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ABSTRACT. - It is shown that operation of partial conjugation (the
partial Legendre-Fenchel transform) of bivariate convex-concave functions
has bicontinuity properties with respect to the extended epijhypo-conver-
gence of saddle functions and the epi-convergence of the partial conjugate
(convex) functions. The results are applied to study the stability of the
optimal solutions and associated multipliers of convex programs, and to
a couple of problems in mechanics.

Key words : Epi-convergence, variational convergence, epi/hypo-convergence, Legendre-
Fenchel transform, conjugate, convex functions, homogenization, Lagrangians, Reisner func-
tional.

RESUME. - On montre que la conjuguée partielle (la transformation de
Legendre-Fenchel partielle) de fonctions de selles convexes-concaves a
des proprietes de bicontinuite par rapport a 1’epi/hypo-convergence des
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538 D. AZE, H. ATTOUCH AND R. J.-B. WETS

fonctions de selles et 1’epi-convergence des conjuguees partielles. On
applique les resultats a l’étude de la stabilite des solutions et des multiplica-
teurs (de Lagrange associes a ces solutions) de problemes d’optimisation
convexe, ainsi qu’ a des problemes en mecanique qui proviennent de l’ho-
mogeneisation et du renforcement de materiaux.

One of the main results of the theory of epi-convergence is that on the
space of proper, lower semicontinuous, convex functions defined on f~",
the Legendre-Fenchel transform (conjugation) is bicontinuous with respect
to the epi-topology. This result generalizes to reflexive Banach spaces,
provided one works with a strengthened version of epi-convergence involv-
ing both the strong and the weak topologies of the underlying space and
of its dual. In this paper we extend these results to the partial conjugation
of bivariate convex functions that generate convex-concave functions, also
called saddle functions. It is shown that appropriate notion of convergence
for saddle function is that of epi/hypo-convergence introduced and studied
earlier by Attouch and Wets [10]. The main results are proved in Section 3
(Theorems 3.1, 3. 2 and 3. 5). In Sections 1 and 2 we review the key
definitions and derive some preliminary results. Section 4 is devoted to
the application of the main results in the context of constrained convex
programming. In this context, epi-convergence of the sequence of convex
perturbation functions (and hence epi/hypo convergence of corresponding
convex-concave Lagrangians) is obtained as a consequence of a general
result (Theorem 4. 1) concerning the epi-convergence of the sum of two
sequences of closed convex functions. We prove a stability result that
guarantees the convergence of the solutions as well as that of the associated
dual multipliers (Theorem 4. 3). In section 5 we sketch out a couple of
applications in mechanics. First, we develop a unified approach to the
study of the homogenization of composite materials in mechanics, that
relies on the convergence of the associated Lagrangians, to obtain the
convergence of the strain tensor fields as well as that of the stress tensor
fields (Proposition 5. 2 and Corollary 5. 3). And second, we study a

reinforcement problem when the thickness of the reinforced zone goes to
zero.

1. EPI-CONVERGENCE: THE CONVEX CASE

We review the main features of the theory of epi-convergence of convex
functions to set the stage for the latter investigation of convex-concave
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539CONVEX-CONCAVE SADDLE FUNCTIONS

bivariate functions. We emphasize some aspects of the univariate theory
that has been glossed over in earlier presentation but whose counterparts
play a significant role in the bivariate case, in particular the notion of a
closed convex functions.

The concept of epi-convergence was first utilized by R. A. Wijsman [1].
U. Mosco[2] was responsible for bringing to the fore the important
relationship between epi-convergence and the convergence of solutions to
variational inequalities. E. DeGiorgi et al. [3] extended widely the study of
epi-convergence, under the name of r-convergence, in their study of
integral functionals that arise in the Calculus of Variations. There is now
a rich literature, consult [4], dealing with the theory (convex and noncon-
vex) as well as with the applications of epi-convergence. We have chosen
to deal with epi-convergence rather than hypo-convergence. Obviously,
every epi-result has his counterpart in the hypo-setting.

Let us review some definitions. The effective domain of a function
F : X ~ R is the set

(X, r) being a topological space, the lower closure (or lower semicontinuous
regularization) of the function F is the function

where N~ (x) denotes the system of neighborhoods of x with respect to the
topology t. A function F is 03C4-lower semicontinuous (t-l. sc. or simply 1. sc.)
atxif

It is i-l. sc. if ( 1. 2) holds at all xeX or equivalently if its epigraph

is a closed subset of X x R with respect to the product topology of r and
the natural topology of R. It is well known that

The extended lower closure of F is the function also denoted d F
if there is no risk of confusion, defined as follows

We say that F is closed if F = cl F. Note that the closure operation is
basically of local character, as is evident from (1.1), whereas the extended
closure involves the whole function. As a direct consequence of (1.1) and

Vol. 5, n° 6-1988.



540 D. AZE, H. ATTOUCH AND R. J.-B. WETS

the definition of cl F we have for all open set G

The above closure operations arise naturally when considering biconjuga-
tion operations.
We consider now two linear spaces X and X* paired through a bilinear

form ( . , . ). The weak topology c (X, X*) is the coarsest one for which
the linear forms x -~  x, x* ) are continuous. The topological dual space
of X equipped with the topology c(X, X*) is X*. A locally convex
topology T is called consistent with the pairing  . , . ~ if the topological
dual space of (X, r) is X*. For any convex set C c X, the closure is the
same for all topologies consistent with the pairing, the same being true,
from (1.3) for the l. sc. regularization of convex functions defined on X
with extended real values. If F : X - R is a convex function, its conjugate
is obtained via the Legendre-Fenchel transformation : F* : X* -~ (~8 defined
by

It is easy to show that F* is convex and cr(X*, X)-lower semicontinuous.
The biconjugate F** is(F*)*

It is clear that F** _ F. Moreover, it is not difficult to see that

(1.7) F** = F if and only if F = cl F is convex.

Let us now review the main topological features of epi-convergence. (for
more details see [4]). Let { Fn, n X --~ be a sequence of functions
defined on a topological space (X, t). The i-epi-limit inferior of the

sequence {Fn, n is denoted by i-lie Fn and is defined by

The i-epi-limit superior is denoted by i-lse Fn, and is defined similarly

Both t-lie F" and 03C4-lse Fn, are 03C4-lower semicontinuous. A function F is said
to be i-epi-limit of the sequence F", and we write F = i-lme if

or equivalently

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire



541CONVEX-CONCAVE SADDLE 

the converse inequality follows from the definition. In the case when X

is a linear space, and the functions F" are convex we have that

03C4-lse F" is convex, but
T-lig F" is not necessarily convex.
Therefore in the convex case i-lme Fn, when it exists, is a convex 1. sc.

function. When the space (X, r) is first countable, one can work with

sequences and we have

(cf. [4], Theorem 1.13). Moreover, these two infima are in fact attained.
In the sequel we deal with weak topologies on Banach spaces, and thus

for the weak epi-limit we use (1.12) and (1.13) as definition and work
with sequential epi-limits rather than topological epi-limits defined in ( 1. 8)
and ( 1. 9). Note however, that, in general, topological and sequential epi-
limits do not coincide. We write w-lme for a weak epi-limit s-lme, for a
strong epi-limit, w*-lme for the weak epi-limit of functions defined on the
dual of X equipped with its weak topology, etc.
We now review, cf. [ 1 ], [5], [6], [7], the continuity properties of the

Legendre-Fenchel transform. A sequence { F", n E f~ : X -~ of functions

defined on a Banach space is said to be upper modulated if

(1.14) there exists a bounded sequence (x~) in X such that

The sequence is said to be equi-coercive if

(1.15) lim sup (F") (x~)  + oo implies (xn) bounded.
n

The following theorems can be found in [6] and [4]:

THEOREM 1. 1. - Let X be a reflexive Banach n E ~l : X -~ f~ ~
a sequence of upper modulated convex, I. sc..f’unctions, then

THEOREM 1. 2. - Let X be a separable Banach space, ~ F", n E (~I : X --~ 
a sequence of convex, l. sc. proper functions such that the is

equi-coercive, then

Vol. 5, n° 6-1988.



542 D. AZE, H. ATTOUCH AND R. J.-B. WETS

Theorems 1.1 and 1.2 suggest the following strengthened notion of
epi-limit. Let X be a Banach space. A function F : X ~ R is the Mosco-
epi-limit of the and we write F = F",
if

or equivalently, for all xeX

( 1. 17 (a)) there exists x such that lim sup Fn (xn) _ F (x)
n

The Legendre-Fenchel transform is bicontinuous with respect to the
Mosco-epi-topology on the space of 1. sc. convex functions; this follows
from the following theorem.

THEOREM 1.3 ([1], [5], [6]). - Let X be a reflexive separable Banach
space and ~ F; F", n E ~i : x ~ be l. sc., proper, convex functions. Then

Let us now consider bivariate functions defined on a product space
(X, r) x (Y, a). We write (t x a)-lme F" for the i x 03C3-epi-limit of a sequence
{ F", assuming it exists, if the calculation of the epi-limit at (x, y) is
made with sequences { (xn, yn), n such that the (xn) t-converge to x and
the (Yn) a-converge to y. We are particularly interested in the following
situation:
X is a Banach space,
Y is a separable Banach space,

In the framework of the duality theory for bivariate functions, ef. Rockafel-
lar [8] and Ekeland-Temam [9], assumption 9V corresponds to the classical
regularity qualification: there exist r" > 0 and such that

Annales de l’Institut Henri Poincaré - Analyse non linéaire



543CONVEX-CONCAVE SADDLE FUNCTIONS

If and M=supMn +00, and the functions {Fn(., 0), 
are equi-coercive, then assumption Jf is clearly satisfied. Combining the
proofs of Theorems 1.1 and 1. 2, as done in [40], Theorem 3. 3, we obtain
the following:

THEOREM 1.4. - Let {F; FPJ, nE N : X * x be a collection of
convex, I. se. functions such that the sequence(Fn) satisfies assumption 
( 1.18), then

implies

In Section 2 we briefly review the main definitions and properties of
the variational notion of convergence for saddle functions introduced in

[10], [11]: epijhypo-convergence. This notion is well adapted to our

purposes, since in Section 3 we show that the epi-convergence of convex
bivariate functions is equivalent to the epi/hypo-convergence of their

partial Legendre-Fenchel transf orm.

2. EPI/HYPO-CONVERGENCE OF BIVARIATE FUNCTIONS

We review the definition and the main properties of epi/hypo-conver-
gence (for further details see [10], [ 11 J). Let us consider topological spaces
(X, r) and (Y, c) and a sequence { F": X x Y ~ R, n~N}. The hypolepi-
limit inferior of the sequence (F") is the function denoted by F" and

defined by

The epi/hypo-limit superior denoted by Fn is defined by

A bivariate function F is said to be an epi/hypo-limit of the sequence (Fn)
if

Thus, in general epi-hypo-limits are not unique. This is not the only
type of convergence of bivariate functions that could be defined. In fact
our two limit functions are just two among many possible limits of
bivariate functions [10]. The choice of these two functions is in some sense
minimal ( see [ 11 ], Section 2) to obtain convergence of saddle points as
made clear in Section 4 of [10]. Other definitions have been proposed by

Vol. 5, n° 6-1988.



544 D. AZE, H. ATTOUCH AND R. J.-B. WETS

Cavazutti [12], [13], Greco [14] ( see also Sonntag [15]). They all imply
epi/hypo-convergence, but unduly restrict the domain of applications.

Finally, observe that when the F" do not depend on y, then the definition
of epijhypo-convergence specializes to the classical definition of epi-conver-
gence (with respect to the variable x). On the other hand, if the F" do not
depend on x, then epi/hypo-convergence is simply hypo-convergence. Thus
the theory contains both the theory of epi and hypo-convergence.
When the topological spaces (X, t) and (Y, o) are metrizable, it is

possible to give a representation of the limits in terms of sequences that
turns out to be very useful in verifying epi/hypo-convergence, cf [10],
Corollary 4. 4. The formulas that we give here in terms of sequences rather
than subsequences. They complement those given earlier in [10].

THEOREM 2 . 1. - Suppose(X, i) and (Y, ~) are two metrizable spaces
sequence of , functions. Then for

every (x, y) E X x Y

and

These characterizations of the limits functions yield directly the following
criterion for epi/hypo-convergence.

COROLLARY 2 . 2. - Suppose(X, i) and (Y, ~) are metrizable, and

~ Fn : X x Y ~ ~, n E ~l ~ is a sequence of functions. Then the following asser-
tions are equivalent.

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire



545CONVEX-CONCAVE SADDLE FUNCTIONS

(i) to every y there corresponds x such that

and

Formulas (2.4) and (2. 5) define epi/hypo-limits in terms of sequences.
As in the case of epi/convergence [see (1.12), (1.13)], when applying the
theory, one often has to work with weak-topologies on a (nonnecessarily
reflexive) Banach space, the topological definitions of epi-limits are then
not easy to handle. This leads us to introduce sequential notions of
epi/hypo-limits which coincide with the topological ones when the underly-
ing spaces are metrizable. For a define

To simplify notations, we shall henceforth omit the prefix "seq". The
reader, however, should stay aware of the difference in the general (i. e.
non-metrizable) case. Note also that when (X, t) and (Y, a) are linear
spaces and the F" are convex-concave for all n E ~l

e/h-ls F" is convex in the variable x,
h/e-li F" is concave in the variable y.

We introduce now one class of limit functions involving extended closure
(see Section 1). If the bivariate functions are convex-concave, then the

extended closures are generated by conjugacy operations and continuity
of the partial Legendre-Fenchel transform leads us to work with the
following notion of extended epilhypo-convergence introduced in [10].

DEFINITION 2. 3. - A where (X, t)
and (Y, c) are topological spaces, is said to epilhypo-converge in the

extended sense to a function F : X x Y ~ f~ if

where clx = means the extended lower closure with respect to x for
fixed y and 03C3-cly the extended upper closure with respect to y for
fixed x. The interval of extended epi/hypo-limits is in general greater than
that defined in (2. 3).

Vol. 5, n° 6-1988.



546 D. AZE, H. ATTOUCH AND R. J.-B. WETS

The following theorem (compare with [10], Theorem 3.10) shows that
this notion of convergence is a variational convergence. Recall that (x,

x Y is a saddle point of the bivariate function F : X x Y -~ R if

or equivalently

THEOREM 2. 4. - Let us assume F : (X, i) x (Y, 6) -.~ f~, n E 
are such that

then (x, y) is a saddle point of F and

Proof - Let { 03BEn, n E N} and {~n, n E N} be two sequences such that
-  r.._ a

~n --~ x, r~n --~ y, and for k E ~"k = xk, Let us consider y E Y and

y. Since yk) is a saddle point of F"x we have

irom which it follows that

Hence

and using the fact that ~" ~ x, we see that

A symmetric argument shows that for all XEX

Annales de l’Institut Henri Poincaré - Analyse non linéaire



547CONVEX-CONCAVE SADDLE FUNCTIONS

Inequality (2.16) being true for all yeY, we obtain that for all y e Y

similarly from (2.17) we derive that for all xeX

From (2.18) and (2.19) we have for all (x, y) E X x Y

and this completes the proof of the theorem. D
The variational character of this convergence notion is stressed by the

following result whose proof is straightforward.

THEOREM 2 . 5. - Suppose X, F : X x ~ -~ (~, n E I~ ~ are as in
Theorem 2. 4 with

T’hen for any continuous function G : (~, i) x (Y, ~) --~ (~

3. CONTINUITY PROPERTIES OF THE PARTIAL LEGENDRE-
FENCHEL TRANSFORM

We study here the continuity properties of the partial Legendre-Fenchel
transform that establishes a natural correspondence between convex and
convex-concave bivariate functions. The argumentation is surprisingly
complex. In part this comes from the fact that the functions can take on
the values + oo and - oo, and that the Legendre-Frenchel transformation
then looses its local character and it is only the global properties of the
operations that are preserved. An elegant study of this phenomena and
its implications has been made by Rockafellar ([8], [17] and [18]) and
further analyzed by McLinden ([19], [20]); see also Ekeland-Temam [9], J.
P. Aubin [21] and Auslender [42].
Convex-concave bivariate functions are related to convex bivariate

functions through partial conjugation, i. e. conjugation with respect to one
of the two variables. We are led to introduce equivalence classes of convex-
concave saddle functions. For the sake of the noninitiated reader we review
quickly the motivations and the main features of Rockafellar’s scheme
([8], [17], [18]). We begin with an example.

Vol. 5, n° 6-1988.



548 D. AZE, H. ATTOUCH AND R. J.-B. WETS

Let Ko be a convex-concave continuous function on [ - l,1] x [ -1,1].
We associate to Ko the two functions

and

Then both Ki and K~ have the same saddle points (and values) as Ko,
although they differ on substantial portions of the plane. However, not
only do these two functions have the same saddle points, but so do all
linear perturbations of these two functions. So from a variational viewpoint
they appear to be undistinguishable. It is thus natural when studying limits
of the variational character that we need to deal with equivalent classes
whose members have similar saddle point properties.

Let (X, X*), (Y, Y*) be two pairs of linear spaces, paired by the bilinear
forms ( x, x* ) and  y, y * ~ . The space X* x Y is then paired with X x Y*
in the obvious fashion.

Let K : X* x Y*   be a convex-concave function. We associate with
K its convex and concave parents defined by

Thus we have the following relations between these functions:

In the example above K 1 and K2 have the same parents; they cannot be
distinguished as coming from different bivariate convex or concave

functions. Two convex-concave bivariate functions K1 and K2, are said
to be equivalent if they have the same parents.
A bivariate convex-concave function is said to be closed if its parents

are the conjugates of each other, i. e., if the above diagram can be closed
through the classical Legendre-Fenchel transform (with respect to both
variables), i. e.

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire



549CONVEX-CONCAVE SADDLE FUNCTIONS

One can prove [8] that for closed convex-convace functions, the associated
equivalence class is an interval of functions denoted by [K, K] with

and

where K denotes the extended lower closure with respect to x* and
is the extended upper closure with respect to y*.

We recall that a convex function is closed if .

y) F = F or equivalently F** = F. The following elegant result is proved
by Rockafellar [8]:

The map K- F establishes a one-to-one correspondence between closed
convex-concave (equivalence) classes and closed convex functions.

This correspondence has continuity properties that are made explicit
here below. Given a sequence of closed convex bivariate functions

that t-epi-converges to F, we study the induced convergence for the
associated classes of convex-concave bivariate functions associated to (F")
through the partial Legendre-Fenchel transform. We show that the appro-
priate notion of convergence for this class is, for our purpose, the extended
epijhypo-convergence introduced in [10] and reviewed in Section 2.
The next two theorems, with Theorem 3. 6 about the convergence of

subdifferentials, summarize our main results about the continuity proper-
ties of the partial Legendre-Fenchel transform.

THEOREM 3 . 1. - Suppose X and Y are reflexive Banach spaces, ~ F,
Fn : collection of proper, 1. sc., convex functions
such that at least one of the two sequences (F") or (F")* is upper modulated
[see (1.14)]. Then the following statements are equivalent:

(i) the sequence F" Mosco-epi-converges to F;
(ii) for all K] and we have:

Proof. - (i) + (it). We apply part (i) of Lemma 3 . 3 below with t*=sx*
and c = sy to obtain

Since the conjugate functions (Fn)* Mosco-epi-converge to F* (Theorem
1. 3), we can apply Lemma 3. 3 (ii), with T=Sx, to obtain the
second inequality in (3. 6).

Vol. 5, n° 6-1988.
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(ii) ~ (i). Parts (iii) and (iv) of Lemma 3. 3 yield

To complete the proof, we can apply Theorem 1.1 since by assumption
one of the sequences ( F") or ( F") * is upper modulated. D

Remark. - In Theorem 3.1 the implication (ii) ==> (i) cannot be obtained
without the upper modulated assumption as is shown by the following
counterexample. Let X = Y = R, F" (x, y) = nx + Bt/[y = ~] (x, y), where B)/c
denotes the indicator function of C. We have Kn (x, y) = K" (x, y) = nx - ny.
Thus if

and hence

hence (ii) holds but not (i). D
Another case of practical interest is when the sequence of saddle points

is bounded in the space X* x Y*. The natural choice of topologies is then
c* = wy* and t* = wx*. Epi/hypo-convergence of the saddle functions K" is
then related to the epi-convergence of the sequence (F") for the wx* x Sy
topology.
The connection between the wx* x sy-epi-convergence of a collection of

convex functions and the sX x wy*-epi-convergence of their conjugates
(Theorem 1. 4) relies on assumption ~f ( 1. 18). It is also this assumption
that we use when dealing with weak-strong (or strong-weak) epi-convergent
sequences, and partial conjugation. Assumption is Jf for the sequence
~" : Y* defined by ~" (y*, x) _ (Fn)* (x, y*). As the corollary of
Theorem 1. 4 and Lemma 3. 3 below, we have:

THEOREM 3.2. - Suppose X and Y are separable Banach spaces (not
necessarily reflexive), ~ F, X* x Y -~ is a collection of proper, 1. sc.,
convex functions, and

T~’hen, for every K E [K, K] and Kn E [K", K"]

Conversely, if we assume that (3. 8) holds and that ~* is satisfied, then

Annales de I’Institut Henri Poincaré - Analyse non linéaire



551CONVEX-CONCAVE SADDLE FUNCTIONS

Proof. - (3. 7) ~ (3. 8) is a straightforward consequence of parts (i)
and (ii) of Lemma 3. 3, relying on Theorem 1. 4 to guarantee

(3. 8) + ~f* => (3. 9). From parts (iii) and (iv) of Lemma 3. 3 we have

From ~f*, by Theorem 1. 4, we know that

and hence

which, when combined with the inequalities above, yields the desired
result. D
The key ingredient in both proofs is the next lemma that is concerned

with the effect of partial conjugation on epi-convergence.

LEMMA 3 . 3. - Suppose X and Y are Banach spaces, (F,
are the corresponding classes of bivariate closed

convex-concave functions. Then .

where (i, ~) [respectively (i*, ~*)] are topologies on X and Y (respectively
X * and Y*) such that the ~~ x ~x*, ~*~ and ~ . , . ~~y, a~ x ~y*, a*~
are sequentially continuous.

From the definition of K, there exists y E Y such that

0’*

F (x*, y) - ~ y, y* ~  a. Let us consider y,* ~y*. In view of (1.13) for all
03B2~R with F (x*, y)  P, there exists

such that

It follows that

Vol. 5, n° 6-1988.
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Letting fi decrease to F (x*, y), this yields

Letting a decrease to K (x*, y*), we see that

This inequality being true for all sequences (yn ) «*-converging to y*, it

implies

Since K = K, it follows that

(ii) follows directly from (i), if we apply (i) to the following collection
~ ~; ~n, where

If we denote by L"], [L, L] the corresponding classes of bivariate
convex-concave functions, using the fact that

we have from (i) that

Since

we obtain

and

We have

Annales de l’Institut Henri Poincaré - Analyse non linéaire



553CONVEX-CONCAVE SADDLE FUNCTIONS

Thus_ to prove (3.12) it suffices to show that for any sequence

Using the definition of we see that to every ae (~ with

~*

(x*, y*), and to every x*, we can associate a

. ~*

sequence y,* -~ y* such that

Using the fact that

we have

Letting a increase to K") (x*, y*) yields the inequality (3 . 12).
(iv) is obtained by applying (iii) to the collection of functions defined

by (3.11). D
For sequences that w* x w-epi-converge, again by relying on Lemma

3. 3 (and Theorem 1.1), we obtain convergence result for the associated
saddle functions: 

COROLLARY 3. 4. - Let X and X be reflexive Banach spaces and ~ F,
collection of upper modulated, l. sc., convex

functions. If we assume that

then for every K] and K" E [K", K"], we have

The subgradient-set of a convex-concave function K : X * x Y * -~ (~,
denoted by aK, is by definition

where Ox. K (x*, y*) is the subgradient set of the convex function K ( . , y*),
cf. [17]. With F, the convex parent of K, we have that

and

Vol. 5, n° 6-1988.
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We need the following result from [4] that relates the epi-convergence of
a sequence of convex functions to the graph-convergence of the associated
(subdifferential) maps.

THEOREM 3. 5. - Suppose { F; F" x Y --~ ~, n E I~l ~ is a collection of proper
convex functions. Then, the following are equivalent

(i) F = Mosco-epi-lim Fn;
n - co

(it) gph aF = Lim gph aFn plus a normalizing condition:

Here

and

is the (Kuratowski) set limit of the graphs of the subdifferentials with
respect to the strong topologies.

THEOREM 3. 6. - Suppose ~ K; Kn : X * x Y * -~ f~, n E ~I ~ is a collection

of convex-concave saddle functions with proper convex parents ~ F;
Fn : X* x Y -+ ~, n Suppose that the sequence satisfies the norma-
lizing condition (NC). Then, the following are equivalent

(i) gph aK = lim gph aKn;
n -~ o0

(it) for all K E [K, K] and Kn E we have

Proof. - First observe that the normalizing condition (NC) implies the
. 

upper modulated condition ( 1.14). From Theorems 3 .1 and 3. 5, it follows
that

To complete the argument, observe that with respect to set-convergence,
the map
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is continuous, and thus from the definition of the subgradients, we have

This last result has important implications in nonsmooth analysis where
the second order epi-derivative [49] is defined as the function whose
subdifferential is the tangent cone to the graph of the subdifferential.

4. CONVEX PROGRAMMING

Our first example is intended to illustrate some problems that arise in
connection with Lagrangians in mathematical programming. Our results
are direct applications of Theorem 3.1.
We consider the following classes of problems:

(i) X is a reflexive separable Banach space;
a collection of closed convex proper

functions;
(iii) ~ g, gn : X ~ (~ U ~ + oo ~, n E f~11, i =1, ... , m ~, a collection of closed

convex proper functions.
We are interested in the asymptotic behaviour of the following sequence

of optimization problems

A classical perturbation scheme is to consider for y e the problems

where

The associated perturbation function F" is given by

and the Lagrangian function (x, y), see [22],
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here is the indicator function ( = 0 on C, + o0 otherwise) of the set
C. We think of the problems (4. 2)n and their Lagrangians (4. 5)n as

approximations of some limit problem:

with associated perturbation function

and Lagrangian function

In (4. 7), D is defined by

and for all we also define

A typical situation is when the problems (4. 2)" are obtained from (4. 6)
as the result of adding penalization or barrier terms to the objective, or
when the (4. 2)" are the restriction of (4. 6) to finite dimensional subspaces
of X, and so on. In particular dealing with numerical procedures, one is
naturally interested by convergence of solutions, but also by the conver-
gence of multipliers, for reason of stability ([22], [23] and [24]) or to be
able to calculate rates of convergence such as in augmented Lagrangian
methods. Our objective is to give some conditions which will ensure the
epi/hypo-convergence of the Lagrangians K." to K, and under suitable
compactness of the saddle points of K", the convergence of these saddle
points to a saddle point of K.

In Section 3 epi/hypo-convergence of the Lagrangian function is derived
from the epi-convergence of the sequence of perturbation functions (F").
In this setting theses functions take the form of a sum of two
functions (4.4)n. In order to obtain the Mosco-epi-convergence of the
sequence (F") to F, the following theorem gives a sufficient condition for
the Mosco-epi-convergence of the sum of two closed convex functions
defined on a reflexive Banach space, that extends a result of McLinden
and Bergstrom [25].

THEOREM 4.1. - Let cp, (~")n E ~, ~ be I. sc. proper, convex
functions defined on a reflexive Banach space, such that cp = cpn and
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M-lme 03C8n. Assume that

there exists r > 0 such that, for there exist two

sequences and of elements of X verifying:

then

(4 . 12) there exists no such that c~n + is proper for n >_ no
and cp + ~ = + moreover cp is proper.

Before we turn to the proof of this theorem, we show that it implies
the finite dimentional result of McLinden and Bergstrom:

COROLLARY 4. 2 [25]. - Suppose X is finite dimentional and cp,

(~,~)" E ~,, are l. sc., proper, convex functions defined on X such that cp = lme
cp" and 03C8 = lme If

then there exists no such that is proper for n >_ no and

cp + B)/ = lme ( + moreover cp + ~r is proper.

Proof of Corollary 4.2. - It is sufficient to prove that (4.13) implies
(4.11). From (4.13) there exists some r > 0 such that

Taking advantage of the fact that X is a finite dimensional space, we can
find a finite number of vector (~1, ~Z, ~ ~ ~ , of X such that

where co (~1, ~2, ..., ~N) is the closed convex hull of (~1, ..., ~N). Without
loss of generality we may assume that the closure of (0), is included
in the interior of co ( ~ 1, ... , ~N) and that the closure of ..., ~N) is
included in the interior of From the above, for every

i E f 1, 2, ..., N}, 03BEi belongs to dom 03C6-dom 03C8, thus there exist some

xi ~ dom cp, yi e dom Bt/ such that

Using the epi-convergence of (cp") and we derive the existence of

sequences (xn)" E ,~ and i E ~ 1, ..., N ~ converging respectively to

Vol. 5, n° 6-1988.



558 D. AZE, H. ATTOUCH AND R. J.-B. WETS

x~ and y; such that f or i =1, ..., N

For n sufficiently large we obtain that

Now, for any § E Br/2 (0) and n E there exist weights {tni, i = l, ..., N}
such that

Cleary the sequences (xn) and (Yn) are bounded, lie in dom cpn and dom Wn
respectively, and from the convexity of the functions cpn and and (4.15)
it follows that 03C8n (x") and 03C8n(yn) are bounded from above. Thus, we
have shown that the conditions (4.11) are satisfied. The assertion now
follows from Theorem 4.1 since in finite dimension Mosco-epi-conver-
gence coincides with the standard definition of epi-convergence. D

Proof of Theorem 4 . .1. - Since cpn and are proper, - 00  (p" 
moreover from (4.11) with §=0 we see that for n sufficiently large
cpn (x") +  + oo. Hence for n sufficiently large (cp" + is proper.
Let us now notice that

(4 .16) B, (0) c dom cp - dom Bj/.

To see this, pick any § in B, (0), then (4 . 11) yields the existence of bounded
sequences (xn) and (Yn) satisfying 03BE=xn-yn such that for n sufficiently
large the n E ~l ~ and { n E ~1 ~ are bounded from
above. Passing to a subsequence if necessary, let x and y be weak-limit

w w

points such that x" -~ x and y. Then

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire



559CONVEX-CONCAVE SADDLE FUNCTIONS

as follows from Mosco-epi-convergence, see [1.17 (b)]. Observe that (4.16)
implies that is proper.
To prove Mosco-epi-convergence we use the following characteriza-

tion [46], Proposition 1. 19: A sequence ( Fn) of proper, l. sc., convex

functions defined on a reflexive Banach space X, Mosco-epi-converges to
the proper, I. sc. convex function F if and only if.

(*) the sequence (F") is upper modulated [see ( 1.14)];

Let us apply the above result to the sequence and F = cp + ~r.
In order to verify ( *) we argue as above and use (4.11) with § = 0, 
which implies that

w

For any x in X and xn ~ x, from Mosco-epi-convergence of the sequences
(cpn) and in particular [ 1.17 ( b)] it follows that

and this yields (a).
There only remains to establish (P), i. e.

For n sufficiently large, the function (p" + is proper and thus (see [26]
for example)

where D denotes inf-convolution (epi-sum) and cl denotes closure with
respect to the strong topology of X * [see ( 1. 7)]. Since otherwise there is

W

nothing to prove, we may as well assume that the sequence x,* --~ x* is
such that lim inf + (x,*)  + oo, and thus passing to a subsequence

n

if necessary, that the is bounded from
above. From this, and what precedes, follows the existence of (z,*) such
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that

and the definition of inf-convolution then yields a sequence (~n ) in X*
such that

Let us consider 03BE~Br(0) with r > 0 and the two bounded sequences (xj
and (yn) defined in (4. 11), then

and hence, 

From the above, and (4.11) it follows that:

Since this holds for every § E Br (0), the Banach-Steinhaus Theorem tells
us that the sequence (03BE*n)~X* is bounded, and thus has at least one weak-
cluster point, say 03BE*. We now use the continuity of the Legendre-Fenchel
transform with respect to the Mosco-epi-convergence (Theorem 1. 3) to
conclude that

Taking lim inf on both sides of (4. 17), we obtain:

and this completes the proof. D

Remark 1. - Theorem 4. 1 also extends a result of Joly [27], p. 96,
which relies on the following assumption:

It is not difficult to see that under Mosco-epi-convergence, (J) implies
(4.11). Suppose is bounded on V. Let r > 0 be such that (xo) c V.
From [ 1.18 ( a)] we know there exists a sequence such that
lim sup 03C8n(zn)~03C8 (xo). For n sufficiently large 03C8n(zn) is bounded from

n °
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above and Zn E Br (xo). Pick ~ E Br (0) and set

Then xn -yn = ~, the sequences (xn) and are bounded,
lim sup (yn)  oo, and since (xn) ci (xo) c V, lim sup cpn (xn)  oo.

n n

Remark 2. - In [44] one can find related results concerning the conver-
gence of the sum of two maximal monotone operators. Constraint qualific-
ation conditions of the type

Oeint(dom cp - dom B11)
are due to Aubin [28], condition (4.11) is the "equi"-version of this

condition.
Theorem 4.1 and 3. 2 lead us to the following stability result for infinite

dimensional convex programs. The functions g7 and Kn are as defined
earlier, (4.1)n to (4. 6).

THEOREM 4. 3. - Suppose X is a reflexive Banach space, and

and

there exists r > 0 such that for all ~ e Br (0), there exists a bounded
sequence (xn) in X that verifies

Then any sequence (K"), defined by (4. 5) n Mosco-epi/hypo-converges in the
extended sense to K defined by (4 . 8), for any K"] and K];
by this one means that

(Note that in finite dimension, in particular on w = s.)

Proof - It suffices to show that [see (4 . 4)n and (4 . 7)]
and then apply Theorem 3. l. To begin with, let us prove that

where is the indicator function of the set C. Consider (x, y) E X x R"’
w

and x, y, we need to show first that

If the lim inf is + oo, the result is immediate. Extracting some subsequence,
we can assume that (xn, i. e. gn (x") Taking the limit inferior
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on both sides and using the fact that the Mosco-epi-converge, we see
that g (x)  y, which yields the desired inequality. Consider now (x, y) E D
and ys decreasing componentwise to y when b > 0 goes to zero. There
exists x (strong convergence in X) such that

Using the definition of the lim sup operation we derive that for each 03B4>0,
there exists n (8) such that (xn, ys) E D" for n >_ n (b). Thus

and

A diagonalization argument [10], Lemma A-3, yields a sequence 03B4(n)~0
such that

and this with the lim inf inequality yields (4. 19).
Let us denote by J and I the functions defined on X x with values

in by

we have that

In order to apply Theorem 4.1 it suffices to verify assumption (4.11). So
let r>0 be given by assumption (4. 18), and ç E Br (0); there exists a
bounded sequence (xn) in X such that

for some y~Rm and e=(1,...,1). Let us consider with

sup ~~r; we have
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and

for n sufficiently large. Thus

and

Since (4.11) is satisfied, we can apply Theorem 4.1 to obtain

The assertion now follows from Theorem 3.1. D

Remarks. - 1. This theorem is related to [11], Proposition 1.17, and is
close to the results obtained by T. Zolezzi in [20] under the stronger
assumption of continuous convergence of the constraints (see also
McLinden [30] and Lucchetti-Patrone [31]). The above result and the vari-
ational properties of extended epi/hypo-convergence (Theorem 2. 4) guar-
antees that any cluster point (x, y), of the sequence of saddle points (xn, yn)
of the Lagrangian K", is a saddle point of K. A related question - if each
saddle point of the limit problem can be obtained as a limit of a sequence
of sn-saddle point for K" when E" ,[ 0, is settled (in the affirmative) by
Azé [32] (see also [10]). "Equi-" versions of the constraint qualification
and coercive assumptions naturally appear in order to guarantee existence
and boundedness of saddle points, cf. [40].

2. In the finite dimensional case when the functions

~ g"; i =1, ... , m ~ and g are finitely valued (and hence continuous, since
convex) let us stress the fact that assumption (4.18) is then automatically
satisfied. Indeed, in this situation, epi-convergence turns to be equivalent
to pointwise convergence and to uniform convergence on bounded sets.
As a corollary, we obtain in this convex setting a result similar to that of
Attouch-Wets [11], Proposition 1.17.

5. APPLICATIONS IN MECHANICS

Theorem 3. 2 is aimed at simultaneous weak convergence of primal and
dual variables. Let us describe two typical situations where this kind of
problem does occur. _
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The first one concerns homogenization of composite material where the
physical parameters rapidly oscillate between the different values of each
component. For pedagogical reasons we consider here a classical situation,
namely linear elasticity, for which the convergence of primal and dual
variables has already been obtained by other methods. Indeed, because of
its flexibility, the same method can be used to solve various primal/dual
homogenization problems, especially nonlinear problems (possibly involv-
ing constraints) where the Euler equation is much more difficult to deal
with (and even to formulate !).

The second example deals with the convergence of the primal/dual
solutions in a reinforcement problem in mechanics when the thickness of
the reinforced zone goes to zero. This is balanced with the fact that the

physical parameter goes to + oo in the same region. In this situation epi-
convergence techniques are the only ones that, at present, provide a proof
of the convergence of the saddle points.

5. 1. The homogenization approach consists of replacing a composite mate-
rial by a homogenous, ideal one, obtained by letting E go to zero in the
governing equations where the parameter E describes the periodicity, and
hence the tightness, of the structure. In the case of elasticity, primal and
dual variables are respectively equal to displacement vector fields and stress
tensor fields (internal forces).

Because of its technological importance, an abundant literature has been
devoted to this subject in recent years. The energy methods provide a
sharp and flexible mathematical approach to these convergence problems
and can be subdivided into two categories: The so-called direct energy
methods (compactness by compensation...) introduced by Bensoussan,
Lions et Papanicoulaou [33], Murat and Tartar ([34], [45]), etc., considers
the convergence (as of the Euler equations, i. e., of the operators
governing these equations. On the other hand, the epi-convergence
approach introduced by DeGiorgi [35], Marcellini [36], Marchenko-

Hruslov [37], Attouch [38], relies on the formulation of the problems
as minimization problems and studies the convergence of the energy
functionals.

Recently a dual version of these results expressed uniquely in terms of
dual variables (stress tensors) has been developed by Suquet [39] and
Aze [40]. In this section, we present a unified approach, which, via the
introduction of the associated Lagrangians, known in mechanics as Reisner

functionals, and the study of their epi/hypo-convergence, provides the
convergence of their saddle points (and saddle values), i. e. of both primal
and dual variables.
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Let us introduce the notations used in the sequel of this paragraph.

(x),..., UN(X)) is the displacement vector field
(5.3) (e (u))~i, ~.~ ~ n ~j2 is the deformation tensor, where

A well known result, the Korn’s inequality, asserts that

see [4ij lor mstance.

In elasticity (linear or more generally nonlinear hyperelasticity) the
structural equation relating deformation and stress tensors in given by

(the letter S stands for symmetric) is a function
which is convex with respect to the second variable and measurable with
respect to the first and 0 j (x, .) denotes the subdifferential of the convex
function j (x, . ). For simplicity of the presentation, we assume that no
displacement takes place on the boundary At equilibrium, the displace-
ment field is then the solution of:

where is the density of forces acting on the material. To
have problem (5.5) well-posed, we assume that

The Euler equation associated with (5.5) is:

where div o is the vector field defined by:
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A classical way to perturb (5.5) is as follows: let F, the perturbation
function, be defined by

The associated Lagrangian (the Reisner functional) takes the form

In the case of homogenization, we are concerned with a sequence 
of functions which are defined in the following way.
We consider Y = (]o, as the unit cell and the function

which is Y-periodic, measurable in x, convex in z and satisfies the
growth conditions (5.6),

and

It is clear, from the growth conditions imposed on j, that for each E > o,
the Lagrangian (5.8)~ admits a saddle point (ut, aj characterized by

and that the corresponding solutions (uE, aj remain bounded in

(Hà x (L2 (SZ))S 2. The epi-convergence of the unperturbed functionals
P (. , 0) was first proved by P. Marcellini [36], see also [4], and is the

following
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H (Y) denoting the set of periodic functions belonging to HI (Y) (having
the same traces on opposite faces of We have that

PROPOSITION 5.1 : 1

Proof. - The proof, whose details appear in [4], is sketched out below.

We can neglect the effect of the continuous perturbation and

first restrict the vector field r(x) to be piecewise constant on an open
paving of Q. We then apply (5.12) on each open set on which i (x) is

constant, observing that e (u) + z = e (u +  z, . )), from which the lim inf
condition of epi-convergence (1.11) follows. For the lim sup condition, we

proceed in a similar manner after stiching together the approximated
sequences in order to obtain approximate sequence in H~ (Q). The proof
is then completed by a density and continuity argument using the upper
growth condition on j ( . , . ). D
As a consequence of Proposition 5.1 and Theorem 3.2, we obtain

PROPOSITION 5.2. - The Lagrangian sequence

epi/hypo-converges in the extended sense for the topology

to the Lagrangian

Moreover we have, for every r~ E ~S 2

Proof. - It suffices to apply Theorem 3.2 and Proposition 5.2, taking

into account that F’(0, r)= i) dx _ Ao In (1 + I i ~ 2) dx, as follows

from (5.16), and thus assumption ~f is verified. The arguments that yield
(5.15) are straightforward (see [4] for instance). D
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Using now the variational properties of extended epi/hypo-convergence
(Theorem 2.6) and the boundedness of the sequences (uJ and (a£), we
obtain

COROLLARY 5.3. - The sequence (uE, of saddle points of KE converges
for w - (Ho x w - (L2 (SZ))S 2 to the unique saddle point (u, 6) of 
moreover, we obtain

5.2. We now consider the convergence of the primal/dual solution in a
reinforcement problem when the zone of thickness goes to 0. We consider
a bounded regular open set Oc [R3 split into two open subsets 01, Q~ by
a surface E. For the sake of simplicity, we shall assume that E is the plane
x3 = o. The surface X is surrounded by a thin layer of size E,

d (x, E) _ E . We consider in Q the problem

where a~ (x) = 1 on (x)=03BB(s)>0 on:Es and f e L2 (Q). We assume
that

and we are interested in the behaviour as E - 0 of the couple (uE, aE D uE)
where uE is the solution of (5.16). The behaviour of uE is well known

(see [4], [47]). The convergence of the dual variable has been

studied in [43] by using epi-convergence methods. Here we give an alternate
and simpler proof of the convergence result based on Theorem 3.2. The
solution of (5.16) can be characterized as the unique minimum point of

the functional 1 2 1 n fudx on the Sobolev space H1 o ( SZ . )

By using simple estimates for which we refer to [4] and [47], we obtain
that (Mj is bounded in and is bounded in (L1 (SZ)) 3. So
it is reasonable to study the convergence of (crj for the w* topology of
bounded measures on Q. Denote by the set of continuous functions
from Q ino I~ that vanish on the boundary aSZ of Q and define for

and ~P2~ ~P3) (~))3
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Let -6 (Q) = (SZ)) * be the space of bounded measures on Q viewed as
the dual space of endowed with the norm (~ ~ of uniform conver-
gence. The upper Lagrangian K~ associated with F£ ( . , . ) is easy to com-
pute by taking into account the fact that, when extended to (L2(Q»3, the
function FE (u, . ) is continuous and that is dense in L2 (S~). For
any (u, x ~ (S2)) 3, we obtain

In order to apply Theorem 3.2, we need to analyze the epi-conver-
gence of the sequence FE ( . , . ) for the topology w-Ho (s2) 
Let us begin by some notations. Define for p E (~ (SZ)) 3,

where (pt x2, 0) : =(W x2~ ~)~
cp2 (xl, x2, 0)). We denote by H the completion of (~ (SZ))3 for the norm
i ~ . ~ ~, and by V the completion for the norm One has

and D v eH when vev. For an element reH, the notation

T’(xi, x2, 0) = (il (xl, x2, 0), x2, U)) makes sense and it E (L2 (E))2.
We observe that H is a Hilbert space endowed with the inner product

PROPOSITION 5.4 :

where

Proof. - In [43], Section 4.2, it is shown that, for 

The result then follows by using the following observation whose proof is
a simple exercice; for each sequence iE, zE E ( i, 2 (~)) 3 such 
- 0 as ~ ~ 0 one has
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and the same for the lim sup. D
Let us now compute the upper Lagrangian K associated with F.

Proof. - If u ~ V, F ( u, . ) - + oo then K ( u, . ) --- + ~. Consider now
u~V. We observe that (0(03A9))3 is continuously and densely imbedded
in H, thus H identified with H* can be viewed as a subspace of

M(03A9))3. For any 03C3~H, the associated measure is defined by

~ ~, = [~, cp] _ ~ . cp dx + k at . cpt ds. We can extend the functional
F to a functional Fo defined on V H by F0(u, i = 1 D u + i 2 - u .o Y o( ~ ) 

2 
II II ~f~

As Fo (u, . ) is clearly continuous on H and (~~ {SZ))3 is dense in H, it
follows that ( F ( u, . )) * _. + oo if y ~ Hand

( F ( u, . )) * (~,) _ ( Fo ( ~,, . ) ) * ( ~) if From which the result
follows. Q
The convergence result is the following.

PROPOSITION 5.6. - The sequence of Lagrangians
(M(03A9))3 ~ R defined in (S.19) epi/hypo-converges in the

extended sense with respect to the topology w-Ho (S2) x (SZ)) 3 to the
Lagrangian K : Ho (SZ) x (~ (S~))3 -~ ~ defined in (5.22). Moreover, the

sequence of saddle points at D uE) of K£ converges with respect to the
topology w-Ho (SZ) x w*-(~ (S~)) 3 to (u, ~,) the unique saddle point of K,

where u is the unique solution to v ), v~V}and =Du
in H. ~ ~ 

Proof. - By appealing to Proposition 5.4 we can apply Theorem 3.2.
Observe that assumption ~ is fulfilled since

The convergence of the saddle points then follows from the variational
properties of extended epi/hypo-convergence and from the unicity of the
saddle point (u, a) of K. The fact that in H follows from
Lemma 5.5. That tells us that the Lagrangian Ko (associated with Fo) and
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K have the same saddle points and that (u, D u) is clearly the unique
saddle-point of Ko. D
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