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On a free boundary problem
for the stationary

Navier-Stokes equations
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Universitat des Saarlandes, D-6600 Saarbrucken, Germany

Ann. Inst. Henri Poincaré,

Vol. 4, n° 6, 1987, p. 517-547. Analyse non linéaire

ABSTRACT. - We investigate stationary flows in a fluid body together
with its free boundary. The fluid is assumed to be viscous and incompressi-
ble ; the free boundary is governed by continuity of the normal stress.

Hence the configuration to be considered here can be regarded as a
generalization of a classical equilibrium figure. The main tool in proving
existence of a regular solution consists in a hard implicit function theorem.

Key words : 76D05, 76U05, 35 Q 10.

RESUME. - Nous etudions les flots stationnaires dans un corps fluide a
frontiere libre. Le liquide est suppose visqueux et incompressible; la fronti-
ère libre est regie par la continuite de la contrainte normale. Les configur-
ations que nous examinons ici peuvent etre regardees comme une generalis-
ation d’une figure d’equilibre classique. L’outil principal pour demontre
l’existence d’une solution reguliere est un theoreme de fonction implicite a
la Nash-Moser.
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518 J. BEMELMANS

1. INTRODUCTION

Consider a drop of a viscous, incompressible fluid under the influence
of some exterior force density f. A stationary flow inside the drop can be
described by the Navier-Stokes system

together with the boundary conditions

As usual, v = (vl, v2, v3) = v (x), denotes the velocity,
p = p (x) the pressure, and v > 0 is the kinematic viscosity. The unknown
domain occupied by the fluid is called Q, its boundary ~; n is the outer
normal to E, and ti, t2 span the tangent plane.
With T being the stress tensor,

D = (D1, D2, D3), the dynamical boundary conditions in (2)
state that the fluid cannot resist tangential stresses. Equation (3) governs
the free boundary: E adjusts itself such that the fluid’s normal stress equals .

the given pressure po which is assumed to be constant throughout 
’ 

The volume 1 Q of the drop is prescribed, too; after a suitable transforma-
tion we can always obtain 

’

In this paper we prove the existence of classical solutions to the free

boundary problem (1)-(3) for various configurations. A typical result is

contained in

THEOREM 1. - Let
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519A FREE BOUNDARY PROBLEM

be the force of self-attraction. For f = fo + h, with ~, > 6 and (in
cylindrical coordinates r, 6, x3)

and

small enough, there exists a unique solution 
and E E C6 + ~‘ to the free boundary problem ( 1)-(3). v and p

are small in the sense that

and E lies in a C6+ -neighborhood of the unit sphere S; the of
the distance of 03A3 from S can again be estimated by C I h 
Remark. - The solution established in this theorem can be interpreted

as perturbation of a classical equilibrium figure Eo of a rotating liquid.
Although Eo is the trivial solution, namely the unit sphere, which provides
an equilibrium figure for zero angular velocity, the method of proof is
based to a large extend on results for more general equilibrium figures.
Therefore we can cover also other geometrical configurations by the same
approach; the details are given in paragraph 6.
To motivate our method of proof we compare the problem (1)-(3) with

related free boundary problems for the Navier-Stokes equations. The
time-dependent analogue to (1)-(3) was solved by Solonnikov [14]. He
used the transformation

with XeQ(O), where Q(t) is the (unknown) domain occupied by the fluid
at time t; V denotes the velocity as a function of Lagrangian variables,
i. e. the velocity of a particle at time t that was initially at X E SZ (o). By
(9) the domain U Q(t) can be mapped onto the space-time cylinder

orT

SZ (4) x (o, T) which is a known domain since the initial datum Q(0) is
given. As the unknown V is contained in (9) the transformation leads to
a highly nonlinear system; however, the kinematical boundary condition
for v. n is automatically satisfied, and hence the Navier-Stokes equations
with four conditions on the free boundary are reduced to a Neumann

Vol. 4, n° 6-1987.



520 J. BEMELMANS

problem on a given boundary. This elegant device (~) cannot be used for
the stationary problem (1)-(3) because a flow is called stationary if v and

p, regarded as functions of the position x rather than of the Lagrange
variable X do not depend on time; as function of X a stationary velocity
field does change in time except for trivial cases. Very often the method
to handle a parabolic problem is modeled after the one used in the elliptic
case; here we meet quite a different situation.
As a reduction to a boundary value problem on a fixed domain seems

not to be available we will apply successive approximations. This method
turned out to be useful in the related free boundary problem for stationary
viscous flows where surface tension governs the free boundary, cf [1];
then (3) has to be replaced by

where H denotes the mean curvature of E, and K= Const. is the coefficient
of surface tension. To solve (1), (2), (10) we construct a sequence

f v", p", ~n ~n 1, where (vn, pn) is the solution to the equations of motion

(1), (2) in the domain that is bounded by En _ 1, and 1:n can be
determined from ( 10) when T is evaluated at To P E C1 +Ji
the mean curvature equation ( 10) yields a and on the other

hand, for a solution v and p to (1), (2) the norm II v ~C2+ + ~p~C1+  can

be estimated by the of the boundary E of the underlying
domain. In this way the approximation procedure can be carried out in

all approximations {vn, pn, 03A3n}, if defined as above,
lie in this space.

Successive approximations can yield only local existence theorems; there-
fore we can restrict ourselves to free boundaries E that lie in a neighbor-
hood of a given boundary ~o. In the simplest case, when Eo will be the
unit sphere S, E can be represented as a graph over S:

If we describe E in this way (3) becomes an equation for the scalar

unknown ç.

( 1) Lagrangian variables are commonly used when the kinematics and dynamics of fluid
motions are studied in order to derive the equations of motions. Once these are established
one usually works with Eulerian variables. This seems due to the fact that almost all

mathematical contributions about the Navier-Stokes equations concern problems where the
domain occupied by the fluid is fixed, and not free boundary problems.

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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If we insert ç into ( 10) it becomes a second-order, elliptic equation with
data of class hence the solution will be as is needed for the

approximation scheme to converge. Formally, (3) follows from (10) by
letting K tend to zero. As K is a coefficient in the principal part of (10)
this indicates that (3) is no differential equation anymore for which a
general existence theory has been developed. To get a solution of (3), the
particular physical background must be taken into account, and it is

obvious that for T E C1 + JI the solution § will be at most of class C1 + JI,
too. Compared with the regularity of (10) above this property causes a
loss of two derivatives in each approximation step. For such problems
hard implicit function theorems provide a very powerful tool. This method
was initiated by J. Nash [11] and J. Moser [10]; here a version of Moser’s
theorem due to Zehnder [18] will be applied, it is particularly suited to
our problem as will be explained in paragraph 2.
We will close these introductory remarks with a brief discussion of the

force of self-attraction fo and of the local nature of our existence results.
The free boundary § is determined by a first order differential equation
(3) which, as just remarked, seems not to be solvable in the general case.
Therefore we introduce the force fo of self-attraction; as it is a gradient
its potential U can be absorbed into the pressure p in (2) ( 2), and hence
(3) becomes

Now the unknown appears in the domain of integration Q as well as in
n. If we regard the left hand side as the principal part of equation ( 12),

then, according to Lichtenstein [7], the integral can be

written in the form

where 03C80 (03BE) is the normal derivative of the Newtonian potential of S;
d (~, r~) denotes the Euclidean distance between two points The

(2) A potential force in f does not affect v in (1), (2) since the pressure does not enter
into the boundary condition (2).

Vol. 4, n° 6-1987.



522 J. BEMELMANS

nonlinear operator N (~) will be discussed in paragraphs 2, 4, where we
will also show that the solvability of ( 12) can be reduced to the existence
of the inverse of the integral operator M~. In this way the introduction of

fo as dominating force leads to an equation for the free boundary which
can be handled. But also for physical reasons fo must be regarded as
necessary. Self-attraction tends to hold the drop together and therefore
balances other forces h that may act in the opposite way.

There exists a counterexample due to McCready [9] which, although
found in quite a different context, supports our interpretation of fo as
being necessary. McCready shows that it is impossible to give an a priori
bound on Dirichlet’s integral of a solution v to the Navier-Stokes equations
if Neumann rather than Dirichlet conditions are given. Hence the basic a

priori estimate which was first proven by Leray to establish the existence
of a global solution (i. e. a solution for arbitrary large data f ) fails in this
case. In the context of free boundary problems this example indicates that

only local solutions exist because there are no longer rigid walls which
hold the fluid together regardless of the possibly very large forces that
generate the fluid’s motion.

2. THE LINEARIZED EQUATIONS

The free boundary problem (1)-(3) can be regarded as an abstract

equation

where we define F by assigning to z = (v, p, E) the right-hand sides of

(1)-(3). As we want to solve (14) by means of a hard implicit function
theorem we have to investigate the linearization of F

I am indebted to Professor S. Hildebrandt for aquainting me with Lichtenstein’s paper
[7] and to Professor E. Zehnder who introduced me into the method of hard implicit function
theorems. This version of the paper was written at the Mittag-Leffler Institute in Djursholm.
It is a great pleasure to thank the institute and its director, Professor L. Hörmander, for
their kind hospitality.
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but this can only be defined if the domain of F admits an affine structure:
if (v, p) is given on fi where aS2 =.E, and if v and fi are defined on the
closure of another domain 03A9 with we have to define their sum

X) + ( v, p, E), at least in a neighborhood of some given configur-
ation zo = (vo, po, 
As we indicated already in ( 11) we restrict ourselves to surfaces E that

are graphs over some known closed surface Eo:

where no (xo) denotes the normal to Eo at a point xo E Eo.
In certain cases we may use coordinates (~1, ~2, p) on (~3, where

~ = (~1, ~2) are local coordinates on this leads to the simpler expression

Here we may think of spherical or elliptic coordinates. Due to the local
structure of our existence theorems we can always assume I ~ I  1; the

domain included by X is then of the form

and similarly in the general case. We now can define the « sum » of two
boundaries E and E by

where § and ç are the scalar functions describing E and E resp. in

(17). The representation of £ by ç leads immediately to a one-to-one
transformation of Q onto a standard domain Qo (which is the one bounded
by Xo); for this reason consider for (ç, p) eD the mapping

From our assumption ] §  1 it is obvious that a is invertible; furthermore
a as well as when considered as a function of ç and p are as
regular as § (~); derivatives D°‘ a, D°‘ 6-’ with a ~  k can be estimated by
derivatives of ç of the same order and vice versa. If we assign to points
(03BE, p) ~03A9 and 03C3(03BE, p) E S2o its cartesian coordinates x and y, the transforma-
tion (2) defines unambiguously an invertible relation between the cartesian

Vol. 4, n° 6-1987.



524 J. BEMELMANS

coordinates x~03A9 and y~03A90 which we denote again by a:

Remark. - We note that it is also possible to choose a domain Q~
instead of Qo which belongs to the solution zo of ( 14), such that Q, and
all quantities defined on it, are represented by functions on Here Q~ is
defined by a 1-to-1 mapping If we call the transformation

from Q to Q~ again a, the structure of the equations (25)-(35) below is

precisely the same. As we will see in paragraph 3 an appropriate choice
of Q~ sometimes yields a considerable advantage.

Using the transformations from (21) we can now write the dependent
variables v and p as functions of Y E Qo; in this way it becomes possible to
define the sum of two velocity fields v and v that are initially given on
different domains Q and Q. We set

again with x E SZ, Y E Qo and y = a (x).
Remark. - The advantage of the transformation (22) over the simpler

one u‘ (y): = v‘ (6-1 (y)) which one probably expects consists in the fact

that (22) maps fields v (x) into solenoidal fields u

again, now divergence-free with respect to the new coordinates:

(y) = 0. If on the other hand the regularity of v and u is considered,

(22) seems to lead to a certain disadvantage since for the new

function u is of class C2 only if a is three-times differentiable. As we will
see later in Lemma 4 we need three derivatives of £ (that is of a) anyway
to bound second derivatives of u if u solves the equation of motions.

Hence, as far as solutions to ( 1), ( 2) and their linearizations are concerned,
(22) only simplifies the problem.
Now let (v, p) and (v, p) be given functions that are defined on Q and

S2 resp., where the domains are characterized by scalar functions § and ç
as in (18). Let a and 6 be the transformations (20) that are induced by ç
and ç. If we insert v, p, a and v, p, 6 into (22), ( 23) we obtain as
transformed velocity fields and pressures (u, q) and (u, q). These functions
now have the same domain of definition Q~ such that M+M and q + q are

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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well-defined quantities. As we will see next our free-boundary problem
admits a formulation

in terms of the functions u : Qo --+ 1R3, q : go --~ f~, ~ : Eo -~ is then

possible to define the linerarization D2 F (f, z).
If we apply the transformations (21)-(23) to the Navier-Stokes equations

( 1) we obtain after a formal but tedious calculation

with

Here D~ means partial differentiation with respect to the new variables y’.
The various coefficients depend on the transformation a and its deriva-
tives, namely

To indicate that L and the coefficients depend on o (and therefore on Q
we sometimes write L (~), etc. It is understood that coefficients atJ,
a, and (Xij etc. (see below) depend on a and its first derivatives, ~t~
etc. on (7, Do, and finally Cij on o and its derivatives up to order
three.

Vol. 4, n° 6-1987. 
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In the same way the boundary conditions (2), (3) are transformed; we
obtain 

’

As we outlined in paragraph 1 a special form of the equation (3) for the
free boundary arises when the force of self-attraction 10 is introduced.

Instead of (30) we have

where

Here we use the same symbols as in Lichtenstein’s paper [7], where the

integral equation (31) is derived; cf. also Figure below.

Uo (y) and U (y) denote the Newtonian potentials ~ y - y’ I ~ 1 dy’ over
Qo and Q resp.; for y~E0 we write U0(03BE) instead of Uo(Y (03BE)). The
domain !7 is defined as (S2BSZo) U is the surface element doB
of E~ --_ ~ yT = y + i~ (y) no (y), for multiplied by cos cp~,
where cp~ is the angle between the normals no and n~ ( y~) . Finally d ( ~, ~’)
is the Euclidean distance between points ç and of ~o.

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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In this way we obtain the following formulation for ( 14) : 
i = ~,..., 4 is of the form

together with the boundary conditions

F ~ ( f, z) = 0 becomes

with M~ being the linear integral operator as in (13).
F is then a mapping from y0 x 0 into where

Vol. 4, n° 6-1987.
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Next we compute the linearized operator D2F ( f, z) z; it is of the following
form with z = (u, q, ~) :

together with the boundary conditions for the operators in (40)

The coefficients 1, m, n are obtained by a straightforward but lengthly
calculation. For the purpose of this paper, however, it suffices to concen-
trate on their regularity in terms of the regularity of u, q and ç and their
smallness if u, q and ç become small. These properties are listed below:

(i) is obtained by differentiating Ni i (u, Du, ~)
from (36) with respect to u. This gives, cf. (27), (28):

As a and bijk are analytic in ç their C0+ -norm is finite and

small, the coefficients lij and are small in the
C° + ’-norm, too.

(ii) l03B3 (u, p, 03B6) denotes the coefficients of D03B303C3 where y is a multi-index

with I y = 0, ..., 3, when we differentiate L (0 ui + Dj q + Nt (u, D u, 0
with respect to o. As cr and its derivatives up to third order occur in

these expressions we get the sum L where we collect in
l y l s 3

ly the derivatives of all coefficients with respect to DY cr. Regularity and
smallness of the l03B3 are clear as the expressions in (28) are analytic in a
and its derivatives. This holds for all coefficients below in the same way.

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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(iii) is derived from differentiating with respect to o.

(iv) m o ( ~) consists of derivatives of the integral in N ( ~) from (34), (35)
with respect to ç. We obtain e. g.

Note that U depends on ç, too. The smallness of mo (~) has been proved
by Lichtenstein [7] (25).

(v) ry (u, q, ~) are the coefficients that occur when G in (31), (33) is

differentiated with respect to ç. As ç and its derivatives up to second order
occur we collect again the derivatives of the coefficients with respect to
DY ç and call them r~.

(vi) m (~) is given by differentiating G with respect to u and q
respectively.

In the boundary conditions (42) we finally have

(vii) ~} from differentiating ai in (29) with respect to ~, and
- 

(viii) from 03B1ijk and 

To apply the implicit function theorem we must invert the operator
D2 F ( f, z) in a neighborhood of zo. But only at zo itself the system (40)-(42)
splits into a linearized Navier-Stokes system for ( u, q) and an equation for
~. For z ~ zo all components of z appear in each equation (except the
fourth one).

This establishes the essential difference to the simpler approximation
scheme from [1] which was mentioned already in paragraph 1. There one
works only with the "diagonal" part of the gradient, namely DZi z),
i, j =1, ... , 4 and Dz5 F~ ( f, z); this procedure however cannot be better
than of first order and is therefore not appropriate for the hard implicit
function theorem.

The expressions Q cannot be regarded as small perturbations
of the Navier-Stokes equations because they contain third derivatives in
the unknown a (that is ~). Therefore the linearization admits

only an approximate inverse; before we can define it we have to recall

Zehnder’s implicit function theorem.

Vol. 4, n° 6-1987.
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3. ZEHNDER’S HARD

IMPLICIT FUNCTION THEOREM
AND THE APPROXIMATE INVERSE

The implicit function theorem on which this paper is based is formulated
within the following framework, cf. Zehnder [18], pp. 118-121. 
be a one-parameter family of Banach spaces with norms I. It such that for
all t, t’ with 0 _ t’ _ t  oo there holds

and

We assume the same properties to hold for { ~Jt ~ t >_ o and { ~’t ~ t > o also.

As outlined already in (14), (39) we are given a mapping F from
~ c OY 0 with range 9f c such that

with fo and zo = (0, Uo (x), 0) as in (6).

HYPOTHESIS H. 1. - Assume F : ~o -~ ~’o, where

to be cont-inuous in ~( ~ z) and two times differentiable in z; furthermore
there exists a constant Mo such .that

HYPOTHESIS H. 2. - For all f z), there holds

HYPOTHESIS H . 3. - (F, fo, zo) is of order s with y as in H . 4

below. This means

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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For every t E [1, s] there exists a constant Mr such that

for all ( f, z) E (OJ/t x n with

HYPOTHESIS H . 4. - For every ( f, there exists a linear map
H ( f, z) : ~’,~ -~ ~o such that

H ( f, z) is furthermore a continuous mapping from into provided
( g z) E ~,~ (1 x Moreover there holds ..

for all ( f, z) that satisfy ( 52).
H ( f, z) is an approximate inverse to D2 F ( f, z) in the sense that

holds for all cp E 
Under these hypotheses we have the following hard implicit function

theorem; .

and

‘~ : ~~, --~ ~P is continuous whenever His.
The numbers and p are chosen to be p = 3, ~, > 6, cf. also paragraph 6

for a more detailed discussion of the minimal regularity assumptions.

Vol. 4, n° 6-1987.
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To prove the hypothesis above we chose the quantities in
the following way:

If z) is given via a transformation of Q onto Qo [or Qt’ cf the remark
about the mapping a in paragraph 2 (21)] the coefficients are analytic
functions in f, z, ~, ~ etc. Hence continuity in ( f, z) and differentiability
in z are obvious; (47) follows from the choice of the function spaces in
(58). For ( f, implies that the components of z, i. e. u, q, and have
as many derivatives more as the order of the differential operators in
F. Hence H. 1 is satisfied.

Lipschitz continuity of F in the first argument follows easily from (36):

which proves H. 2.

H. 3 again is implied by the analyticity of f and the choice (58). For (F,
fo, zo) is of infinite order, i. e. (49)-(51) is fulfilled for all s > 3. fo = DUo,
and zo =(0, Uo, 0), cf [5] are clearly C~-functions, hence we have (49).
The inclusion (50) states that for more regular functions f and z inserted
into F the image is more regular, too. This is obvious from (36)-(38). The
coefficients depend analytically on f and z, hence one can differentiate
these expressions with respect to yi as long as f and z allow it. The same
reasoning applies to (51).
To define the approximate inverse H(/z) to D2 F (.I: z) consider first

the operator D2 F (/ z) that includes all of D2 ( f, z) in (40)-(42) except
the expressions

that is consists of a linearized Navier-Stokes system in its first
four components solely for the unknown u and q, and of an integral
operator for ç in its fifth component. We assume now, and this will be
shown in paragraphs 4 and 5, that D 2 F ( g z) is invertible, and its inverse
we denote by Then (53) holds, for let be given with y = 3.
Then cpt, i = 1, ..., 4, the right-hand side in the linearized Navier-Stokes
system is of class C 3 + ~, hence (M, q) x C4+J!, cf Lemma 4, and (53)

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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holds (~). The higher regularity of solutions z = H ( f, z) ( cp) of

DZ F ( f, z) (z) = cp follows again from the theory of Navier-Stokes equations
and from the integral equation in §, cf. Lemmata 4 and 12. To estimate

(D~ F ( f, H ( f, z) -1) (cp) we write this expression formally as

where 03C6’=(03C61, ...,03C64), 03C6"=03C65; D*2 F (f,z) is then (0 
and b denote the expressions that have been deleted from Now

consider ~ B’ ~ (p" and JA ’~(p~+~B’~ (p". For (p 6 ~ we have

z=(A-103C6’,B-103C6")~03B3, therefore because of the diffe-

rentiations in etc. Now the expressions in (59) are small in the

following sense;

because § occurs at most with its third derivative, cf (40)-(42). This is not
sufficient to prove (55) because if ç gets close to the solution of the
nonlinear problem ~l03B3~ does not tend to zero as required. At this point
we exploit the possibility of choosing as reference domain another than
Qo. All estimates will be applied to a sequence {zk} whose convergence
towards a solution of (14) we show in paragraph 6. So when Zk+1 is

constructed we can choose Qk-1 as reference domain (or any other close
enough to it). Then the boundaries Ek+ 1 and Ek are represented by
functions which we call again ~k+ 1, ~k via the relation

(~1, ç2) local coordinates on Ek_ 1 ~. (61)

and all other expressions in (59) are still estimated by (60),

( 3) That we do not loose any derivatives here, as is allowed by H. 4 does not lead to any
improvement. The essential inequality is (54), where the loss of derivatives occurs.

Vol. 4, n° 6-1987.
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but with the special choice in (61) we obtain

as required by H. 4.

Remark. - This procedure should be compared with the ones of

Rabinowitz [13] and Kato [4], where a singular perturbation problem

is studied for periodic functions and u. This problem is similar to
ours as the perturbation f contains higher derivatives than the elliptic
operator that can be inverted. To obtain approximate
solutions Rabinowitz introduces the elliptic regularization

where A~ is the linearisation of f. This device yields even very regular
approximate solutions depending on the m one chooses. A completely
different approach is due to Kato [4], where a new abstract existence
theorem is given. The singular perturbation problems above are locally
well posed if considered in Sobolev spaces, and therefore Kato proves
existence without any loss of derivatives. It is not known whether this

method can be carried over to the free boundary problems we are interested
in.

4. ESTIMATES FOR THE

LINEARIZED EQUATIONS OF MOTIONS

The following results for equations of Stokes type are well known, cf
Solonnikov-0160adilov [15], Bemelmans [1].

LEMMA 3. - (i) Let be given where Q’t is a
domain with boundary of class C3 + ~‘. Then the boundary value problem

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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with operators as in (40), (42) admits to a classical solution

as long are small

enough.
(ii) If SZ~ is rotationally symmetric with respect to an axis ~i, the solution

u is uniquely determined modulo the rotation t [3 A y, t E R. For domains

without this symmetry the solution is always unique.
(iii) The results of (i) and (ii) remain true for non-homogeneous boundary

data 03C8 as long as they satisfy § n d a = 0.

LEMMA 4. - The solution (u, q) of Lemma 3 can be estimated by

To extend Theorem 1 to the case where ~o is not ncessarily the unit
sphere we have to solve the equations of motion in a reference frame that
rotates with constant angular velocity m relatively to a fixed coordinate
system; 03C9 is not given but must be determined by prescribing the total
torque exerted on the fluid body. If v denotes the velocity in the fixed
frame, u the one in the accelerated system then u and v are related by

A x. We then get the following equations of motion, cf
Weinberger [17]

together with the side condition

Vol. 4, n° 6-1987.
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In this formulation the coordinate system is chosen such that the torque
on Q vanishes.

If we denote by ~’ the space of all C°°-functions on Q that are

divergence-free and satisfy (p. A x). n on E, we obtain after multiply-
ing the equations of motion by tp and integrating over Q

Integration by parts gives

where the surface integral vanishes due to (66); furthermore

as the integrals

and

all vanish. Because of div = 0 we have

If J is the closure of ~’ with respect to II _ ( ~’ ( cp, cp) ) 1 ~ 2 we call v E J
a weak solution of (65), (66) if there holds
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for all For the linearized equation a weak solution is defined

similarly.
The equations (65), (66) can be treated as in [1]. If 1: is rotationally

symmetric with respect to an axis co, then o A x is always a tangential
vector and we have v. n = 0 as boundary conditions. Because of

where 2 (SZ) is the closure of C~03C3 (Q) n { v. n = 0} under K-norm again,
we can determine w directly. If E does not possess rotational symmetry
we where cpo are the pure rotations o A x, and the

coerciveness of 5i (v, v) follows agi an. Once a weak solution is established
its regularity can be shown as for Lemma 4 above. We finally remark
that if we transform the equations as in paragraph 2, the same existence
and regularity results hold. We formulate these properties in

LEMMA 5. - Let f be in L2 (Q). Then the linearization of problem (65),
(66) admits a unique solution in the class x. If the data are regular it can
be estimated as in (64).

5. ESTIMATES FOR

LICHTENSTEIN’S INTEGRAL EQUATION

The integral equation 
’

with the side condition that the volume included by ç is prescribed can be
solved for small data ~~ cp by successive approximation, cf e. g.
Lichtenstein [5], pp. 14 ff. Again we take some OT as reference domain
with boundary E~ of class C3 +~. We now prove some estimates for

solutions of (70) we need later to apply the implicit function theorem.
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LEMMA 6. - The gradient of the gravitational potential points inward,
i. e.

Proof. - This property is well-known for classifical equilibrium figures,
cf. [6]. For E~ close to an equilibrium figure E’ we have

according to Lichtenstein [7] ( 11). Here we denote by U’ the Newtonian
potential of the domain bounded by 1:’, n’ is the normal to E’ etc.

(71) enables us to normalize the operator M; it can be written in the

form

with

We will use Z or rather § whenever it is more convenient.

LEMMA 7. - De homogeneous integral equation

admits trivial eigensolutions. These are the infinitesimal translations ~1, ~2,
~3 in the direction of the coordinate axes and the rotations ~4, ~s, ~6 about
these axes. If Ez is rotationally symmetric about the yi-axis, then ~3 + is no
eigensolution, i = 1, 2, 3.

Proof. - Let

be the surface E (which is given by ~) shifted into xl-direction by the
amount s, and let QE be the domain bounded by Then the Newtonian

potentials of Q and of SZ£ are the same if evaluated at points that differ
by the same shift s ei :
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Therefore

according to [7] (24). As N (E~1) = o (E) for E - 0, cf [4] (25), we obtain

For the rotations the proof follows along the same lines. If E~ is rotation-
ally symmetric with respect to the y3-axis then and (n~ (y~ , yT ),
n? (y~, y?)) are parallel vectors on Hence ~6 vanishes and is therefore
no eigensolution.

LEMMA 8. - Consider the set M consisting of that part of the branch of
MacLaurin ellipsoids that connects the sphere with the branch of Jacobi
ellipsoids. For ~~ E ~l the equation (73) admits no other eigensolutions than
the ones obtained in Lemma 7.

Proof. - All MacLaurin and Jacobi ellipsoids for which (73) has in
addition to ~1, ... , ~6 from above other eigensolutions have been charac-
terized by Ljapounoff [8], paragraphs 34 and 78. On M the first one with
nontrivial eigensolutions is the ellipsoid corresponding to the critical value
of the angular velocity at which the Jacobi family branches off.

LEMMA 9. - Let ~T be in JI. Then

and

admit the same solutions. Here ~2 denotes the integral operator with
the iterated kernel

had
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But according to Plemelj’s theorem, cf. [12], p. 28, the single-layer potential
is a positive operator.

Now let Z ~ ~i, Zi a trivial eigensolution of (74), be a solution to (75).
This implies

with Z’ ~ 0, as Z is no solution to (74) by assumption. This gives a
contradiction to (77), and the lemma is proved.

Remark. - The iteration of kernels is a well-known tool in the study
of integral equations. Usually, however, one does not know how many
times one has to iterate such that and possess the same

eigenfunctions. Because in ( 74) ~ has a real and symmetric kernel, we can
determine k to be 2. This is not without interest because in the estimates

!! I [1- ~ below the constant C depends on k, and hence
can be calculated (in principle, at least) whereas in the general case it is
obtained by some indirect reasoning.

LEMMA 10. - Let 03A3 be in a C2+ -neighborhood of Then

[1- ~ (E)] Z = 0 admits only the trivial solutions from Lemma 7.

Proof. - According to Lemma 9 it is equivalent to or

~2 (E~). Now ~2 (E~) is a Hilbert-Schmidt operator whose kernel grows
like log I y - y’ I. The eigenvalues of ~2 (E~) therefor cannot have -1 as
accumulation point. As 2 is close to Et we get

with

As KE is small the result follows immediately.

LEMMA 11. - Let 2 be a solution to

where ~ is perpendicular to Zi:

Annales de l’Institut Henri Poincaré - Analyse non linéaire



541A FREE BOUNDARY PROBLEM

here ( ~, denotes the L2-scalar product on E~. Then we have

Proof - We start from

The Hilbert-Schmidt operator ~2 (E~) possesses infinitely many eigenva-
lues An and corresponding eigenfunctions ~" with

The resolvent of is of the form

hence for ~, =1

Because of (79) we obtain

here we used Bessel’s inequality
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Higher regularity for solutions to can now be obtai-

ned by standard methods. Differentiating the equation with respect to 03BEi
we obtain an integral equation with kernel

An operator with this kernel is a bounded mapping from C° + ~‘ (ET) onto
itself provided ET is of class C 1 + ~‘. We get therefore

From the Calderon-Zygmund inequality we obtain

hence with p > 2

as II Z IILp was already estimated in Lemma 11. We can state the regularity
properties of solution to the integral equations as follows:

LEMMA 12. - with satisfy the integrability
condition (79). Then the solution Z can be estimated by
C:
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6. EXIS TENCE RESULTS

FOR THE FREE BOUNDARY PROBLEM

The first configuration we want to study is a perturbation of the sphere
o = S. Clearly

is a solution of F(fo,zo)=O as fo = DUo is the only force acting here.
After the existence of H has been established in the preceeding paragraphs
it remains to investigate the sequence {zk} of successive approximations,
especially the behavior of the smoothing operators. These are defined in
Hormander [3] where also the properties we need are proved for the case
of Holder spaces Cm + ~‘, 1: let w : K -~ R be a function defined on a

compact set K c IR which is of class ~’ ( K) (~ Ca ( K), a = [a] + ~ > o,
Then there is a mapping S: 8’(K) with the

following properties, cf [4], Theorem A. 10:

The introduction of Sa given in [3] is directly applicable to functions
defined on a compact C°°-manifold, such that the smoothing of the
non-parametric representations ç of the surface X can be done as in the
work quoted above. The functions v and p, however, are defined on
bounded domains n, but will not have compact support in Q. According
to Stein [16], pp. 176-180, we can extend such functions across

the boundary to with Q cc G; V then has the same Holder
norm as v. Next we consider x . V where x is a Coo-function on G that
has compact support in G and satisfies

The Holder norm can be estimated by 
where C does not depend on the function V; we then may apply the
smoothing operators in the usual way.
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The restriction on the exterior force h which we posed in (7) serves the
following purpose. As the occurence of eigensolutions to the integral
equation M ~ = o, cf. (13), already indicates, there is an integrability condi-
tion on the datum cp when one wants to solve M~ = cp (4). Physically this
condition allows only such exterior forces that the center of mass of the
fluid body is fixed. A condition that involves the datum h and the solution
would be

For integration of the Navier-Stokes equations gives

Integrating by parts we get

As the tangential stresses vanish according to (2), we infer from (84)

which states that the resultant of the forces that act on the fluid body
vanishes. This implies in particular that h generates only interior motions
in the fluid body but does not move it as a whole which would not be

compatible with our assumption that the motion is stationary with respect
to a fixed reference frame ( s).
Now (83) involves already the solution Q and therefore cannot be

verified. One example for an admissible h is given in (7). Under this
condition the flow and the domain occupied by the fluid has the same

(4) The nonlinearity N (~) satisfies this condition always, as the discussion of the bifurca-
tion equations in Lichtenstein [6] shows. The situation here is similar to the one studied in
[6], pp. 76-78; the only difference lies in the fact that the exterior field then is explicitely
given whereas in our case n. T. n involves the solution itself.

(5) For a further discussion see also [1], [2].

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire



545A FREE BOUNDARY PROBLEM

symmetry properties as was shown for the equations of motion in [2] and
[17]; the corresponding property for the integral equation is known, cf.
Lichtenstein [6]. Therefore theorem 1 is proved.

Remark. - The regularity properties for h and the solution (v, p, E)
follow from Zehnder’s discussion in [18], p. 126. As remarked there the

relatively mild additional regularity that is required of h, namely h E C’~ + ~,
~, > 6, instead of C3 + ~‘ which would be optimal according to the linear
theory, has the consequence that in the constant C becomes

smaller as X gets closer to 6. Zehnder’s approach by analytic mappings in
[18], paragraphs 1, 2 avoids this restriction on C, but it is not obvious

whether this method can be applied here.
Our procedure can also be applied to other configurations than the one

discussed in Theorem 1. So let E 1 be a MacLaurin ellipsoid corresponding
to an angular velocity wl ~ 0. We further assume that E1 is in -4X as stated
in Lemma 8. If fl is again the force of self-attraction, 

solves z 1 ) = 0 p 1 (x) = dy, provided v 1 descri-

bes the relative motions in a reference frame that rotates with constant

angular velocity too. With E 1, ~~, ... we denote the same situation
as above for a Jacobi ellipsoid; we assume that 0)2 is not a critical value,
which means that the integral equation for the free boundary is uniquely
solvable ( 6) . If we now apply some exterior force density h, it is conceivable
that the configuration we get will be stationary only in a reference frame
rotating with some other angular velocity that is not known a priori. Take
for instance h = hl + h2 in the non-symmetric case where we choose hi to
be the fictitious body force that corresponds to writing (v2, p2, ~2) in a
frame that rotates with angular velocity and let h2~0 be such
that the total torque exerted on the fluid body vanishes. This clearly
produces a flow which is stationary in the reference system that rotates
with angular velocity ~2 but non-stationary in the original frame. In such
a problem the unknown angular velocity co for the appropriate coordinate
system in which the solution is stationary can be determined by the
equilibrium condition

(g) The critical values for which bifurcation may occur are isolated, cf Ljapounov [8].
We therefore can assume that there is no bifurcation in a possibly small neighborhood of
0)2.
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Navier-Stokes equations with this type of side condition were studied by
Weinberger [17]; his results were used in the context of free boundary
problem in [2].

If we apply rotationally symmetric forces to E 1, vi, etc. there is no need
to ask for a reference frame as above, because as long as the data share
that symmetry the solution is stationary in any frame that rotates with
constant angular velocity about the axis of symmetry. But also in this
case it is more natural to work with an unknown frame and (86) as side
conditions. When we estimate, as in (8), the difference between the velocity
v of the flow and some rest solution vo - 0 then v should measure deforma-

tions only. If we have with ve=ro A def the

pure rotation should be compensated by choosing an appropriate reference
system.

THEOREM 13. - Let 03A30 be a MacLaurin or Jacobi ellipsoid that corres-
ponds to an angular velocity c~o which is not a critical value for the integral
equation ( 13), and let fo be the force ofself-attraction as in (6). For f = fo + h,
where h satisfies the same hypotheses as in Theorem l, there exists a

constant c~ such that in a coordinate system rotating with angular velocity
(D there is a non-stationary solution (v, p, E) to the free boundary problem
(1)-(3). It has the same regularity properties than the solution obtained in
Theorem 1.

Proof. - The only change with respect to Theorem 1 consists in

formulating (and solving) the linearized Navier-Stokes equations in a

coordinate system that rotates with an unknown angular velocity. Now
our free boundary problem consists of (64), (65), (3). Using Lemma 5
instead of Lemma 3 we proceed in the same way as before.
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