

Step 2. The general case. - There exists $\mathrm{R}>0$ such that $\Omega \subset \mathrm{B}_{\mathrm{R}}$. If $\tilde{\gamma}>0$ is such that there exists a solution v to (2.40), then for any $\gamma \in[0, \tilde{\gamma}]$ the sequence $\left\{u_{n}\right\}$ defined by $u_{0}=0$ and for $n \geqq 1$

$$
\begin{gather*}
-\Delta u^{n}=g\left(u^{n-1}\right)+C(N) \gamma \delta_{0} \quad \text { in } D^{\prime}(\Omega), \tag{2.47}\\
u^{n}=0 \quad \text { on } \partial \Omega,
\end{gather*}
$$

increases, is majorized by v in Ω and converges to some u which vanishes on $\partial \Omega$ and satisfies (2.39) in $\mathbf{D}^{\prime}(\Omega)$. For the same reasons, the set of $\gamma>0$ such that there exists a nonnegative solution of (2.39) vanishing on $\partial \Omega$ is an interval.

Remark 2.3. - If $\underset{r \rightarrow+\infty}{\lim } g(r) / r>0$ it is proved in [11] that $\gamma^{*}<+\infty$. If we no longer assume that $\lim _{r \rightarrow 0} g(r) / r=0$ it can be proved that for any $v_{0}>0$ there exists $R_{0}>0$ such that for any $\Omega \subset B_{R_{0}}$ and any $\gamma \in\left[0, v_{0}\right)$ there exists a solution u of (2.39) in $D^{\prime}(\Omega)$.

The two-dimensional version of Theorem 2.3 is the following
Theorem 2.4. - Assume $\mathrm{N}=2, g$ is a continuous function defined on $[0,+\infty)$ such that $\underset{r \rightarrow+\infty}{\underline{\lim }} g(r) / r>-\infty$ and $u \in C^{2}\left(\Omega^{\prime}\right)$ is a nonnegative solution of (2.18) in Ω^{\prime}. Then there exists $\gamma \in[0,+\infty)$ such that

$$
\begin{equation*}
\lim _{x \rightarrow 0}|x|^{-1} \int_{|y|=|x|}|\gamma-u(y) / \operatorname{Ln}(1 /|x|)| d S=0 \tag{2.48}
\end{equation*}
$$

$g(u) \in \mathrm{L}_{\mathrm{loc}}^{1}(\Omega)$ and u solves

$$
\begin{equation*}
-\Delta u=g(u)+2 \pi \gamma \delta_{0} \tag{2.49}
\end{equation*}
$$

in $\mathrm{D}^{\prime}(\Omega)$. If we assume moreover that

$$
\begin{equation*}
\int_{0}^{1} \inf (g(\alpha \operatorname{Ln}(1 / r)), g(\beta \operatorname{Ln}(1 / r)) r d r=+\infty \tag{2.50}
\end{equation*}
$$

for any $\alpha, \beta>0$, then $\gamma=0$.

Remark 2.4. - When $a_{g}^{+}=0$, Proposition 2.2 which holds in the case $\mathrm{N}=2$ with $|x|^{2-\mathrm{N}}$ replaced by $\operatorname{Ln}(1 /|x|)$ provides an interesting criterion for proving that

$$
\begin{equation*}
\lim _{x \rightarrow 0} u(x) / \operatorname{Ln}(1 /|x|)=\gamma \tag{2.51}
\end{equation*}
$$

for some $\gamma \geqq 0$. Proposition 2.1 is also valid in the case $\mathrm{N}=2$ (with the same modifications).

We introduce now a class new of g 's defined on $[0,+\infty)$ which are those satisfying
(2.52) $\quad \forall \sigma>0, \quad \lim _{r \rightarrow+\infty} e^{-\sigma r} g(r)=l(\sigma)$ exists in $[0,+\infty]$,
and we have [20]

$$
\begin{equation*}
a_{g}^{+}=\sup \{\sigma>0: l(\sigma)=+\infty\}=\inf \{\sigma>0: l(\sigma)=0\} . \tag{2.53}
\end{equation*}
$$

Theorem 2.5. - Assume $\mathrm{N}=2, g$ is a continuous function defined on $[0,+\infty)$ satisfying $\underset{r \rightarrow+\infty}{\lim } g(r) / r>-\infty$ and (2.52) with $a_{g}^{+}<+\infty$ and $u \in \mathrm{C}^{2}\left(\Omega^{\prime}\right)$ is a nonnegative solution of (2.18) in Ω^{\prime} and assume also
(i) either $a_{g}^{+}=0$,
(ii) or $a_{g}^{+}>0$ and $\int_{0}^{1} g\left(\frac{2}{a_{g}^{+}} \operatorname{Ln}(1 / r)\right) r d r=+\infty$.

Then there exists $\gamma \in\left[0, \frac{2}{a_{g}^{+}}\right)$such that $u-\gamma \operatorname{Ln} \frac{1}{r}$ is locally bounded in Ω.
Proof. - The main ingredient for proving this is a theorem due to John and Nirenberg ([9], Th. 7.21) that we recall
«Let $u \in W^{1,1}(G)$ where $G \subset \Omega$ is convex and suppose that there exists a constant K such that

$$
\begin{equation*}
\int_{\mathbf{G} \cap \mathbf{B}_{r}}|\nabla u| d x \leqq \mathbf{K} r \quad \text { for any ball } \mathrm{B}_{r} \tag{2.54}
\end{equation*}
$$

then there exist positive constant μ_{0} and \mathbf{C} such that

$$
\begin{equation*}
\int_{\mathrm{G}} \exp \left(\frac{\mu}{\mathbf{K}}\left|u-u_{\mathrm{G}}\right|\right) d x \leqq \mathrm{C}(\operatorname{diam}(\mathrm{G}))^{2} \tag{2.55}
\end{equation*}
$$

where $\mu=\mu_{0}|\mathbf{G}|(\operatorname{diam}(G))^{-2}$ and $u_{G}=\frac{1}{|G|} \int_{G} u d x$ ».
From Theorem 2.4 there exists $\gamma \geqq 0$ such that $u(r,.) / \operatorname{Ln}(1 / r)$ converges to γ in $\mathrm{L}^{1}\left(\mathrm{~S}^{1}\right)$ as r tends to 0 and $g(u) \in \mathrm{L}_{\text {loc }}^{1}(\Omega)$. Set $w=u-\gamma \operatorname{Ln}(1 /|x|)$,
then

$$
\begin{equation*}
-\Delta w=g(u) \tag{2.56}
\end{equation*}
$$

in $D^{\prime}(\Omega)$. It is now classical that $\nabla w \in M_{\mathrm{loc}}^{2}(\Omega)$ where $\mathrm{M}^{2}(\mathrm{G})$ is the usual Marcinkiewicz space over G. If we take $G=\overline{\mathbf{B}}_{\mathrm{R}} \subset \Omega$ then $\nabla \boldsymbol{w}$ satisfies (2.54) for some $K>0$, which implies

$$
\begin{equation*}
\int_{\mathbf{B}_{\rho}} e^{\alpha w} d x \leqq \mathrm{C}(\rho) \tag{2.57}
\end{equation*}
$$

for some $\alpha>0$ and $0<\rho \leqq R$.
Case 1. - Assume $a_{g}^{+}=0$. Then for any $\varepsilon>0$ we have

$$
\begin{equation*}
|g(r)| \leqq \mathrm{K}_{\varepsilon} e^{\varepsilon r} \tag{2.58}
\end{equation*}
$$

for some $K_{\varepsilon}>0$ and any $r \geqq 0$. From (2.57) we have

$$
\begin{equation*}
\int_{\mathbf{B}_{\boldsymbol{\rho}}} e^{\alpha u}|x|^{\alpha \gamma} d x \leqq \mathrm{C}(\rho) \tag{2.59}
\end{equation*}
$$

If $\gamma>0$ we have for $p, \sigma>1$ and $\lambda>0$

$$
\begin{equation*}
\int_{\mathrm{B}_{\rho}} e^{p \varepsilon u} d x \leqq\left(\int_{\mathbf{B}_{\rho}} e^{\sigma p \varepsilon u}|x|^{\sigma \lambda} d x\right)^{1 / \sigma}\left(\int_{\mathbf{B}_{\rho}}|x|^{-\sigma^{\prime} \lambda} d x\right)^{1 / \sigma^{\prime}} \tag{2.60}
\end{equation*}
$$

$\left(\sigma^{\prime}=\sigma /(\sigma-1)\right)$. We set $\sigma p \varepsilon=\alpha, \sigma \lambda=\alpha \gamma$, hence $\lambda=\gamma p \varepsilon, \sigma=\frac{\alpha}{p \varepsilon}$ and $\sigma^{\prime} \lambda=\alpha \gamma p \varepsilon /(\alpha-p \varepsilon)$.

Hence for any $p>1$ we can take ε small enough so that $\sigma^{\prime} \lambda<2$ and $\sigma>1$. As a consequence $g(u) \in \mathrm{L}^{p}\left(\mathrm{~B}_{\rho}\right)$ and $w \in \mathrm{~L}^{\infty}\left(\mathrm{B}_{\rho}\right)$. If $\gamma=0$, (2.59) implies that $g(u) \in \mathrm{L}^{p}\left(\mathrm{~B}_{\mathrm{\rho}}\right)$ for any $p \in[1, \infty)$ and $u \in \mathrm{~L}^{\infty}\left(\mathrm{B}_{\rho}\right)$.
Case 2. - Assume $a_{g}^{+}>0$ and $\int_{0}^{1} g\left(\frac{2}{a_{g}^{+}} \operatorname{Ln}(1 / r)\right) r d r=+\infty$.
Step 1. $-0 \leqslant \gamma<\frac{2}{a_{g}^{+}}$. Assume the contrary that is $\gamma \geqq \frac{2}{a_{g}^{+}}$. As $\quad a_{g}^{+}>0$ we have $\lim _{r \rightarrow+\infty} g(r)=+\infty$ and from Remark 1.2

$$
\begin{equation*}
u(x)>v_{\gamma}(x) \tag{2.61}
\end{equation*}
$$

where v_{γ} satisfies

$$
\begin{equation*}
-\Delta v_{\gamma}+g\left(v_{\gamma}\right)=2 \pi \gamma \delta_{0} \tag{2.62}
\end{equation*}
$$

in $\mathbf{D}^{\prime}\left(\mathbf{B}_{\mathrm{R}}\right), v_{\gamma}=0$ on $\partial \mathrm{B}_{\mathbf{R}}$. As a consequence [21] $\lim _{x \rightarrow 0} u(x)=+\infty$ and for $|x|<R^{\prime}$ small enough

$$
\begin{equation*}
-\Delta u \geqq 2 \pi \gamma \delta_{0} \tag{2.63}
\end{equation*}
$$

in $\mathbf{D}^{\prime}\left(\mathrm{B}_{\mathbf{R}^{\prime}}\right)$. As a consequence $u(x) \geqq \gamma \operatorname{Ln}\left(\frac{1}{|x|}\right)-l$, which implies $\int_{\mathbf{B}_{\mathbf{R}^{\prime}}} g(u) d x=+\infty$, contradiction.

Step 2. - We claim that for any $\alpha>0$ there exist $\rho \in(0, R]$ such that (2.57) holds. We fix $0<\mathrm{R}^{\prime}<\mathrm{R}$ and write $w=w_{1}+w_{2}$ where w_{1} is harmonic in B_{R}, and take the value w on $\partial \mathrm{B}_{\mathbf{R}^{\prime}}$ and w_{2} satisfies

$$
\begin{equation*}
-\Delta w_{2}=g(u) \tag{2.64}
\end{equation*}
$$

in $\mathbf{B}_{\mathbf{R}^{\prime}}$ and $w_{2}=0$ on $\partial \mathbf{B}_{\mathbf{R}^{\prime}}$. As $\nabla w_{1} \in \mathrm{~L}^{2}\left(\mathrm{~B}_{\mathbf{R}^{\prime}}\right)$ we deduce

$$
\begin{equation*}
\left\|\nabla w_{1}\right\|_{M^{2}\left(B_{p}\right)} \rightarrow 0 \tag{2.65}
\end{equation*}
$$

and for w_{2} we have

$$
\begin{equation*}
\left\|\nabla w_{2}\right\|_{\mathrm{M}^{2}\left(\mathrm{~B}_{\mathrm{R}^{\prime}}\right)} \leqq \mathrm{C}\|g(u)\|_{\mathrm{L}^{1}\left(\mathrm{~B}_{\mathbf{R}^{\prime}}\right)} \tag{2.66}
\end{equation*}
$$

where C is independent of R^{\prime}. As a consequence we get

$$
\begin{equation*}
\lim _{\rho \rightarrow 0}\|\nabla w\|_{M^{2}\left(\mathbf{B}_{\rho}\right)}=0 \tag{2.67}
\end{equation*}
$$

and the constant K in (2.55) can be taken as small as we want provided $G=B_{\rho}$ and u is replaced by w. This implies that for any $\alpha>0$ we can find $\rho \in(0, R)$ such that (2.57) holds.

Step 3: End of the proof. - From the definition of a_{g}^{+}, for any $\varepsilon>0$ there exists $K_{\varepsilon}>0$ such that

$$
\begin{equation*}
|g(r)| \leqq K_{\varepsilon} e^{\left(a_{g}^{+}+\varepsilon\right) r} \tag{2.68}
\end{equation*}
$$

for $r \geqq 0$, and we have from (2.59)

$$
\begin{equation*}
\int_{\mathbf{B}_{\mathrm{p}}} e^{p\left(a_{g}^{+}+\varepsilon\right) u} d x \leqq\left(\int_{\mathbf{B}_{\mathrm{p}}} e^{\sigma p\left(a_{g}^{+}+\varepsilon\right) u}|x|^{\sigma^{\lambda}} d x\right)^{1 / \sigma}\left(\int_{\mathrm{B}_{\mathrm{p}}}|x|^{-\sigma^{\prime} \lambda} d x\right)^{1 / \sigma^{\prime}} . \tag{2.69}
\end{equation*}
$$

We take $\sigma p\left(a_{g}^{+}+\varepsilon\right)=\alpha, \sigma \lambda=\alpha \gamma$ [we assume $\gamma>0$ other-while $g(u) \in \mathrm{L}_{\text {loc }}^{p}(\Omega)$ for any $p>1$ and $\left.w \in \mathrm{~L}_{\text {loc }}^{\infty}(\Omega)\right]$ and $\lambda=\gamma p\left(a_{g}^{+}+\varepsilon\right), \sigma=\alpha / p\left(a_{g}^{+}+\varepsilon\right)$ and $\lambda \sigma^{\prime}=\alpha \gamma p\left(a_{g}^{+}+\varepsilon\right) /\left(\alpha-p\left(a_{g}^{+}+\varepsilon\right)\right)$. As $\gamma a_{g}^{+}<2$ there exist $p>1, \varepsilon>0, \alpha>0$ such that $\sigma^{\prime} \lambda<2$ which implies $g(u) \in \mathrm{L}_{\mathrm{loc}}^{p}(\Omega)$ and we end the proof as in Case 1.

Remark 2.5. - If $a_{g}^{+}=+\infty$ then $\gamma=0$ from Theorem 2.4. In that case it is unlikely that Theorem 2.5 still holds. However we conjecture that $\lim u(x) / \operatorname{Ln}(1 /|x|)=0$. $x \rightarrow 0$

Concerning the existence of solutions of (2.49) the following result can be proved as in Proposition 2.3.

Proposition 2.4. - Assume $\mathrm{N}=2, \Omega$ is bounded with a C^{1} boundary $\partial \Omega$ and g is a nondecreasing function defined on $[0,+\infty)$ such that $a_{g}^{+} \in(0,+\infty]$ and $g(r)=o(r)$ near 0 . Then there exists $\gamma^{*} \in\left(0,2 / a_{g}^{+}\right]$with the following properties:
(i) for any $\gamma \in\left[0, \gamma^{*}\right)$ there exists at least one nonnegative function $u \in C^{1}(\bar{\Omega} \backslash\{0\})$ vanishing on $\partial \Omega$ solution of (2.49) in $\mathbf{D}^{\prime}(\Omega)$,
(ii) for $\gamma>\gamma^{*}$ no such u exists.

Remark 2.6. - If $g(r)=e^{a r}$ it is easy to see that γ^{*} exists only if $\operatorname{diam} .(\Omega)$ is small enough. Moreover in that case $\gamma^{*}<\frac{2}{a_{g}^{+}}=\frac{2}{a}$.

3. SINGULARITIES OF $\Delta u=u\left(L n^{+} u\right)^{\alpha}$

Our first result deals with the one-dimensional case
Theorem 3.1. - Assume $u \in \mathrm{C}^{2}(0, R)$ is a nonnegative solution of

$$
\begin{equation*}
u_{r r}=u\left(\mathrm{~L}^{+} u\right)^{\alpha} \quad \text { in }(0, \mathrm{R}) \tag{3.1}
\end{equation*}
$$

Then:

- if $0<\alpha<2$,
$u(r)$ admits a finite limit as r tends to 0 ;
- if $\alpha>2$,
(i) either $u(r)$ admits a finite limit as r tends to 0 ,
(ii) or

$$
\left\{\begin{array}{c}
u(r)=\sqrt{e} e^{\gamma(\alpha) r^{2 /(2-\alpha)}}\left(1+O\left(r^{2 /(\alpha-2)}\right)\right) \tag{3.2}\\
u_{r}(r)=-\sqrt{e}(\gamma(\alpha))^{\alpha / 2} r^{\alpha /(2-\alpha)} e^{\gamma(\alpha) r^{2 /(2-\alpha)}}\left(1+O\left(r^{2 /(\alpha-2)}\right)\right)
\end{array}\right.
$$

near 0 where

$$
\begin{equation*}
\gamma(\alpha)=\left(\frac{2}{\alpha-2}\right)^{2 /(\alpha-2)} \tag{3.3}
\end{equation*}
$$

From (3.1) u is convex and $u(r)$ admits a limit in $\mathbb{R}^{+} \cup\{+\infty\}$ as r tends to 0 . If this limit is larger than $1,(3.1)$ is equivalent to

$$
\begin{equation*}
v_{r r}+v_{r}^{2}=v^{\alpha} \tag{3.4}
\end{equation*}
$$

on some interval $\left(0, R^{\prime}\right)$ with the transformation $u=e^{v}$. Theorem 3.1 is an immediate consequence of the following result

Lemma 3.1. - Assume $v \in \mathrm{C}^{2}\left(0, \mathrm{R}^{\prime}\right)$ is a nonnegative solution of (3.4) in $\left(0, R^{\prime}\right)$. Then

- if $0<\alpha \leqq 2$, v remains bounded near 0 ;
- if $\alpha>2$
(i) either v remains bounded near 0 ,
(ii) or

$$
\left\{\begin{array}{c}
r^{2 /(\alpha-2)} v(r)=\gamma(\alpha)+\frac{1}{2} r^{2 /(\alpha-2)}+O\left(r^{4 /(\alpha-2)}\right) \tag{3.5}\\
r^{\alpha /(\alpha-2)} v_{r}(r)=-(\gamma(\alpha))^{\alpha / 2}+O\left(r^{4 /(\alpha-2)}\right)
\end{array}\right.
$$

Proof. - Assuming that u is unbounded near 0 , then $\lim _{r \rightarrow 0} u(r)=+\infty=\lim _{r \rightarrow 0} v(r)$ and v is decreasing near 0 . So we can define

$$
\left\{\begin{array}{c}
\rho=v \in[\sigma,+\infty), \tag{3.6}\\
h(\rho)=v_{r}^{2},
\end{array}\right.
$$

and (3.5) become

$$
\begin{equation*}
\frac{1}{2} h_{\rho}+h=\rho^{\alpha} \quad \text { in }[\sigma,+\infty) \tag{3.7}
\end{equation*}
$$

Hence $h(\rho)=h(\sigma) e^{2(\sigma-\rho)}+2 e^{-2 \rho} \int_{\sigma}^{\rho} s^{\alpha} e^{2 s} d s$.
As

$$
\int_{\sigma}^{\rho} s^{\alpha} e^{2 s} d s=\frac{1}{2}\left[s^{\alpha} e^{2 s}\right]_{\sigma}^{\rho}-\frac{\alpha}{4}\left[s^{\alpha-1} e^{2 s}\right]_{\sigma}^{\rho}+\frac{\alpha(\alpha-1)}{4} \int_{\sigma}^{\rho} s^{\alpha-2} e^{2 s} d s
$$

and

$$
\frac{e^{-2 \rho}}{\rho^{\alpha}} \int_{\sigma}^{\rho} s^{\alpha-2} e^{2 s} d s=O\left(\frac{1}{\rho^{2}}+\frac{1}{\rho^{\alpha}}\right)
$$

we get

$$
\begin{equation*}
\frac{h(\rho)}{\rho^{\alpha}}=1-\frac{\alpha}{2 \rho}+O\left(\frac{1}{\rho^{2}}+\frac{1}{\rho^{\alpha}}\right) \tag{3.8}
\end{equation*}
$$

as ρ goes to $+\infty$, which implies

$$
\begin{equation*}
\lim _{r \rightarrow 0} \frac{v_{r}(r)}{v^{\alpha / 2}(r)}=-1 \tag{3.9}
\end{equation*}
$$

Integrating (3.9) implies that $v^{(2-\alpha) / 2}(r)($ if $0<\alpha<2)$ or $\operatorname{Ln} v(r)($ if $\alpha=2)$ remains bounded near 0 which is a contradiction. So we are left with the case $\alpha>2, \lim _{r \rightarrow 0} v(r)=+\infty$. From (3.8) we have

$$
\begin{equation*}
\frac{v_{r}}{v^{\alpha / 2}}=-1+\frac{\alpha}{4 v}+O\left(\frac{1}{v^{2}}\right) \tag{3.10}
\end{equation*}
$$

near 0 , which implies $\lim _{r \rightarrow 0} r^{2 /(\alpha-2)} v(r)=\left(\frac{2}{a-2}\right)^{2 /(a-2)}=\gamma(a)$. As a consequence $\frac{1}{v(r)}=\frac{1+o(1)}{\gamma(\alpha)} r^{2 /(\alpha-2)}$ and (3.10) becomes

$$
\begin{equation*}
\frac{v_{r}}{v^{\alpha / 2}}=-1+\frac{1+o(1)}{\gamma(\alpha)} \frac{\alpha}{4} r^{2 /(\alpha-2)} \tag{3.11}
\end{equation*}
$$

Integrating (3.11) on (0,r) for r small yields

$$
\begin{equation*}
v(r)=\gamma(\alpha) r^{2 /(2-\alpha)}\left(1+\frac{1+o(1)}{2 \gamma(\alpha)} r^{2 /(\alpha-2)}\right), \tag{3.12}
\end{equation*}
$$

which implies, with (3.10),

$$
\begin{equation*}
\frac{v_{r}}{v^{\alpha / 2}}=-1+\frac{\alpha}{4 \gamma(\alpha)} r^{2 /(\alpha-2)}+O\left(r^{4 /(\alpha-2)}\right) \tag{3.13}
\end{equation*}
$$

Reasoning as before we get

$$
\begin{equation*}
v(r)=\gamma(\alpha) r^{2 /(2-\alpha)}+\frac{1}{2}+O\left(r^{2 /(\alpha-2)}\right) \tag{3.14}
\end{equation*}
$$

near 0 and

$$
\begin{equation*}
r^{\alpha /(\alpha-2)} v_{r}(r)=-(\gamma(\alpha))^{\alpha / 2}+O\left(r^{4 /(\alpha-2)}\right) \tag{3.15}
\end{equation*}
$$

We assume now that Ω is an open subset of $\mathbb{R}^{\mathbf{N}}, \mathrm{N} \geqq 2$, containing 0 , $\Omega^{\prime}=\Omega \backslash\{0\}$ and we consider the following equation in Ω^{\prime}

$$
\begin{equation*}
\Delta u=u\left(\mathrm{~L}^{+} u\right)^{\alpha} \tag{3.16}
\end{equation*}
$$

where $u \in C^{2}\left(\Omega^{\prime}\right)$ is nonnegative.
Lemma 3.2. - If $\alpha>2$ and $\overline{\mathbf{B}}_{\mathrm{R}} \subset \Omega$; then there exists a constant $\mathrm{C}=\mathrm{C}\left(\alpha, \mathrm{N}, \mathrm{R}, \operatorname{dist}\left(\partial \mathrm{B}_{\mathrm{R}}, \partial \Omega\right)\right.$ such that

$$
\begin{equation*}
u(x) \leqq e^{\mathrm{C}|x|^{2 /(2-\alpha)}} \quad \text { in } \overline{\mathrm{B}}_{\mathrm{R}} \backslash\{0\} . \tag{3.17}
\end{equation*}
$$

Proof. - We define $\beta(t)=t\left(\mathrm{Ln}^{+} t\right)^{\alpha}, \quad j(t)=\int_{0}^{t} \beta(s) d s \quad$ and $\tau(t)=\int_{t}^{+\infty} \frac{d t}{\sqrt{j(s)}}$. As $\tau(2)<+\infty$ we deduce from Vazquez's result that the equation (3.16) satisfies the a priori interior estimate property [19]: if $x_{0} \in \Omega^{\prime}$ and if the cube $Q_{p}\left(x_{0}\right)=\left\{x \in \mathbb{R}^{N}: \sup _{1 \leqq i \leqq N}\left|x^{i}-x_{0}^{i}\right|<\rho\right\}$ is included in Ω^{\prime}, then for any $a \in(0,1)$ there exists a constant $\mu=\mu(a)>0$ such that

$$
\begin{equation*}
u\left(x_{0}\right) \leqq \frac{\mathrm{N}}{a} \tau^{-1}(\mu \rho) \tag{3.18}
\end{equation*}
$$

So the main point is to get a precise estimate on τ^{-1}. If $s_{0}>e^{\alpha / 2}$ and $\mathrm{C}\left(s_{0}\right)=\frac{1}{2}-\frac{\alpha}{4 \mathrm{Ln} s_{0}}$ it is easy to check that

$$
j(t)>\mathrm{C}\left(s_{0}\right) t^{2}(\mathrm{~L} n t)^{\alpha} \quad \text { for } \quad t>s_{0}
$$

If $\mathrm{C}_{0}=\frac{2}{(\alpha-2) \sqrt{\mathrm{C}\left(s_{0}\right)}}$, then $\tau(s)<\mathrm{C}_{0}(\operatorname{Lns})^{(2-\alpha) / 2}$ for $s>s_{0}$ and

$$
\begin{equation*}
\tau^{-1}(y) \leqq e^{\mathrm{c} z^{2 /(\alpha-2)} y^{2 /(2-\alpha)}} \tag{3.19}
\end{equation*}
$$

for $0<y<\tau\left(s_{0}\right)$. For $|x|<\frac{\sqrt{\mathbf{N}}}{2} \mathrm{R}, \frac{\mathrm{Q}^{2|x|}}{\sqrt{N}^{\mathbf{N}}}(x) \subset \mathrm{B}_{\mathbf{R}}$. We set

$$
\mathbf{R}_{0}=\min \left(\frac{1}{2} \mathbf{R}, \frac{1}{2} \frac{\tau\left(s_{0}\right)}{\mu}\right)
$$

and for $|x| \leqq R_{0}$ we can apply (3.18), (3.19) which gives

$$
\begin{equation*}
u(x) \leqq \frac{\mathrm{N}}{a} e^{\left(\left(\mathrm{C}_{0} \sqrt{ } \mathrm{~N}\right) / 2\right)^{2 /(\alpha-2)}|x|^{2 /(2-\alpha)}} \tag{3.20}
\end{equation*}
$$

The estimate in $B_{R} \backslash B_{R_{0}}$ is obtained from (3.18) with a simple compactness argument and we get (3.17).

Lemma 3. 3. - Assume $\mathrm{N} \geqq 2, \alpha>0$ and $v \in \mathrm{C}^{2}\left(\overline{\mathrm{~B}}_{\mathrm{R}} \backslash\{0\}\right)$ is a nonnegative solution of

$$
\begin{equation*}
v_{r r}+\frac{\mathrm{N}-1}{r} v_{r}+v_{r}^{2}=v^{\alpha} \quad \text { in }(0, \mathrm{R}) \tag{3.21}
\end{equation*}
$$

such that $\lim _{r \rightarrow 0} v(r)=+\infty$. Then for any $\varepsilon>0$ there exists $r(\varepsilon) \in(0, R)$ such that

$$
\begin{equation*}
-\frac{\mathrm{N}-1}{r v^{\alpha / 2}}-1<\frac{v_{r}}{v^{\alpha / 2}} \leqq-1+\varepsilon \quad \text { in }(0, r(\varepsilon)) \text {. } \tag{3.22}
\end{equation*}
$$

Proof. - From (3.21) it is clear that $v_{r}<0$ on some $\left(0, r_{0}\right) \subset(0, R)$ and we get

$$
\begin{equation*}
v_{r r}+v_{r}^{2} \geqq v^{\alpha} \quad \text { in }\left(0, r_{0}\right) \tag{3.23}
\end{equation*}
$$

Taking $v=\rho$ as a new variable and $h(\rho)=v_{r}^{2}$ as a new unknow we get as in Lemma 3.1

$$
\frac{1}{2} h_{\rho}+h \geqq \rho^{\alpha} \quad \text { for } \quad \rho \geqq \rho_{0}
$$

which implies $\left(e^{2 \rho} h\right)_{\rho} \geqq 2 e^{2 \rho} \rho^{\alpha}$ and by integration we get $\frac{h(\rho)}{\rho^{\alpha}} \geqq 1-\varepsilon$ for any $\varepsilon>0$ and $\rho>\rho(\varepsilon)$, that is

$$
\begin{equation*}
\frac{v_{r}}{v^{\alpha / 2}} \leqq-1+\varepsilon \quad \text { in }(0, r(\varepsilon)) \tag{3.24}
\end{equation*}
$$

where $r(\varepsilon)$ is small enough. As a consequence $\lim _{r \rightarrow 0} v_{r}(r)=-\infty$. If we set $\omega=v_{r}$ we get from (3.21)

$$
\begin{equation*}
\omega_{r r}+\frac{\mathrm{N}-1}{r} \omega_{r}+2 \omega \omega_{r}-\frac{\mathrm{N}-1}{r^{2}} \omega=\alpha \omega v^{\alpha-1} . \tag{3.25}
\end{equation*}
$$

As $\omega<0$ on ($0, r_{0}$), (3.25) implies

$$
\begin{equation*}
\omega_{r r}+\left(\frac{\mathrm{N}-1}{r}+2 \omega\right) \omega_{r}<0 \quad \text { in }\left(0, r_{0}\right) . \tag{3.26}
\end{equation*}
$$

Hence if $\omega_{r}\left(r_{1}\right) \leqq 0$ for some $r_{1} \in\left(0, r_{0}\right)$ we would have $\omega_{r}(r)<0$ for $r \in\left(0, r_{1}\right)$ contradicting $\lim _{r \rightarrow 0} \omega(r)=-\infty$. As a consequence $\omega_{r}>0$ and

$$
\begin{equation*}
v_{r}^{2}+\frac{\mathrm{N}-1}{r} v_{r}-v^{\alpha} \leqq 0 \quad \text { in }\left(0, r_{0}\right) . \tag{3.27}
\end{equation*}
$$

A simple algebraic computation implies

$$
\begin{equation*}
-\frac{\mathrm{N}-1}{2 r}-\sqrt{\left(\frac{\mathrm{N}-1}{2 r}\right)^{2}+v^{\alpha}} \leqq v_{r} \leqq 0 \tag{3.28}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{v_{r}}{v^{\alpha / 2}} \geqq-\frac{\mathrm{N}-1}{r v^{\alpha / 2}}-1, \tag{3.29}
\end{equation*}
$$

which ends the proof.
Lemma 3.4. - Assume $\mathrm{N} \geqq 2, \alpha>1$ and $u \in \mathrm{C}^{2}\left(\overline{\mathrm{~B}}_{\mathrm{R}} \backslash\{0\}\right)$ is a nonnegative solution of

$$
\begin{equation*}
u_{r r}+\frac{\mathrm{N}-1}{r} u_{r}=u\left(\mathrm{~L} n^{+} u\right)^{\alpha} \quad \text { in }(0, \mathrm{R}) \tag{3.30}
\end{equation*}
$$

Then $\lim u(r) / \mu(r)=+\infty$ if and only if $\lim r^{2 / \alpha} \operatorname{Ln} u(r)=+\infty$.

$$
r \rightarrow 0 \quad r \rightarrow 0
$$

Proof. - Case 1:N $\geqq 3$. - We consider the following change of variable

$$
\begin{equation*}
s=r^{2-N}, \quad \tilde{u}(s)=u(r) \tag{3.31}
\end{equation*}
$$

\tilde{u} satisfies

$$
\begin{equation*}
\tilde{u}_{s s}=\frac{1}{(\mathrm{~N}-2)^{2}} s^{-2((\mathrm{~N}-1) /(\mathrm{N}-2))} \tilde{u}\left(\mathrm{~L} n^{+} \tilde{u}\right)^{\alpha} \quad \text { in }(\mathrm{S},+\infty) \tag{3.32}
\end{equation*}
$$

with $S=R^{2-N}$, and if $\lim _{r \rightarrow 0} r^{N-2} u(r)=+\infty$ we have

$$
\begin{equation*}
\lim _{r \rightarrow+\infty} \tilde{u}(s) / s=\lim _{s \rightarrow+\infty} \tilde{u}_{s}(s)=+\infty \tag{3.33}
\end{equation*}
$$

From convexity $\tilde{u}(s) \leqq s \tilde{u}_{s}(s)(1+o(1))$ and

$$
(\operatorname{Ln} \tilde{u})^{\alpha}<\left(\operatorname{Ln} s+\operatorname{Ln} \tilde{u}_{s}+O(1)\right)^{\alpha} \leqq(\mathrm{N}-2)^{2}(\operatorname{Ln} s)^{\alpha}\left(\operatorname{Ln} \tilde{u}_{s}\right)^{\alpha}
$$

for s large enough; so (3.32) becomes

$$
\begin{equation*}
\tilde{u}_{s s} \leqq s^{-\mathrm{N} /(\mathrm{N}-2)} \tilde{u}_{s}\left(\mathrm{~L} n \tilde{u_{s}}\right)^{\alpha}(\mathrm{L} n s)^{\alpha} \tag{3.34}
\end{equation*}
$$

As $\alpha>1$

$$
\int_{\sigma}^{+\infty} \frac{\tilde{u}_{s s}}{\tilde{u}_{s}\left(\mathrm{~L} n \tilde{u}_{s}\right)^{\alpha}} d s=\frac{1}{\alpha-1}\left(\operatorname{L} n \tilde{u}_{s}(\sigma)\right)^{1-\alpha}
$$

and

$$
\int_{\sigma}^{+\infty} s^{-\mathrm{N} /(\mathrm{N}-2)}(\mathrm{Ln} s)^{\alpha} d s<\mathrm{A} \sigma^{-2 /(\mathrm{N}-2)}(\operatorname{Ln} \sigma)^{\alpha}
$$

for some constant A and σ large enough. As a consequence $\operatorname{Ln} \tilde{u}_{s}(\sigma) \geqq \mathrm{B}$ $\sigma^{2 /(N-2)(\alpha-1)}(\operatorname{Ln} \sigma)^{\alpha /(1-\alpha)}$. A straightforward computation implies that for
any $\varepsilon>0$ and for s large enough

$$
\tilde{u}(s) \geqq e^{s(\varepsilon+2 /(1-\alpha)) /(N-2)}
$$

which means

$$
\begin{equation*}
\operatorname{Ln} u(r) \geqq r^{\varepsilon+2 /(1-\alpha)}, \tag{3.35}
\end{equation*}
$$

for r small enough and $\lim _{r \rightarrow 0} r^{2 / \alpha} \operatorname{Ln} u(r)=+\infty$. Conversely $\lim _{r \rightarrow 0} r^{2 / \alpha} \operatorname{Ln} u(r)=+\infty$ implies $\lim _{r \rightarrow 0} u(r) / \mu(r)=+\infty(\mathrm{N} \geqq 2)$.

Case 2: $\mathrm{N}=2$. - We make the following change of variable

$$
\begin{equation*}
r=e^{-t}, \quad \tilde{u}(t)=u(r) \tag{3.36}
\end{equation*}
$$

and we get (with $T=\operatorname{Ln}(1 / R)$)

$$
\begin{equation*}
\tilde{u}_{t t}=e^{-2 t} \tilde{u}(\operatorname{Ln} \tilde{u})^{\alpha} \quad \text { in }(\mathrm{T},+\infty) \tag{3.37}
\end{equation*}
$$

If we assume $\lim _{r \rightarrow 0} u(r) / \operatorname{Ln}(1 / r)=+\infty$ then

$$
\lim _{t \rightarrow+\infty} \tilde{u}(t) / t=\lim _{t \rightarrow+\infty} \tilde{u}_{t}(t)=+\infty
$$

(by convexity) and we get

$$
\frac{\tilde{u}_{t t}}{\tilde{u}_{t}\left(\mathrm{~L} n \tilde{u}_{t}\right)} \leqq e^{-2 t} t(\mathrm{~L} n t)^{\alpha}(1+o(1)) \quad \text { for } \quad t \gg \mathrm{~T}
$$

and

$$
\begin{equation*}
\operatorname{Ln} \tilde{u}_{t}(t) \geqq \mathrm{B} t^{1 /(1-\alpha)}(\mathrm{L} n t)^{\alpha /(1-\alpha)} e^{-2 t /(1-\alpha)} \tag{3.38}
\end{equation*}
$$

for some $\mathrm{B}>0$ and t large enough, which implies

$$
\begin{equation*}
\tilde{u}(t) \geqq e^{(2 /(\alpha-1)-\varepsilon) t} \tag{3.39}
\end{equation*}
$$

for any $\varepsilon>0$ and t large. From (3.39) we get the result.
With lemmas 3.2-3.4 we can describe the behaviour of nonnegative radial solutions of (3.16) with a strong singularity at 0 , when $\alpha>2$.

Lemma 3.5. - Assume $\mathrm{N} \geqq 2, \alpha>2$ and $u \in \mathrm{C}^{2}\left(\overline{\mathrm{~B}}_{\mathrm{R}} \backslash\{0\}\right)$ is a nonnegative solution of (3.30) in $(0, R)$ such that $\lim u(r) / \mu(r)=+\infty$. Then the following holds near 0

$$
\begin{gather*}
r^{2 /(\alpha-2)} \operatorname{Ln} u(r)=\gamma(\alpha)+\frac{\alpha-(\mathrm{N}-1)(\alpha-2)}{2 \alpha} r^{2 /(\alpha-2)}+O\left(r^{4 /(\alpha-2)}\right) \tag{3.40}\\
r^{\alpha /(\alpha-2)}(\operatorname{Ln} u(r))_{r}=-(\gamma(\alpha))^{\alpha / 2}+O\left(r^{4 /(\alpha-2)}\right)
\end{gather*}
$$

Vol. 6, \mathbf{n}° 1-1989.

Proof. - From the preceeding lemmas $\lim _{r \rightarrow 0} v_{r}(r) / v^{\alpha / 2}(r)=-1$ where $v=\operatorname{Ln} u$. As a consequence

$$
\begin{gather*}
\lim _{r \rightarrow 0} r^{2 /(\alpha-2)} v(r)=\gamma(\alpha) \\
\lim _{r \rightarrow 0} r^{\alpha /(\alpha-2)} v_{r}(r)=-(\gamma(\alpha))^{\alpha / 2} \tag{3.41}
\end{gather*}
$$

and $\frac{\mathrm{N}-1}{r} v_{r}(r)=(-1+o(1)) \frac{(\mathrm{N}-1)(\alpha-2)}{2} v^{\alpha-1}(r)$ near 0 . Pluging this estimate into equation (3.21) yields

$$
\begin{equation*}
v_{r r}+v_{r}^{2}=v^{\alpha}+\mathrm{C}(1+o(1)) v^{\alpha-1} \tag{3.42}
\end{equation*}
$$

with $\mathrm{C}=(\mathrm{N}-1)(\alpha-2) / 2$. Taking again $\rho=v$ as the variable and $h(\rho)=v_{r}^{2}$ as the unknow implies

$$
\frac{1}{2}\left(e^{2 \rho} h(\rho)\right)_{\rho}=\rho^{\alpha} e^{2 \rho}+\mathrm{C}(1+o(1)) \rho^{\alpha-1} e^{2 \rho}
$$

and

$$
\begin{equation*}
\frac{h(\rho)}{\rho^{\alpha}}=1+(1+o(1))\left(\mathrm{C}-\frac{\alpha}{2}\right) \frac{1}{\rho} \quad \text { as } \rho \rightarrow+\infty \tag{3.43}
\end{equation*}
$$

If we set $\mathrm{A}=\frac{\alpha}{4}-\frac{\mathrm{C}}{2}=\frac{\alpha-(\mathrm{N}-1)(\alpha-2)}{4}$ we have $\frac{v_{r}}{v^{\alpha / 2}}=-1+\frac{1+o(1)}{v} \mathrm{~A}$, which implies $v(r)=\gamma(\alpha)(1+o(1)) r^{2 /(2-\alpha)}$ and finally

$$
\begin{equation*}
\frac{v_{r}}{v^{\alpha / 2}}=-1+\frac{1+o(1)}{\gamma(\alpha)} \mathrm{A} r^{2 /(\alpha-2)} \tag{3.44}
\end{equation*}
$$

Integrating (3.44) on ($0, r$] for some small r implies

$$
v(r)-\gamma(\alpha) r^{2 /(2-\alpha)}=(1+o(1))(2 \mathrm{~A} / \alpha)
$$

As $v_{r}=-v^{\alpha / 2}\left(1+O\left(\frac{1}{v}\right)\right)$, we have $\frac{\mathrm{N}-1}{r} v_{r}=-\mathrm{C} v^{\alpha-1}\left(1+0\left(\frac{1}{v}\right)\right)$ and v satisfies

$$
\begin{equation*}
v_{r r}+v_{r}^{2}=v^{\alpha}+\mathrm{C} v^{\alpha-1}+O\left(v^{\alpha-2}\right) \tag{3.45}
\end{equation*}
$$

using ρ and $h(\rho)$ yields

$$
\begin{equation*}
\frac{h(\rho)}{\rho^{\alpha}}=1+\frac{2 \mathrm{C}-\alpha}{2} \frac{1}{\rho}+O\left(\frac{1}{\rho^{2}}\right) \tag{3.46}
\end{equation*}
$$

$$
\begin{equation*}
\frac{v_{r}}{v^{\alpha / 2}}=-1+\frac{\mathrm{A}}{v}+O\left(\frac{1}{v^{2}}\right) \tag{3.47}
\end{equation*}
$$

and, as $v=\gamma r^{2 /(2-\alpha)}\left(1+O\left(r^{2 /(\alpha-2)}\right)\right)$,

$$
\begin{equation*}
\frac{v_{r}}{v^{\alpha / 2}}=-1+\frac{\mathrm{A}}{\gamma(\alpha)} r^{2 /(\alpha-2)}+O\left(r^{4 /(\alpha-2)}\right) \tag{3.48}
\end{equation*}
$$

Integrating (3.48) gives $v(r)=\gamma(\alpha) r^{2 /(2-\alpha)}+\frac{2 \mathrm{~A}}{\alpha}+O\left(r^{2 /(\alpha-2)}\right) \quad$ which implies (3.40).

Remark 3.1.- If $\mathrm{N} \geqq 3$ and $\alpha=2 \frac{\mathrm{~N}-1}{\mathrm{~N}-2}, \psi(r)=\gamma(\alpha) r^{2 /(2-\alpha)}$ is a solution of (3.30) in $(0,+\infty)$.

We are now able to prove the main theorem of this section
Theorem 3.2. - Assume $\mathrm{N} \geqq 2, \alpha>0$ and $u \in \mathrm{C}^{2}\left(\Omega^{\prime}\right)$ is a nonnegative solution of (3.16) in Ω^{\prime}. Then if $0<\alpha \leqq 2$:
(i) either u can be extended to Ω as a C^{2} solution of (3.16) in Ω,
(ii) or there exists $\gamma>0$ such that $\lim u(x) / \mu(x)=\gamma$ and u satisfies $x \rightarrow 0$

$$
\begin{equation*}
\Delta u=u\left(\mathrm{Ln}^{+} u\right)^{\alpha}-\mathrm{C}(\mathrm{~N}) \gamma \delta_{0} \tag{3.49}
\end{equation*}
$$

in $\mathrm{D}^{\prime}(\Omega)$;
if $\alpha>2$:
(iii) either u behaves as in (i) or (ii) above
(iv) or $u(x)=\gamma(\alpha, N) e^{\gamma(\alpha)|x|^{2 /(2-\alpha)}}\left(1+O\left(|x|^{2 /(\alpha-2)}\right)\right)$
near 0 with $\gamma(\alpha)=\left(\frac{2}{\alpha-2}\right)^{2 /(\alpha-2)}$ and $\gamma(\alpha, \mathrm{N})=e^{(\alpha-(\mathrm{N}-1)(\alpha-2)) / 2 \alpha}$.
Proof. - From Theorems 1.1, 1.2 we know that $u(x) / \mu(x)$ admits a limit in $(0,+\infty]$ as x tends to 0 . If the limit is finite we get (i) or (ii) [(iii) if $\alpha>2$] and (3.49) from Theorems 1.1, 1.2 and Remark 1.1 (if the limit is 0 then u is regular as in Proposition 2.5). So let us assume that

$$
\begin{equation*}
\lim _{x \rightarrow 0} u(x) / \mu(x)=+\infty \tag{3.50}
\end{equation*}
$$

For any $c>0$ let φ_{c} be the solution of

$$
\begin{gather*}
\left(\varphi_{c}\right)_{r r}+\frac{\mathrm{N}-1}{r}\left(\varphi_{c}\right)_{r}=\varphi_{c}\left(\mathrm{~L}^{+} \varphi_{c}\right)^{\alpha} \quad \text { in }(0, \mathrm{R}), \tag{3.51}\\
\lim _{r \rightarrow 0} \varphi_{c}(r) / \mu(r)=c, \quad \varphi_{c}(\mathrm{R})=\min _{|x|=\mathrm{R}} u(x),
\end{gather*}
$$

(we assume $\mathbf{B}_{\mathbf{R}} \subset \Omega$). It is clear that $0 \leqq \varphi_{c} \leqq u$ for $0<|x|<\mathbf{R}, c \mapsto \varphi_{c}$ is increasing and $\lim \varphi_{c}=\varphi$ where φ satisfies

$$
\begin{gather*}
\varphi_{r r}+\frac{\mathrm{N}-1}{r} \varphi_{r}=\varphi\left(\mathrm{L}^{+} \varphi\right)^{\alpha} \quad \text { in }(0, \mathrm{R}), \tag{3.52}\\
\lim _{r \rightarrow 0} \varphi(r) / \mu(r)=+\infty, \quad \varphi(\mathrm{R})=\min _{|x|=\mathrm{R}} u(x) .
\end{gather*}
$$

Moreover $0 \leqq \varphi \leqq u$ in $\mathrm{B}_{\mathrm{R}} \backslash\{0\}$.
If $0<\alpha \leqq 2$ we can take \mathbf{R} small enough such that $\varphi(\mathbf{R})>e$ and we construct in the same way as φ a function $\tilde{\varphi}$ such that $0 \leqq \tilde{\varphi} \leqq \varphi$ and

$$
\begin{align*}
& \tilde{\varphi}_{r r}+\frac{N-1}{r} \tilde{\varphi}_{r}=\tilde{\varphi}\left(L n^{+} \tilde{\varphi}\right)^{2} \quad \text { in }(0, R) \tag{3.53}\\
& \lim _{r \rightarrow 0} \tilde{\varphi}(r) / \mu(r)=+\infty, \quad \tilde{\varphi}(\mathrm{R})=\varphi(\mathrm{R})
\end{align*}
$$

From Lemma 3.4 $\lim _{r \rightarrow 0} r^{2 / \alpha} \operatorname{Ln} \tilde{\varphi}(r)=+\infty$. If we set $\zeta=\operatorname{Ln} \tilde{\varphi}$, then Lemma 3.3 implies that $\lim _{r \rightarrow 0} \frac{\zeta_{r}}{\zeta}(r)=-1$ which implies by integration that ζ remains bounded near 0 and so does $\tilde{\varphi}$, a contradiction.

We assume now $\alpha>2$. We define ψ_{n} as the solution of

$$
\begin{align*}
& \left(\psi_{n}\right)_{r r}+\frac{\mathrm{N}-1}{r}\left(\psi_{n}\right)_{r}=\psi_{n}\left(\mathrm{~L}^{+} \psi_{n}\right)^{\alpha} \quad \text { in }\left(\frac{1}{n}, \mathrm{R}\right), \tag{3.54}\\
& \psi_{n}\left(\frac{1}{n}\right)=\max _{|x|=1 / n} u(x), \quad \psi_{n}(\mathrm{R})=\max _{|x|=\mathrm{R}} u(x) .
\end{align*}
$$

Using Lemma 3.2 and the same device as in the proof of Proposition 2.5 we deduce that for some subsequence $\left\{\psi_{n_{k}}\right\}$ we have $\lim _{n_{k} \rightarrow \infty} \psi_{n_{k}}=\psi$ in the $\mathrm{C}^{1}((0, R])$-topology and ψ satisfies

$$
\begin{equation*}
\psi_{r r}+\frac{\mathrm{N}-1}{r} \psi_{r}=\psi\left(\mathrm{Ln}^{+} \psi\right)^{\alpha} \quad \text { in }(0, \mathbf{R}) \tag{3.55}
\end{equation*}
$$

Moreover $0 \leqq u \leqq \psi$ in $B_{R} \backslash\{0\}$. Applying Lemma 3.5 to φ and ψ we get (iv).

Remark 3.2. - It is interesting to notice that if u is a positive solution of (3.16) with a strong singularity at 0 , then $v=\operatorname{Ln} u$ behaves like the explicit radial singular solution of the following first order equation in $\mathbb{R}^{N} \backslash\{0\}(\alpha>2)$

$$
\begin{equation*}
|D U|^{2}=U^{\alpha} \tag{3.56}
\end{equation*}
$$

that is $\mathrm{U}(x)=\gamma(\alpha)|x|^{2 /(2-\alpha)}$.
Remark 3.3. - There is an alternative way to prove Theorem 3.2 in the case $\alpha>2$, it is to obtain Harnack type inequalities as in [23] and to use Lemmas 3. 3-3. 5 (see [16] for details). Unfortunately such inequalities are out of reach in the case $0<\alpha \leqq 2$ as Lemma 3.2 no longer holds.

REFERENCES

[1] P. Aviles, On Isolated Singularities in Some Nonlinear Partial Differential Equations, Indiana Univ. Math. J., Vol. 32, 1983, pp. 773-791.
[2] P. Aviles, Local Behaviour of Solutions of Some Elliptic Equations, Comm. Math. Phys., Vol. 108, 1987, pp. 177-192.
[3] Ph. Benilan and H. Brezis, Nonlinear Problems Related to the Thomas-Fermi Equation (in preparation). See also H. Brezis, Some Variational Problems of the ThomasFermi Type, in Variational Inequalities and Complementary Conditions, R. W. Cottle, F. Gianessi and J. L. Lions Eds., Wiley-Interscience, 1980, pp. 53-73.
[4] H. Brezis and E. T. Lieb, Long Range Atomic Potentials in Thomas-Fermi Theory, Comm. Math. Phys., Vol. 65, 1980, pp. 231-246.
[5] H. Brezis and P. L. Lions, A Note on Isolated Singularities for Linear Elliptic Equations, Mathematical Analysis and Applications, Vol. 7A, 1981, pp. 263-266.
[6] H. Brezis and L. Oswald, Singular Solutions for Some Semilinear Elliptic Equations, Arch. Rat. Mech. Anal. (to appear).
[7] R. H. Fowler, Further Studies in Emden's and Similar Differential Equations, Quart. J. Math., Vol. 2, 1931, pp. 259-288.
[8] B. Gidas and J. Spruck, Global and Local Behaviour of Positive Solutions of Nonlinear Elliptic Equations, Comm. Pure Appl. Math., Vol. 34, 1980, pp. 525-598.
[9] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1983.
[10] M. Guedda and L. Veron, Local and Global Properties of Solutions of Quasilinear Elliptic Equations, J. Diff. Equ., Vol. 75, 1988.
[11] P. L. Lions, Isolated Singularities in Semilinear Problems, J. Diff. Equ. Vol. 38, 1980, pp. 441-550.
[12] W. M. Ni and J. Serrin, Nonexistence Theorems for Singular Solutions of Quasilinear Partial Differential Equations, Comm. Pure Applied Math., Vol. 39, 1986, pp. 379399.
[13] J. Nrtsche, Über die isoliertien Singularitäten der Lösungen von $\Delta u=e^{\mu}$, Math. Z. Bd., Vol. 69, 1957, pp. 316-324.
[14] R. Osserman, On the Inequality $\Delta u \geqq f(u)$, Pacific J. Math., Vol. 7, 1957, pp. 16411647.
[15] Y. Richard, Solutions Singulières d'Équations Elliptiques Semi-Linéaires, Ph. D. Thesis, Univ. Tours, 1987.
[16] Y. Richard and L. Veron, Un résultat d'isotropie pour des singularités d'inéquations elliptiques non linéaires, C.R. Acad. Sci. Paris, 304, série I, 1987, pp. 423-426.
[17] J. Serrin, Local Behaviour of Solutions of Quasilinear Equations, Acta Math., Vol. 111, 1964, pp. 247-302.
[18] J. Serrin, Isolated Singularities of Solutions of Quasilinear Equations, Acta Math., Vol. 113, 1965, pp. 219-240.
[19] J. L. Vazquez, An a priori Interior Estimate for the Solutions of a Nonlinear Problem Representing Weak Diffusion, Nonlinear Anal., Vol. 5, 1981, pp. 95-103.
[20] J. L. Vazquez, On a Semilinear Equation in \mathbb{R}^{2} Involving Bounded Measures, Proc. Roy. Soc. Edinburgh, Vol. 95A, 1983, pp. 181-202.
[21] J. L. Vazquez and L. Veron, Singularities of Elliptic Equations with an Exponential Nonlinearity, Math. Ann., Vol. 269, 1984, pp. 119-135.
[22] J. L. Vazquez and L. Veron, Isolated Singularities of Some Semilinear Elliptic Equations, J. Diff. Equ., Vol. 60, 1985, pp. 301-321.
[23] L. Veron, Singular Solutions of Some Nonlinear Elliptic Equations, Nonlinear Anal., Vol. 5, 1981, pp. 225-242.
[24] L. Veron, Weak and Strong Singularities of Nonlinear Elliptic Equations, Proc. Symp. Pure Math., Vol. 45, (2), 1986, pp. 477-495.
(Manuscrit reçu le 20 novembre 1987.)

