LUCIANO MODICA

Gradient theory of phase transitions with boundary contact energy

Annales de l'I. H. P., section C, tome 4, nº 5 (1987), p. 487-512 http://www.numdam.org/item?id=AIHPC_1987 4 5 487 0>

© Gauthier-Villars, 1987, tous droits réservés.

L'accès aux archives de la revue « Annales de l'I. H. P., section C » (http://www.elsevier.com/locate/anihpc) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Gradient theory of phase transitions with boundary contact energy

by

Luciano MODICA

Dipartimento di Matematica, Università di Pisa, Via Buonarroti 2, Pisa, Italy

ABSTRACT. — We study the asymptotic behavior as $\varepsilon \to 0^+$ of solutions of the variational problems for the Van der Waals-Cahn-Hilliard theory of phase transitions in a fluid. We assume that the internal free energy, per unit volume, is given by $\varepsilon^2 |\nabla \rho|^2 + W(\rho)$ and the contact energy with the container walls, per unit surface area, is given by $\varepsilon\sigma(\rho)$, where ρ is the density. The result is that such solutions approximate a two-phases configuration satisfying a variational principle related to the equilibrium configuration of liquid drops.

Key words : Phase transitions, variational thermodynamic principles, variational convergence.

RÉSUMÉ. – Nous étudions ici le comportement asymptotique pour $\varepsilon \to 0^+$ des solutions des problèmes variationnels qui viennent de la théorie de Van der Waals-Cahn-Hilliard sur les transitions de phase des fluides. Nous faisons l'hypothèse que l'énergie libre de Gibbs, pour unité de volume, est donnée par $\varepsilon^2 |\nabla \rho|^2 + W(\rho)$ et que l'énergie de contact avec la surface intérieure du containeur, pour unité de surface, est donnée par $\varepsilon \sigma(\rho)$, où ρ est la densité. Le résultat est que ces solutions approchent

Classification A.M.S.: 76 T 05, 49 A 50, 49 F 10, 80 A 15.

Annales de l'Institut Henri Poincaré - Analyse non linéaire - 0294-1449 Vol. 4/87/05/487/26/\$ 4.60/© Gauthier-Villars

une configuration à deux phases qui satisfait un principe variationnel lié aux configurations à l'équilibre des gouttes.

INTRODUCTION

We continue in this paper the asymptotic analysis of the Van der Waals-Cahn-Hilliard theory of phase transitions in a fluid, by taking also into account, with respect to our earlier results [10], the contact energy between the fluid and the container walls. Our results give a positive answer to some conjectures by M. E. Gurtin [8].

Let us describe briefly the problem we are concerned with; we refer to [10] for further information and bibliography. Consider a fluid, under isothermal conditions and confined to a bounded container $\Omega \subset \mathbb{R}^n$, and assume that the Gibbs free energy, per unit volume, W = W(u) and the contact energy, per unit surface area, $\sigma = \sigma(u)$ between the fluid and the container walls $\partial\Omega$ are prescribed functions of the density distribution (or composition) $u \ge 0$ of the fluid. According to the Van der Waals-Cahn-Hilliard theory, and in particular to the Cahn's approach [2], the stable configurations of the fluid are determined by solving the variational problem

(*)
$$\min\left\{\int_{\Omega} \left[\varepsilon^{2} \left| \operatorname{D} u \right|^{2} + \operatorname{W}(u)\right] dx + \int_{\partial \Omega} \varepsilon \theta(u) d\mathcal{H}_{n-1}\right\},$$

where $\varepsilon > 0$ is a small parameter, and the minimum is taken among all functions $u \ge 0$ satisfying the constraint

$$\int_{\Omega} u\,dx = m,$$

m being the prescribed total mass of the fluid. The function W(t) is supposed to vanish only at two points $t = \alpha$ and $t = \beta$ ($\alpha < \beta$), and to be strictly positive everywhere else. Of course, \mathcal{H}_{n-1} denotes the Hausdorff (n-1)-dimensional measure.

Our goal is to study the asymptotic behavior as $\varepsilon \to 0^+$ of solutions u_{ε} of (*) by looking for a variational problem solved by the limit point (or points) of u_{ε} in $L^1(\Omega)$. As conjectured by Gurtin [8], this limit problem does exist and agrees with the so-called liquid-drop problem.

Namely (cf. Theorem 2.1 for a precise statement), if the function u_0 is the limit of u_{ε} in $L^1(\Omega)$ as $\varepsilon \to 0^+$, then u_0 takes only the values α and β (i. e., u_0 corresponds to a two-phases configuration of the fluid), and the portion E_0 of the container occupied by the phase $u_0 = \alpha$ minimizes the geometric area-like quantity

$$\mathscr{H}_{n-1}(\partial E \cap \Omega) + \gamma \mathscr{H}_{n-1}(\partial E \cap \partial \Omega)$$

among all subsets E of Ω having the same volume as E₀. The number γ depends only on W and σ , and it can be explicitly calculated:

$$\gamma = \frac{\hat{\sigma}(\alpha) - \hat{\sigma}(\beta)}{2 c_0},$$

where

$$c_0 = \int_{\alpha}^{\beta} \mathrm{W}^{1/2}(s) \, ds,$$

and $\hat{\sigma}$ represents a modified contact energy between the fluid and the container walls, whose definition involves the values of $\sigma(t)$ and W(t) for every $t \ge 0$. One has $|\gamma| \le 1$ in correspondence with the geometrical meaning of γ , which is the cosine of the contact angle between the fluid phase α and the walls of the container.

The presence of such $\hat{\sigma}$ instead of σ disproves a part of the Gurtin's conjecture but, what is more interesting, it is perfectly in accord with theory and experiments by J. W. Cahn and R. B. Heady ([2], [3]) about critical point wetting. They discovered that, in a range of temperatures below the critical one for a binary system, the phase α does not wet the container (i. e. $\gamma = 1$) and a layer of phase β , which is, on the contrary, perfectly wetting, appears between the phase α and the container walls. A theoretical explanation of such phenomenon was given by Cahn in the case $\varepsilon > 0$.

We confirm in this paper, under very general assumptions and by a fully mathematical proof, the existence of the critical point wetting phenomenon in the asymptotic case $\varepsilon \to 0$. Indeed, we show that $\gamma = 1$ and $\hat{\sigma}(\alpha) = \hat{\sigma}(\beta) + \sigma_{\alpha\beta}(\sigma_{\alpha\beta})$ denotes the energy, per unit surface area, associated to the interface between the phases α and β), for σ and W having the same global behavior exhibited in the semi-empirical figures of [2]. It now suffices to remark that the balance of energy $\hat{\sigma}(\alpha) = \hat{\sigma}(\beta) + \sigma_{\alpha\beta}$ can be interpreted as the contact energy on $\partial E_0 \cap \partial \Omega$ coming from an infinitely

thin layer of the phase β interposed between the phase α and the container walls (*cf.* Section 3 for details).

We think that other very interesting experimental evidences, discussed by Cahn in [2], would deserve a similar careful mathematical treatment. Finally, we would like to thank Morton Gurtin for stimulating and friendly discussions.

1. SOME PRELIMINARY RESULTS

Throughout this paper Ω will be an open, bounded subset of \mathbb{R}^n $(n \ge 2)$ with smooth boundary $\partial \Omega$; W and σ will be two non-negative continuous functions defined on $[0, +\infty[$. The function W(t) is supposed to have exactly two zeros at the points $t=\alpha$ and $t=\beta$, with $0 < \alpha < \beta$.

For every $\varepsilon > 0$ and for every non-negative function u in the Sobolev space $H^1(\Omega)$, we define

$$\mathscr{E}_{\varepsilon}(u) = \int_{\Omega} \left[\varepsilon^{2} \left| \operatorname{D} u(x) \right|^{2} + \operatorname{W}(u(x))\right] dx + \varepsilon \int_{\partial \Omega} \sigma(\widetilde{u}(x)) d\mathscr{H}_{n-1}(x) \quad (1)$$

where Du denotes the gradient of u, \tilde{u} denotes the trace of u on $\partial\Omega$, and \mathscr{H}_{n-1} denotes the (n-1)-dimensional Hausdorff measure.

1.1. PROPOSITION. – For every $\varepsilon > 0$ and for every $m \ge 0$ the minimization problem

$$(\mathbf{P}_{\varepsilon}) \qquad \min\left\{\mathscr{E}_{\varepsilon}(u): u \in \mathbf{H}^{1}(\Omega), u \ge 0, \int_{\Omega} u(x) \, dx = m\right\}$$

admits (at least) one solution.

Proof. - The proof is standard. Let

$$\mathbf{U} = \left\{ u \in \mathbf{H}^{1}(\Omega) : u \geq 0, \mathscr{E}_{\varepsilon}(u) \leq c, \int_{\Omega} u(x) dx = m \right\},\$$

with $c \in \mathbb{R}$ large enough so that $U \neq \emptyset$. It suffices to prove that $\mathscr{E}_{\varepsilon}$ is lower semicontinuous on U and U is compact with respect to the topology of $L^{2}(\Omega)$.

Let $u_{\infty} \in U$ and (u_{h}) be a sequence in U converging to u_{∞} in $L^{2}(\Omega)$: we have to prove that

$$\mathscr{E}_{\varepsilon}(u_{\infty}) \leq \liminf_{h \to +\infty} \mathscr{E}_{\varepsilon}(u_{h}).$$
⁽²⁾

Without loss of generality we can assume that there exists the limit of $\mathscr{E}_{\varepsilon}(u_h)$ as $h \to +\infty$ and it is finite. Since $W \ge 0$ and $\sigma \ge 0$, we have that

$$\int_{\Omega} |\mathbf{D} u|^2 dx \leq c/\varepsilon^2, \quad \forall u \in \mathbf{U};$$
(3)

hence, modulo replacing (u_h) by a subsequence, (u_h) and (\tilde{u}_h) converge pointwise to u_{∞} and \tilde{u}_{∞} , respectively almost everywhere on Ω and \mathcal{H}_{n-1} almost everywhere on $\partial\Omega$ [recall that the trace operator is compact between $H^1(\Omega)$ and $L^2(\partial\Omega, \mathcal{H}_{n-1})$]. Then (2) follows from lower semicontinuity of the Dirichlet integral and from continuity of W and σ , by applying Fatou's Lemma.

Lower semicontinuity of $\mathscr{E}_{\varepsilon}$ implies now that U is closed in $L^{2}(\Omega)$; on the other hand, by (3) and by Poincaré Inequality, U is bounded in $H^{1}(\Omega)$. Then Rellich's Theorem gives that U is compact in $L^{2}(\Omega)$ and the proof is complete.

The aim of the present paper is to study the asymptotic behavior as $\varepsilon \to 0^+$ of (P_e). We shall prove in Section 2 that such asymptotic behavior is related with the following geometric minimization problem:

(P₀)
$$\min \{ P_{\Omega}(E) + \gamma \mathscr{H}_{n-1}(\partial^* E \cap \partial \Omega) : E \subseteq \Omega, |E| = m_1 \}$$

Here $\gamma \in [-1, 1]$, $m_1 \in [0, |\Omega|]$ are fixed real constants; |E|, $P_{\Omega}(E)$, $\partial^* E$ denote respectively the Lebesgue measure of E, the perimeter of E in Ω , and the reduced boundary of E. We refer to the book by E. Giusti [6] for these concepts, which go back to the De Giorgi's approach to the minimal surfaces theory. Anyhow, for reader's convenience, we recall that $P_{\Omega}(E) = \mathscr{H}_{n-1}(\partial E \cap \Omega)$ and $\partial^* E = \partial E$, provided that the boundary of E is locally Lipschitz continuous; hence (P_0) consists in finding a subset E of Ω , with prescribed volume m_1 , which minimizes a quantity related with the (n-1)-dimensional measure of its boundary.

The problem (P₀) is known as the liquid-drop problem (cf. E. Giusti [5]). Since Ω is bounded and $|\gamma| \leq 1$, it always admits (at least) one solution. Such existence result could also be obtained by the following proposition, which we need later.

1.2. PROPOSITION. – Let $\tau: \partial \Omega \times \mathbb{R} \to \mathbb{R}$ be a Borel function and define, for $u \in BV(\Omega)$,

$$\mathbf{F}(u) = \int_{\Omega} \left| \mathbf{D} u \right| + \int_{\partial \Omega} \tau(x, \tilde{u}(x)) \, d\mathcal{H}_{n-1}(x) \quad (^{1}),$$

where \tilde{u} denotes the trace of u on $\partial \Omega$. If

(i)
$$\begin{cases} |\tau(x,s_1) - \tau(x,s_2)| \leq |s_1 - s_2|, \\ \forall x \in \partial \Omega, \quad \forall s_1, s_2 \in \mathbb{R} \end{cases}$$

then the functional F is lower semicontinuous on BV (Ω) with respect to the topology of L¹ (Ω) .

Proof. – Fix $u_{\infty} \in BV(\Omega)$ and let (u_h) be a sequence in BV(Ω) converging to u_{∞} in $L^1(\Omega)$. We want to prove that

$$\limsup_{h \to +\infty} [F(u_{\infty}) - F(u_{h})] \leq 0.$$
(4)

By (i) we deduce that

$$\mathbf{F}(u_{\infty}) - \mathbf{F}(u_{h}) \leq \int_{\Omega} \left| \mathbf{D} u_{\infty} \right| - \int_{\Omega} \left| \mathbf{D} u_{h} \right| + \int_{\partial \Omega} \left| \widetilde{u}_{\infty} - \widetilde{u}_{h} \right| d\mathcal{H}_{n-1}.$$

Let $\delta > 0$ and define $v_{\delta} = (1 - \chi_{\delta})$ $(u_{\infty} - u_{h})$, where χ_{δ} is the usual cut-off function, i. e. $\chi_{\delta} \in C_{0}^{1}(\Omega)$, $0 \leq \chi_{\delta} \leq 1$, $\chi_{\delta}(x) = 1$ if dist $(x, \partial \Omega) \geq \delta$, $|D \chi_{\delta}| \leq 2/\delta$. The trace inequality for BV functions (*cf.* G. Anzellotti and M. Giaquinta [1]), applied to v_{δ} , gives that

$$\begin{split} \int_{\partial\Omega} \left| \widetilde{u}_{\infty} - \widetilde{u}_{h} \right| d\mathcal{H}_{n-1} \\ & \leq c_{1} \int_{\Omega_{\delta}^{'}} \left| \mathbf{D} \left(u_{\infty} - u_{h} \right) \right| + (2 c_{1}/\delta) \int_{\Omega_{\delta}^{'}} \left| u_{\infty} - u_{h} \right| dx + c_{2} \int_{\Omega_{\delta}^{'}} \left| u_{\infty} - u_{h} \right| dx, \end{split}$$

(1) For $u \in BV(\Omega)$ and E measurable subset of Ω , we denote by $\int_{E} |Du|$ the value of the measure |Du| at the set E. Of course, if Du is a Lebesgue integrable vector function, then $\int_{E} |Du|$ agrees with the ordinary integral $\int_{E} |Du(x)| dx$.

where $\Omega_{\delta} = \{x \in \Omega : \operatorname{dist}(x, \partial\Omega) > \delta\}$ and $\Omega'_{\delta} = \Omega \setminus \Omega_{\delta}$. Let us remark that $c_1 = 1$ because $\partial\Omega$ is smooth (see [1]), and that

$$\int_{\Omega_{\delta}'} \left| \mathbf{D} \left(u_{\infty} - u_{h} \right) \right| \leq \int_{\Omega_{\delta}'} \left| \mathbf{D} u_{\infty} \right| + \int_{\Omega_{\delta}'} \left| \mathbf{D} u_{h} \right| + \int_{\partial \Omega_{\delta}} \left| \mathbf{D} \left(u_{\infty} - u_{h} \right) \right|.$$

Since $u_{\infty} - u_h \in BV(\Omega)$, we have that

$$\int_{\partial\Omega_{\delta}} \left| \mathbf{D} \left(u_{\infty} - u_{h} \right) \right| = 0, \qquad \forall h \in \mathbb{N}$$

for a set of $\delta > 0$ of full measure; hence

$$F(u_{\infty}) - F(u_{h}) \leq \int_{\Omega} |Du_{\infty}| + \int_{\Omega_{\delta}} |Du_{\infty}| - \int_{\Omega_{\delta}} |Du_{h}| + \left(\frac{2}{\delta} + c_{2}\right) \int_{\Omega_{\delta}} |u_{\infty} - u_{h}| dx$$

and, by lower semicontinuity in $L^1(\Omega_{\delta})$ of the functional

$$u\mapsto \int_{\Omega_{\delta}}|\operatorname{D} u|,$$

we conclude that

$$\limsup_{h \to +\infty} [F(u_{\infty}) - F(u_{h})] \leq 2 \int_{\Omega_{\delta}} |Du_{\infty}|$$

for almost all $\delta > 0$. By taking $\delta \to 0^+$, the inequality (4) is proved.

1.3. Remark. – The previous proposition fails to be true if $\partial\Omega$ is not smooth, or if the function τ has in (i) a Lipschitz constant L>1. For example, in the case $\Omega =]0,1[\times]0,1[$ and $\tau(x,s) = -\lambda s$ with $\lambda > \sqrt{2/2}$, the corresponding functional F is not lower semicontinuous at the point $u_{\infty} = 0$; it is enough to check lower semicontinuity on the sequence (u_h) given by $u_h(x,y)=0$ for $x+y \ge 1/h$, $u_h(x,y)=h$ for x+y < 1/h. Analogously, in the case $\Omega = \{x \in \mathbb{R}^2 : |x| < 1\}$ and $\tau(x,s) = \lambda |s|$ with $\lambda > 1$, the corresponding functional F is not lower semicontinuous at the point $u_{\infty}(x) = |x|$: one can choose $u_h(x) = \min\{|x|, (h-1)(1-|x|)\}$.

However, it is worth noticing that, in the particular case $\tau(x,s) = |s - \psi(x)|$ with $\psi \in L^1(\partial\Omega, \mathscr{H}_{n-1})$, the functional F defined in Proposition 1.2 is lower semicontinuous on $L^1(\Omega)$ even for Lipschitz

continuous $\partial\Omega$. Indeed, by choosing an open, bounded set $\Omega' \supseteq \overline{\Omega}$ and a function $\hat{\psi} \in BV(\Omega')$ whose trace on $\partial\Omega$ is ψ , we have that

$$\mathbf{F}(u) = \int_{\Omega} \left| \mathbf{D} u \right| + \int_{\partial \Omega} \left| \widetilde{u}(x) - \psi(x) \right| d \mathscr{H}_{n-1} = \int_{\Omega'} \left| \mathbf{D} v_u \right| - \int_{\Omega'} \left| \mathbf{D} \widehat{\psi} \right|_{\mathcal{H}}$$

where the function v_u is defined by $v_u(x) = u(x)$ for $x \in \Omega$, $v_u(x) = \hat{\psi}(x)$, for $x \in \Omega' \setminus \Omega$. Since the first addendum of the right-hand side is lower semicontinuous with respect to u in $L^1(\Omega)$, F also is lower semicontinuous in $L^1(\Omega)$.

From now on, we let, for $t \ge 0$,

$$\varphi(t) = \int_0^t \mathbf{W}^{1/2}(s) \, ds, \tag{5}$$

$$\hat{\sigma}(t) = \inf \{ \sigma(s) + 2 | \varphi(s) - \varphi(t) | : s \ge 0 \},$$
(6)

and, for $u \in BV(\Omega)$,

$$\mathscr{E}_{0}(u) = 2 \int_{\Omega} \left| \mathbf{D}(\phi \circ u) \right| + \int_{\partial \Omega} \hat{\sigma}(\widetilde{u}(x)) \, d\mathscr{H}_{n-1}, \tag{7}$$

where, as above, \tilde{u} denotes the trace of u on $\partial \Omega$.

1.4. PROPOSITION. – Let (u_h) be a sequence of functions of class C^1 on Ω . If (u_h) converges in $L^1(\Omega)$ to a function u_∞ and there exists a real constant c such that

$$\int_{\Omega} \left| \mathbf{D} \left(\boldsymbol{\varphi} \circ \boldsymbol{u}_{h} \right) \right| dx \leq c$$

for every $h \in \mathbb{N}$, then $\phi \circ u_{\infty} \in BV(\Omega)$ and

$$\mathscr{E}_0(u_{\infty}) \leq \liminf_{h \to +\infty} \mathscr{E}_0(u_h).$$

Proof. – Let us denote $v_h(x) = \varphi(u_h(x))$ and fix an open subset Ω' of Ω such that $\overline{\Omega'} \subset \Omega$. If we consider the smooth function $\overline{v_h}(x) = v_h(x) - \vartheta_h$, where

$$\vartheta_h = \int_{\Omega'} v_h \, dx$$

Annales de l'Institut Henri Poincaré - Analyse non linéaire

Poincaré Inequality gives

$$\int_{\Omega'} \left| \overline{v_h} \right| dx \leq c_1(\Omega) \int_{\Omega'} \left| \mathbf{D} \, \overline{v_h} \right| dx \leq c_1(\Omega) \, c$$

for every $h \in \mathbb{N}$ and for a real constant $c_1(\Omega)$ depending on Ω but independent of $\Omega' \subseteq \Omega$. It follows that the sequence $(\overline{v_h})$ is bounded in BV(Ω); hence, by Rellich's Theorem, there exists a subsequence $(\overline{v_{\sigma(h)}})$ which converges in $L^1(\Omega)$ to a function $\overline{v_{\infty}}$.

Since it is not restrictive to assume that $(\overline{v}_{\sigma(h)})$ and $(v_{\sigma(h)})$ both converge almost everywhere in Ω , we infer that $(\vartheta_{\sigma(h)})$ converges in \mathbb{R} to ϑ_{∞} , and finally that $(v_{\sigma(h)})$ converges in $L^1(\Omega)$ to $\overline{v}_{\infty} + \vartheta_{\infty}$. We have of course $\overline{v}_{\infty} + \vartheta_{\infty} = \varphi \circ u_{\infty}$, so we conclude that the whole (v_h) converges in $L^1(\Omega)$ to $v_{\infty} = \varphi \circ u_{\infty}$ and, by semicontinuity, that

$$\int_{\Omega} |\mathbf{D} v_{\infty}| \leq \liminf_{h \to +\infty} \int_{\Omega} |\mathbf{D} v_{h}| \leq c < +\infty.$$

We now consider the inverse function φ^{-1} of φ ; note that φ^{-1} exists because $\varphi'(t) = W(t) > 0$ except for $t = \alpha$, β . Denoting $\tau(s) = \hat{\sigma}(\varphi^{-1}(s))$, we have that

$$|\tau(s_1) - \tau(s_2)| \leq 2|s_1 - s_2|$$

for every s_1 , s_2 in the domain of φ^{-1} ; then Proposition 1.2 yields that

$$\mathscr{E}_{0}(u_{\infty}) = 2 \int_{\Omega} |\operatorname{D} v_{\infty}| + \int_{\partial \Omega} \tau(\widetilde{v}_{\infty}) \, d\mathscr{H}_{n-1}$$
$$\leq \liminf_{h \to +\infty} \left[2 \int_{\Omega} |\operatorname{D} v_{h}| \, dx + \int_{\partial \Omega} \tau(\widetilde{v}_{h}) \, d\mathscr{H}_{n-1} \right] = \liminf_{h \to +\infty} \mathscr{E}_{0}(u_{h})$$

and Proposition 1.4 is proved.

We now turn to the liquid-drop problem (P_0) by proving that the class of competing sets can be restricted to smooth sets.

1.5. PROPOSITION. – Suppose $0 < m_1 < |\Omega|$ and $|\gamma| \le 1$. If λ is a fixed real number such that

$$\lambda \leq P_{\Omega}(\mathbf{A}) + \gamma \, \mathscr{H}_{n-1}(\partial (\mathbf{A} \cap \Omega) \cap \partial \Omega)$$

for every open, bounded subset A of \mathbb{R}^n which has smooth boundary and satisfies $\mathscr{H}_{n-1}(\partial A \cap \partial \Omega) = 0$, $|A \cap \Omega| = m_1$, then

$$\lambda \leq \min \{ \mathbf{P}_{\Omega}(\mathbf{E}) + \gamma \, \mathscr{H}_{n-1}(\partial^* \mathbf{E} \cap \partial \Omega) : \mathbf{E} \subseteq \Omega, |\mathbf{E}| = m_1 \}.$$

Proof. – We omit the details because we closely follow the proof of the analogous result proved for the case $\gamma = 0$ in Lemmas 1 and 2 of [10].

Let E_0 be the set which realizes the minimum of (P_0) . By a theorem of E. Gonzalez, U. Massari and I. Tamanini ([7], Th. 1), which was stated for $\gamma = 0$ but holds also in our situation because of its local character, we have that both E_0 and $\Omega \setminus E_0$ contain a non-empty open ball. Then, arguing as in Lemma 1 of [10], one can construct a sequence (E_h) of open, bounded, smooth subsets of \mathbb{R}^n such that $|E_h \cap \Omega| = m_1$, \mathscr{H}_{n-1} $(\partial E_h \cap \partial \Omega) = 0$ for every $h \in \mathbb{N}$, and

$$\lim_{h \to +\infty} \left| (\mathbf{E}_h \cap \Omega) \bigtriangleup \mathbf{E}_0 \right| = 0, \tag{8}$$

$$\lim_{h \to +\infty} \mathbf{P}_{\Omega}(\mathbf{E}_{h}) = \mathbf{P}_{\Omega}(\mathbf{E}_{0}), \tag{9}$$

$$\lim_{h \to +\infty} \mathscr{H}_{n-1}(\partial (\mathbf{E}_h \cap \Omega) \cap \partial \Omega) = \mathscr{H}_{n-1}(\partial^* \mathbf{E}_0 \cap \partial \Omega).$$
(10)

The last assertion is not actually contained in Lemma 1 of [10] but it easily follows from (8) and from

$$\mathcal{H}_{n-1}(\partial (\mathbf{E}_{h} \cap \Omega) \cap \partial \Omega) = \int_{\partial \Omega} \tilde{\chi}_{\mathbf{E}_{h} \cap \Omega} d\mathcal{H}_{n-1},$$
$$\mathcal{H}_{n-1}(\partial^{*} \mathbf{E}_{0} \cap \partial \Omega) = \int_{\partial \Omega} \tilde{\chi}_{\mathbf{E}_{0}} d\mathcal{H}_{n-1},$$

where $\tilde{\chi}_T$ denotes the trace on $\partial \Omega$ of the characteristic function of T for $T = E_h \cap \Omega$ and $T = E_0$.

The proof of the proposition is now a straightforward consequence of (9) and (10).

The next result, stated here without proof, was proved in [10] (Lemma 4).

1.6. PROPOSITION. – Let A be an open subset of \mathbb{R}^n with smooth, non-empty, compact boundary ∂A such that $\mathscr{H}_{n-1}(\partial A \cap \partial \Omega) = 0$. Define the function $h: \mathbb{R}^n \to \mathbb{R}$ by $h(x) = \operatorname{dist}(x, \partial A)$ for $x \in A$, $h(x) = -\operatorname{dist}(x, \partial A)$ for $x \notin A$. Then h is Lipschitz continuous, |Dh(x)| = 1 for almost all $x \in \mathbb{R}^n$, and

$$\lim_{t \to 0} \mathscr{H}_{n-1}(\mathbf{S}_t \cap \Omega) = \mathscr{H}_{n-1}(\partial \mathbf{A} \cap \Omega)$$

where $\mathbf{S}_t = \{x \in \mathbb{R}^n : h(x) = t\}.$

2. THE MAIN RESULT

We recall that Ω denotes an open, bounded subset of \mathbb{R}^n $(n \ge 2)$ with smooth boundary, and W, $\sigma: [0, +\infty[\rightarrow \mathbb{R}]$ denote two non-negative continuous functions. We assume also that W(t)=0 only for $t=\alpha$ or $t=\beta$ with $0 < \alpha < \beta$.

2.1. THEOREM. – Fix $m \in [\alpha | \Omega |, \beta | \Omega |]$ and, for every $\varepsilon > 0$, let u_{ε} be a solution of the minimization problem $(\mathbf{P}_{\varepsilon})$. If each u_{ε} is of class \mathbf{C}^1 and there exists a sequence (ε_h) of positive numbers, converging to zero, such that (u_{ε_h}) converges in $\mathbf{L}^1(\Omega)$ to a function u_0 , then

(i) $W(u_0(x))=0$ [i. e. $u_0(x)=\alpha$ or $u_0(x)=\beta$] for almost all $x \in \Omega$;

(ii) the set $E_0 = \{x \in \Omega : u_0(x) = \alpha\}$ is a solution of the minimization problem (P_0) with

$$\gamma = \frac{\hat{\sigma}(\alpha) - \hat{\sigma}(\beta)}{2c_0}, \qquad m_1 = \frac{\beta |\Omega| - m}{\beta - \alpha},$$

where [see (5) and (6)]

$$\hat{\sigma}(t) = \inf \left\{ \sigma(s) + 2 \left| \int_{t}^{s} \mathbf{W}^{1/2}(y) \, dy \right| : s \ge 0 \right\}$$

for $t = \alpha$, β , and

$$c_0 = \int_{\alpha}^{\beta} \mathbf{W}^{1/2}(y) \, dy;$$

(iii) $\lim_{h \to +\infty} \varepsilon_{h}^{-1} \mathscr{E}_{\varepsilon_{h}}(u_{\varepsilon_{h}})$ $= 2 c_{0} P_{\Omega}(E_{0}) + \hat{\sigma}(\alpha) \mathscr{H}_{n-1} (\partial^{*} E_{0} \cap \partial \Omega)$ $+ \hat{\sigma}(\beta) \mathscr{H}_{n-1} (\partial \Omega \setminus \partial^{*} E_{0}).$

For some comments about this statement we refer to Remarks 2.5. The proof of Theorem 2.1 is similar to that one of the result with $\sigma = 0$ given in [10]. Neverthless the extension is not trivial, because in the asymptotic ($\varepsilon = 0$) boundary behavior, given by $\hat{\sigma}$, both the boundary and the interior behavior for $\varepsilon > 0$, given by W and σ , are involved.

In the language of Γ -convergence theory, the proof of Theorem 2.1 consists in verifying that $(\varepsilon^{-1} \mathscr{E}_{\varepsilon} + I_m)$ converges as $\varepsilon \to 0^+$, in the sense of $\Gamma(L^1(\Omega))$ -convergence, to the functional $\mathscr{E}_0 + I_m$, at the points $u \in L^1(\Omega)$ such that W(u(x)) = 0 for almost all $x \in \Omega$ (cf. Section 3 in [10]). The functional \mathscr{E}_0 was defined in (7); I_m denotes here the $0/+\infty$ characteristic function of the constraint $\int_{\Omega} u(x) dx = m$.

The main steps in the proof of Theorem 2.1 are the following propositions.

2.2. PROPOSITION. – Suppose that $(v_{\varepsilon})_{\varepsilon > 0}$ is a family in $\{u \in C^{1}(\Omega) : u \ge 0\}$ which converges in $L^{1}(\Omega)$ as $\varepsilon \to 0^{+}$ to a function v_{0} . If

$$\liminf_{\varepsilon \to 0^+} \varepsilon^{-1} \mathscr{E}_{\varepsilon}(v_{\varepsilon}) < +\infty,$$

then $v_0 \in BV(\Omega)$, $W(v_0(x)) = 0$ for almost all $x \in \Omega$, and

$$\mathscr{E}_{0}(v_{0}) \leq \liminf_{\varepsilon \to 0^{+}} \varepsilon^{-1} \mathscr{E}_{\varepsilon}(v_{\varepsilon}).$$
(11)

2.3. PROPOSITION. — Let A be an open, bounded subset of \mathbb{R}^n with smooth boundary such that $\mathscr{H}_{n-1}(\partial A \cap \partial \Omega) = 0$. Define the function $v_0: \Omega \to \mathbb{R}$ by $v_0(x) = \alpha$ for $x \in A \cap \Omega$, $v_0(x) = \beta$ for $x \in \Omega \setminus A$. For every r > 0 denote

$$\mathbf{U}_{r} = \bigg\{ v \in \mathbf{H}^{1}(\Omega) : v \ge 0, \| v - v_{0} \|_{\mathbf{L}^{2}(\Omega)} < r, \int_{\Omega} v \, dx = \int_{\Omega} v_{0} \, dx \bigg\}.$$

Then, for every r > 0, we have that

$$\limsup_{\varepsilon \to 0^+} \inf_{v \in U_r} \varepsilon^{-1} \mathscr{E}_{\varepsilon}(v) \leq \mathscr{E}_0(v_0).$$
(12)

2.4. Remark. – For the connection between (12) and the corresponding inequality in the usual definition of Γ -convergence, see Proposition 1.14 of [4].

Annales de l'Institut Henri Poincaré - Analyse non linéaire

Proof of Proposition 2.2. – By the continuity of W and by Fatou's Lemma we have that

$$\int_{\Omega} W(v_0) dx \leq \liminf_{\varepsilon \to 0^+} \int_{\Omega} W(v_{\varepsilon}) dx \leq \liminf_{\varepsilon \to 0^+} \mathscr{E}_{\varepsilon}(v_{\varepsilon}) = 0;$$

since $W \ge 0$, we have at once proved that $W(v_0(x))=0$ for almost all $x \in \Omega$.

Now

$$\begin{split} \int_{\Omega} \left| \mathbf{D} \left(\boldsymbol{\varphi} \circ \boldsymbol{v}_{\varepsilon} \right) \right| &= \int_{\Omega} \left| \boldsymbol{\varphi}' \left(\boldsymbol{v}_{\varepsilon} \left(\boldsymbol{x} \right) \right) \right| \cdot \left| \mathbf{D} \boldsymbol{v}_{\varepsilon} \left(\boldsymbol{x} \right) \right| d\boldsymbol{x} \\ &= \int_{\Omega} \mathbf{W} \left(\boldsymbol{v}_{\varepsilon} \left(\boldsymbol{x} \right) \right) \left| \mathbf{D} \boldsymbol{v}_{\varepsilon} \left(\boldsymbol{x} \right) \right| d\boldsymbol{x} \\ &\leq \int_{\Omega} \left[\varepsilon \left| \mathbf{D} \boldsymbol{v}_{\varepsilon} \right|^{2} + \varepsilon^{-1} \mathbf{W} \left(\boldsymbol{v}_{\varepsilon} \right) \right] d\boldsymbol{x} \leq \varepsilon^{-1} \mathscr{E}_{\varepsilon} \left(\boldsymbol{v}_{\varepsilon} \right), \end{split}$$

so Proposition 1.4 and $\hat{\sigma} \leq \sigma$ apply for obtaining

$$\mathscr{E}_{0}(v_{0}) \leq \liminf_{\varepsilon \to 0^{+}} \mathscr{E}_{0}(v_{\varepsilon})$$
$$\leq \liminf_{\varepsilon \to 0^{+}} \left\{ \int_{\Omega} [\varepsilon | \mathrm{D}v_{\varepsilon}|^{2} + \varepsilon^{-1} \mathrm{W}(v_{\varepsilon})] dx + \int_{\delta\Omega} \widehat{\sigma}(v_{\varepsilon}) d\mathscr{H}_{n-1} \right\} \leq \liminf_{\varepsilon \to 0^{+}} \varepsilon^{-1} \mathscr{E}_{\varepsilon}(v_{\varepsilon}).$$

It remains to prove that $v_0 \in BV(\Omega)$. This is obvious because v_0 takes only the values α and β , and $\phi \circ v_0 \in BV(\Omega)$; hence the proof of Proposition 2.2 is complete.

Proof of Proposition 2.3. – Let us fix r > 0 and also, for further convenience, $L \ge 0$, $M \ge 0$ and $\delta > 0$. We shall not often indicate in the following the dependence on r, L, M, δ as well as on the other data n, Ω , W, α , β , σ , A; in particular we shall denote by c_1, c_2, \ldots real positive constants depending on all such data.

The following lemma contains a purely technical part of the proof.

2.5. LEMMA. – Consider, for every $\varepsilon > 0$, the first-order ordinary differential equation

$$|y'| = \varepsilon^{-1} (\delta + \mathbf{W}(y))^{1/2}.$$
 (13)

Then there exist three constants c_1 , c_2 , c_3 , independent of ε , and a Lipschitz continuous function $\chi_{\varepsilon}(s, t)$, defined on the upper half-plane $\mathbb{R} \times [0, +\infty[$, satisfying the following properties:

$$\chi_{\varepsilon}(s, t) = \alpha \quad for \quad s \ge c_{1} \varepsilon, \quad t \ge c_{1} \varepsilon,$$

$$\chi_{\varepsilon}(s, t) = \beta \quad for \quad s \le 0, \quad t \ge c_{1} \varepsilon,$$

$$\chi_{\varepsilon}(s, t) = L \quad for \quad s \le 0,$$

$$\chi_{\varepsilon}(s, t) = M \quad for \quad s \ge c_{1} \varepsilon;$$

$$0 \le \chi_{\varepsilon} \le c_{2}, \quad |D\chi_{\varepsilon}| \le c_{3}/\varepsilon;$$
(15)

on the strip $\{s \leq 0, t \leq c_1 \varepsilon\}$ the function $\chi_{\varepsilon}(s, t)$ depends only on t and fulfils the equation (13) in the set $\{\chi_{\varepsilon}(t) \neq \beta\}$; on the strip $\{s \geq c_1 \varepsilon, t \leq c_1 \varepsilon\}$ the function $\chi_{\varepsilon}(s, t)$ depends only on t and fulfils (13) in the set $\{\chi_{\varepsilon}(t) \neq \alpha\}$; on the strip $\{0 \leq s \leq c_1 \varepsilon, t \geq c_1 \varepsilon\}$ the function $\chi_{\varepsilon}(s, t)$ depends only on s and fulfils (13) in the set $\{\chi_{\varepsilon}(s) \neq \alpha\}$. (16)

Proof. – We have to determine c_1 , c_2 , c_3 and to complete the definition of χ_e on the strips

$$\begin{split} \mathbf{S}_1 &= \{ s \leq 0, \ t \leq c_1 \varepsilon \}, \qquad \mathbf{S}_2 = \{ s \geq c_1 \varepsilon, \ t \leq c_1 \varepsilon \}, \\ \mathbf{S}_3 &= \{ 0 \leq s \leq c_1 \varepsilon, \ t \geq c_1 \varepsilon \}, \end{split}$$

and on the square $Q = [0, c_1 \varepsilon[\times [0, c_1 \varepsilon[$.

Let us begin by S₁, where we have the prescribed boundary values $\chi_{\varepsilon}(s, c_1 \varepsilon) = \beta$, $\chi_{\varepsilon}(s, 0) = L$. If $\beta = L$, we define $\chi_{\varepsilon}(t) = \beta$; if $\beta > L$, we solve the Cauchy problem

$$y'(t) = \varepsilon^{-1} (\delta + W(y(t)))^{1/2}, \quad y(0) = L,$$

and we define $\chi_{\varepsilon}(t) = \min \{\beta, y(t)\}$; if $\beta < L$, we solve the same Cauchy problem with -y' instead of y' and we define $\chi_{\varepsilon}(t) = \max \{\beta, y(t)\}$. Since

$$|\chi_{\varepsilon}'(t)| = \varepsilon^{-1} (\delta + W(\chi_{\varepsilon}(t)))^{1/2} \ge \varepsilon^{-1} \delta^{1/2}$$

provided that $\chi_{\varepsilon}(t) \neq \beta$, we have $\chi_{\varepsilon}(t) = \beta$ for $t \ge \varepsilon |\beta - L|/\delta$; then, in order that χ_{ε} takes the prescribed boundary values $\chi_{\varepsilon}(s, c_1 \varepsilon) = \beta$, we need $c_1 \ge |\beta - L|/\delta$. The same holds on S₂ and S₃, so we are led to define

$$c_1 = \max \{ |\beta - L|/\delta, |\alpha - \beta|/\delta, |\alpha - M|/\delta \}.$$

Annales de l'Institut Henri Poincaré - Analyse non linéaire

Define also $c_2 = \max \{\alpha, \beta, L, M\}$, so that

$$0 \leq \chi_{\varepsilon} \leq c_2$$

and

$$\left| \mathbf{D} \chi_{\varepsilon} \right| \leq \varepsilon^{-1} (\delta + \max \{ \mathbf{W}(s) \colon 0 \leq s \leq c_2 \})^{1/2}$$

on $(\mathbb{R} \times [0, +\infty]) \setminus Q$. Finally, as we know χ_{ε} on three sides of the square Q, we can extend χ_{ε} on Q in such a way that χ_{ε} becomes Lipschitz continuous on the whole upper half-plane and (15) is satisfied with

$$c_3 = 3c_1 (\delta + \max \{ W(s) : 0 \le s \le c_2 \})^{1/2}.$$

The proof of Lemma 2.5 is now complete.

Let us return to the proof of Proposition 2.3. The first part of the proof consists in constructing a family (v_{ε}) in U, such that v_{ε} converges to v_0 as $\varepsilon \to 0^+$, and

$$\inf_{v \in U_r} \mathscr{E}_{\varepsilon}(v)$$

is approximatively equal to $\mathscr{E}_{\varepsilon}(v_{\varepsilon})$.

Define

FIG. 1.

$$d_{\Omega}(x) = \operatorname{dist}(x, \partial \Omega), \qquad d_{A}(x) = \operatorname{dist}(x, \partial A) \quad \text{for } x \in A,$$
$$d_{A}(x) = -\operatorname{dist}(x, \partial A) \quad \text{for } x \notin A,$$

and let χ_{ε} be the function constructed in Lemma 2.5. Let, for $x \in \Omega$,

$$v_{\varepsilon}'(x) = \chi_{\varepsilon}(d_{\mathbf{A}}(x), d_{\mathbf{\Omega}}(x)).$$

Look at Figure 1 for understanding the meaning of our construction. Denoting

$$\begin{split} \mathbf{S}_{s} &= \{ x \in \mathbf{A} \cap \Omega \colon d_{\mathbf{A}}(x) = s \}, \\ \mathbf{\Sigma}_{t}^{\alpha} &= \{ x \in \Omega \cap \mathbf{A} \colon d_{\Omega}(x) = t \}, \\ \mathbf{\Sigma}_{t}^{\beta} &= \{ x \in \Omega \setminus \mathbf{A} \colon d_{\Omega}(x) = t \}, \end{split}$$

Federer's coarea formula and $|Dd_{\Omega}| = |Dd_A| = 1$ (see Proposition 1.6) yield

$$\begin{split} \int_{\Omega} |v_{\varepsilon}' - v_{0}| \, dx \\ & \leq c_{4} \left[\left| \left\{ x \in \Omega : d_{\Omega}(x) \leq c_{1} \varepsilon \right\} \right| + \left| \left\{ x \in A \cap \Omega : d_{A}(x) \leq c_{1} \varepsilon \right\} \right| \right] \\ & = c_{4} \int_{0}^{c_{1} \varepsilon} \left[\mathscr{H}_{n-1} \left(\Sigma_{t}^{\alpha} \cup \Sigma_{t}^{\beta} \right) + \mathscr{H}_{n-1} \left(S_{t} \right) \right] dt; \end{split}$$

hence, as ∂A and $\partial \Omega$ are smooth, Proposition 1.6 implies

$$\int_{\Omega} \left| v_{\varepsilon}' - v_0 \right| dx \leq c_5 \varepsilon$$

for ε small enough. It follows that v'_{ε} converges to v_0 in $L^1(\Omega)$ as $\varepsilon \to 0^+$ and, defining

$$\eta_{\varepsilon} = \int_{\Omega} v_{\varepsilon}' \, dx - \int_{\Omega} v_0 \, dx,$$

we have that

$$|\eta_{\varepsilon}| \leq c_5 \varepsilon \tag{17}$$

for ε small enough.

Let us choose a point $x_0 \in \Omega \setminus \partial A$ and, for fixing the ideas, assume that $x_0 \in \Omega \cap A$. In the case $\Omega \cap A = \emptyset$ or $x_0 \in \Omega \setminus A$ the changes in the proof

Annales de l'Institut Henri Poincaré - Analyse non linéaire

are trivial. Note that the closed ball $B_{\varepsilon} = B(x_0, \varepsilon^{1/n})$ is contained, for ε small enough, in the set $\{v'_{\varepsilon} = \alpha\}$; then the function v_{ε} , defined on Ω by $v_{\varepsilon} = v'_{\varepsilon}$ for $x \notin B_{\varepsilon}$, and by

$$v_{\varepsilon}(x) = \alpha + h_{\varepsilon} (1 - \varepsilon^{-1/n} | x - x_0 |),$$

for $x \in B_{\varepsilon}$, is Lipschitz continuous whenever $h_{\varepsilon} \in \mathbb{R}$.

We now choose

$$h_{\varepsilon} = -n \omega_{n-1}^{-1} \eta_{\varepsilon} \varepsilon^{(1-n)/n},$$

with ω_{n-1} equal to the volume of the unit ball in \mathbb{R}^{n-1} , so that

$$\int_{\mathbf{B}_{\varepsilon}} (v_{\varepsilon} - v_{\varepsilon}') \, dx = \int_{\mathbf{B}_{\varepsilon}} h_{\varepsilon} (1 - \varepsilon^{-1/n} | x - x_0 |) \, dx = -\eta_{\varepsilon},$$

and, by the definition of η_{ε} and v_{ε} ,

$$\int_{\mathbf{B}_{\varepsilon}} v_{\varepsilon} \, dx = \int_{\mathbf{B}_{\varepsilon}} v_0 \, dx \tag{18}$$

for ε small enough. Since, by (17),

$$\left|h_{\varepsilon}\right| \leq c_{6} \varepsilon^{1/n},\tag{19}$$

we have, for ε small enough,

$$0 \le v_{\varepsilon} \le c_{\gamma},\tag{20}$$

and

$$\lim_{\varepsilon \to 0^+} \int_{\Omega} |v_{\varepsilon} - v_0|^2 \, dx = 0; \tag{21}$$

hence

$$\lim_{\varepsilon \to 0^+} \inf_{v \in U_r} \varepsilon^{-1} \mathscr{E}_{\varepsilon}(v) \leq \limsup_{\varepsilon \to 0^+} \varepsilon^{-1} \mathscr{E}_{\varepsilon}(v_{\varepsilon}).$$
(22)

The second part of the proof consists in a sharp estimate of the right-hand side of such inequality. For the sake of simplicity, let

$$\varepsilon^{-1} \mathscr{E}_{\varepsilon}(v_{\varepsilon}) = \mathscr{E}'_{\varepsilon}(v_{\varepsilon}; \Omega) + \mathscr{E}''_{\varepsilon}(v_{\varepsilon})$$

with

$$\mathscr{E}'_{\varepsilon}(v_{\varepsilon}; \mathbf{C}) = \int_{\mathbf{C}} [\varepsilon | \mathbf{D}v_{\varepsilon} |^{2} + \varepsilon^{-1} \mathbf{W}(v_{\varepsilon})] dx \qquad (\mathbf{C} \subseteq \Omega),$$

and

$$\mathscr{E}_{\varepsilon}^{\prime\prime}(v_{\varepsilon}) = \int_{\delta\Omega} \sigma\left(\tilde{v}_{\varepsilon}\right) d\mathscr{H}_{n-1}.$$

By (20) and (21), and by the continuity of σ and of the trace operator, we at once obtain

$$\begin{split} \limsup_{\varepsilon \to 0^{+}} \mathscr{E}_{\varepsilon}^{\prime\prime}(V_{\varepsilon}) &\leq \int_{\delta\Omega} \sigma\left(\tilde{v}_{0}\right) d\mathscr{H}_{n-1} \\ &= \sigma\left(\mathcal{L}\right) \mathscr{H}_{n-1}\left(\partial\Omega \setminus \mathcal{A}\right) + \sigma\left(\mathcal{M}\right) \mathscr{H}_{n-1}\left(\partial\Omega \cap \mathcal{A}\right). \ (23) \end{split}$$

The evaluation of $\mathscr{E}'_{\varepsilon}(v_{\varepsilon}; \Omega)$ is more complicated. Let us divide Ω in seven parts, corresponding to the construction of χ_{ε} in Lemma 2.5 and of v_{ε} (see Fig. 1):

$$\begin{split} \mathbf{B}_{\varepsilon} &= \mathbf{B}(x_{0}, \, \varepsilon^{1/n}), \\ \Omega_{\alpha}^{\varepsilon} &= \big\{ \, x \in \Omega : d_{\mathbf{A}}(x) > c_{1} \, \varepsilon, \, d_{\Omega}(x) > c_{1} \, \varepsilon, \, x \notin \mathbf{B}_{\varepsilon} \, \big\}, \\ \Omega_{\beta}^{\varepsilon} &= \big\{ \, x \in \Omega : d_{\mathbf{A}}(x) \leq 0; \, d_{\Omega}(x) > c_{1} \, \varepsilon \, \big\}, \\ \Omega_{\alpha\beta}^{\varepsilon} &= \big\{ \, x \in \Omega : 0 < d_{\mathbf{A}}(x) \leq c_{1} \, \varepsilon, \, d_{\Omega}(x) > c_{1} \, \varepsilon \, \big\}, \\ \Omega_{\beta \, \mathbf{L}}^{\varepsilon} &= \big\{ \, x \in \Omega : d_{\mathbf{A}}(x) \leq 0, \, d_{\Omega}(x) \leq c_{1} \, \varepsilon \, \big\}, \\ \Omega_{\alpha \, \mathbf{M}}^{\varepsilon} &= \big\{ \, x \in \Omega : d_{\mathbf{A}}(x) > c_{1} \, \varepsilon, \, d_{\Omega}(x) \leq c_{1} \, \varepsilon \, \big\}, \\ \Omega_{\alpha \, \mathbf{M}}^{\varepsilon} &= \big\{ \, x \in \Omega : d_{\mathbf{A}}(x) > c_{1} \, \varepsilon, \, d_{\Omega}(x) \leq c_{1} \, \varepsilon \, \big\}, \\ \Omega_{0}^{\varepsilon} &= \big\{ \, x \in \Omega : 0 < d_{\mathbf{A}}(x) \leq c_{1} \, \varepsilon, \, d_{\Omega}(x) \leq c_{1} \, \varepsilon \, \big\}. \end{split}$$

On B_{ε} we have, by (19),

$$\begin{aligned} \mathscr{E}_{\varepsilon}'(v_{\varepsilon}; \mathbf{B}_{\varepsilon}) \\ &= \varepsilon \left| h_{\varepsilon} \right|^{2} \varepsilon^{-2/n} \left| \mathbf{B}_{\varepsilon} \right| + \varepsilon^{-1} \int_{\mathbf{B}_{\varepsilon}} \mathbf{W} \left(\alpha + h_{\varepsilon} (1 - \varepsilon^{-1/n} \left| x - x_{0} \right|) \right) dx \\ &\leq c_{7} \left[\varepsilon^{2} + \int_{0}^{1} \mathbf{W} \left(\alpha + h_{\varepsilon} (1 - r) \right) r^{n-1} dr \right]; \end{aligned}$$

Annales de l'Institut Henri Poincaré - Analyse non linéaire

hence

$$\limsup_{\varepsilon \to 0^+} \mathscr{E}'_{\varepsilon}(v_{\varepsilon}; \mathbf{B}_{\varepsilon}) = 0.$$
(24)

On $\Omega^{\varepsilon}_{\alpha}$ and $\Omega^{\varepsilon}_{\beta}$ the function v_{ε} equals respectively α and β , so that

$$\mathscr{E}_{\varepsilon}'(v_{\varepsilon}; \ \Omega_{\alpha}^{\varepsilon}) + \mathscr{E}_{\varepsilon}'(v_{\varepsilon}; \ \Omega_{\beta}^{\varepsilon}) = 0.$$
⁽²⁵⁾

On $\Omega_{\alpha\beta}^{\epsilon}$ we have $v_{\epsilon}(x) = \chi_{\epsilon}(d_{A}(x), d_{\Omega}(x))$; moreover, by (16), $\chi_{\epsilon}(s, t) = \chi_{\epsilon}(s)$ depends only on the first variable and satisfies the equation

$$-\chi_{\varepsilon}'(s) = \varepsilon^{-1} (\delta + W(\chi_{\varepsilon}(s)))^{1/2}$$

on an interval]0, τ_{ε} [, with $0 < \tau_{\varepsilon} < c_1 \varepsilon$, while $\chi_{\varepsilon}(s) = \alpha$ for $s \ge \tau_{\varepsilon}$. Then, applying Federer's coarea formula and $\chi_{\varepsilon}(0) = \beta$, we obtain that

$$\mathscr{E}_{\varepsilon}'(v_{\varepsilon}; \ \Omega_{\alpha\beta}^{\varepsilon}) = \int_{0}^{\tau_{\varepsilon}} \left[\varepsilon \chi_{\varepsilon}'^{2}(s) + \varepsilon^{-1} \operatorname{W}(\chi_{\varepsilon}(s)) \right] \mathscr{H}_{n-1}(\operatorname{S}_{s}) ds$$

$$\leq \left(\sup_{0 \leq s \leq \tau_{\varepsilon}} \mathscr{H}_{n-1}(\operatorname{S}_{s}) \right) \int_{0}^{\tau_{\varepsilon}} 2\left(-\chi_{\varepsilon}'\right) (\delta + \operatorname{W}(\chi_{\varepsilon}))^{1/2} ds$$

$$= \left(\sup_{0 \leq s \leq \tau_{\varepsilon}} \mathscr{H}_{n-1}(\operatorname{S}_{s}) \right) \left(2 \int_{\alpha}^{\beta} (\delta + \operatorname{W}(t))^{1/2} dt \right),$$

and therefore, by Proposition 1.6,

$$\limsup_{\varepsilon \to 0^+} \mathscr{E}_{\varepsilon}'(v_{\varepsilon}; \ \Omega_{\alpha\beta}^{\varepsilon}) \leq 2 \, \mathscr{H}_{n-1}(\partial \mathcal{A} \cap \Omega) \int_{\alpha}^{\beta} (\delta + \mathcal{W}(t))^{1/2} \, dt.$$
(26)

The same argument leads to

$$\limsup_{\varepsilon \to 0^+} \mathscr{E}_{\varepsilon}'(v_{\varepsilon}; \Omega^{\varepsilon}_{\beta L}) \leq 2 \mathscr{H}_{n-1}(\partial \Omega \cap A) \left| \int_{\beta}^{L} (\delta + W(t))^{1/2} dt \right|, \quad (27)$$

and to

$$\limsup_{\varepsilon \to 0^+} \mathscr{E}_{\varepsilon}'(v_{\varepsilon}; \Omega_{\alpha M}^{\varepsilon}) \leq 2 \mathscr{H}_{n-1} \left(\partial \Omega \cap \mathbf{A} \right) \left| \int_{\alpha}^{M} (\delta + \mathbf{W}(t))^{1/2} dt \right|.$$
(28)

Finally, on Ω_0^{ε} we have, by (15),

$$\mathscr{E}_{\varepsilon}'(v_{\varepsilon}; \Omega_{0}^{\varepsilon}) \leq c_{8} \varepsilon^{-1} | \Omega_{0}^{\varepsilon} |.$$

Note that, again by coarea formula,

$$\begin{aligned} \left|\Omega_{0}^{\varepsilon}\right| = \int_{0}^{c_{1}\varepsilon} \mathscr{H}_{n-1}\left(\left\{x \in \Omega : d_{A}(x) = s, d_{\Omega}(x) \leq c_{1}\varepsilon\right\}\right) ds \\ \leq c_{1}\left(\sup_{0 \leq s \leq c_{1}\varepsilon} \mathscr{H}_{n-1}\left(S_{s} \setminus \Omega_{c_{1}\varepsilon}\right)\right), \end{aligned}$$

where Ω_{ρ} denotes here the set $\{x \in \Omega : d_{\Omega}(x) > \rho\}$. Since we have $\mathscr{H}_{n-1}(\partial A \cap \partial \Omega_{\rho}) = 0$ for almost all $\rho > 0$, Proposition 1.6 gives

$$\limsup_{\varepsilon \to 0^+} (\sup_{0 \le s \le c_1 \varepsilon} \mathscr{H}_{n-1} (S_s \setminus \Omega_{c_1 \varepsilon}))$$

$$\leq \limsup_{\varepsilon \to 0^+} (\sup_{0 \le s \le c_1 \varepsilon} \mathscr{H}_{n-1} (S_s \setminus \Omega_{\rho}))$$

$$= \mathscr{H}_{n-1} (\partial A \cap \partial (\Omega \setminus \Omega p))$$

for almost all $\rho > 0$; by taking the infimum for $\rho > 0$, we conclude that

$$\limsup_{\varepsilon \to 0^+} \mathscr{E}_{\varepsilon}'(v_{\varepsilon}; \ \Omega_0^{\varepsilon}) = 0.$$
⁽²⁹⁾

Now, by collecting (22) to (29), we have that

 $\limsup_{\varepsilon \to 0^+} \inf_{v \in U_r} \varepsilon^{-1} \mathscr{E}_{\varepsilon}(v) \leq 2 \mathscr{H}_{n-1} \left(\partial \mathbf{A} \cap \Omega \right) \int_{\alpha}^{\beta} (\delta + \mathbf{W}(t))^{1/2} dt + \mathscr{H}_{n-1} \left(\partial \Omega \cap \mathbf{A} \right) \left(2 \left| \int_{\alpha}^{\mathbf{M}} (\delta + \mathbf{W}(t))^{1/2} dt \right| + \sigma(\mathbf{M}) \right)$

$$\mathcal{H}_{n-1}(\partial\Omega \cap \mathbf{A})\left(2\left|\int_{\alpha} (\delta + \mathbf{W}(t))^{1/2} dt\right| + \sigma(\mathbf{M})\right) \\ + \mathcal{H}_{n-1}(\partial\Omega \cap \mathbf{A})\left(2\left|\int_{\beta}^{\mathbf{L}} (\delta + \mathbf{W}(t))^{1/2} dt\right| + \sigma(\mathbf{L})\right).$$

The left-hand side does not depend on δ , L, and M, so, by taking first the infimum for $\delta > 0$, and then the infima for $M \ge 0$ and for $L \ge 0$ of the right-hand side, we obtain, by the definition of $\hat{\sigma}$ and c_0 , that

$$\limsup_{\varepsilon \to 0^{+}} \inf_{v \in U_{r}} \varepsilon^{-1} \mathscr{E}_{\varepsilon}(v)$$

$$\leq 2 c_{0} \mathscr{H}_{n-1} (\partial A \cap \Omega) + \hat{\sigma}(\alpha) \mathscr{H}_{n-1} (\partial \Omega \cap A)$$

$$+ \hat{\sigma}(\beta) \mathscr{H}_{n-1} (\partial \Omega \setminus A)$$

$$= 2 c_{0} \mathscr{H}_{n-1} (\partial A \cap \Omega) + \int_{\delta\Omega} \hat{\sigma}(\tilde{v}_{0}) d\mathscr{H}_{n-1}. \quad (30)$$

Annales de l'Institut Henri Poincaré - Analyse non linéaire

Remarking that the Fleming-Rishel formula yields

$$2\int_{\Omega} |\mathbf{D}(\boldsymbol{\varphi} \circ \boldsymbol{v}_{0})| = 2\int_{\mathbb{R}} \mathbf{P}_{\Omega}(\{x \in \Omega : \boldsymbol{\varphi}(\boldsymbol{v}_{0}(x)) > t\}) dt$$
$$= 2\int_{\boldsymbol{\varphi}(\boldsymbol{\alpha})}^{\boldsymbol{\varphi}(\boldsymbol{\beta})} \mathbf{P}_{\Omega}(\mathbf{A} \cap \Omega) dt = 2c_{0} \mathscr{H}_{n-1}(\partial \mathbf{A} \cap \Omega), \quad (31)$$

the right-hand side of (30) agrees with $\mathscr{E}_0(v_0)$ and the proof of Proposition 2.3 is complete.

Now, we can prove Theorem 2.1.

Proof of Theorem 2.1. — Assume for simplicity that all (u_{ε}) converges, as $\varepsilon \to 0^+$, to u_0 . By constructing, as in the proof of Theorem I of [10], a suitable family of comparison piecewise affine functions, we first obtain that

$$\liminf_{\varepsilon \to 0^+} \varepsilon^{-1} \mathscr{E}_{\varepsilon}(u_{\varepsilon}) < +\infty;$$
(32)

hence Proposition 2.2 gives $W(u_0(x)) = 0$ and

$$\mathscr{E}_0(u_0) \leq \liminf_{\varepsilon \to 0^+} \varepsilon^{-1} \mathscr{E}_{\varepsilon}(u_{\varepsilon}).$$

Now, let \mathscr{A} be the class of all open, bounded subsets A of \mathbb{R}^n , with smooth boundary, such that \mathscr{H}_{n-1} $(\partial A \cap \partial \Omega) = 0$ and $|A \cap \Omega| = |E_0| = m_1$. For every $A \in \mathscr{A}$, we define $v_0^A(x) = \alpha$ for $x \in A \cap \Omega$, $v_0^A(x) = \beta$ for $x \in \Omega \setminus A$; applying Proposition 2.3 with r = 1, we infer that

$$\limsup_{\varepsilon \to 0^+} \inf_{v \in U} \varepsilon^{-1} \mathscr{E}_{\varepsilon}(v) \leq \mathscr{E}_{0}(v_{0}^{A}),$$

where

$$\mathbf{U} = \left\{ v \in \mathbf{H}^{1}(\Omega) : v \ge 0, \ \int_{\Omega} |v - v_{0}^{\mathsf{A}}|^{2} dx < 1, \ \int_{\Omega} v dx = \int_{\Omega} v_{0}^{\mathsf{A}} dx \right\}$$

Since

$$\int_{\Omega} v_0^{\mathbf{A}} \, dx = m,$$

Vol. 4, n° 5-1987.

. 1

we have, by the minimality of u_{e} , that

$$\mathscr{E}_{\varepsilon}(u_{\varepsilon}) \leq \mathscr{E}_{\varepsilon}(v), \quad \forall v \in \mathbf{U},$$

and we conclude that

$$\mathscr{E}_{0}(u_{0}) \leq \liminf_{\varepsilon \to 0^{+}} \varepsilon^{-1} \mathscr{E}_{\varepsilon}(u_{\varepsilon}) \leq \limsup_{\varepsilon \to 0^{+}} \varepsilon^{-1} \mathscr{E}_{\varepsilon}(u_{\varepsilon}) \leq \mathscr{E}_{0}(v_{0}^{A})$$
(33).

for every $A \in \mathscr{A}$. Arguing as for (30) and (31), we obtain

$$\mathscr{E}_{0}(u_{0}) = 2 c_{0} P_{\Omega}(E_{0}) + \hat{\sigma}(\alpha) \mathscr{H}_{n-1} (\partial^{*} E_{0} \cap \partial \Omega) + \hat{\sigma}(\beta) \mathscr{H}_{n-1} (\partial \Omega \setminus \partial^{*} E_{0}) \quad (34)$$

and

$$\mathscr{E}_{0}(v_{0}^{\mathrm{A}}) = 2 c_{0} P_{\Omega}(\mathrm{A}) + \hat{\sigma}(\alpha) \mathscr{H}_{n-1}(\partial \Omega \cap \mathrm{A}) + \hat{\sigma}(\beta) \mathscr{H}_{n-1}(\partial \Omega \setminus \mathrm{A}),$$

so that

$$\mathbf{P}_{\Omega}(\mathbf{E}_{0}) + \gamma \,\mathscr{H}_{n-1}\left(\partial^{*} \,\mathbf{E}_{0} \cap \partial\Omega\right) \leq \mathbf{P}_{\Omega}(\mathbf{A}) + \gamma \,\mathscr{H}_{n-1}\left(\partial \left(\mathbf{A} \cap \Omega\right) \cap \partial\Omega\right)$$

for every $A \in \mathscr{A}$. Then the required minimality property (ii) of E_0 follows from Proposition 1.5. Finally, by employing again (33) and Proposition 1.5, with

$$\lambda = \limsup_{\varepsilon \to 0^+} \varepsilon^{-1} \mathscr{E}_{\varepsilon}(u_{\varepsilon}),$$

we have that

$$\mathscr{E}_{0}(u_{0}) = \lim_{\varepsilon \to 0^{+}} \varepsilon^{-1} \mathscr{E}_{\varepsilon}(u_{\varepsilon});$$

hence the result (iii) follows from (34) and this concludes the proof of Theorem 2.1. \blacksquare

2.5. Remarks. -(a) The assumption that $\partial\Omega$ is smooth in Theorem 2.1 cannot be easily replaced by $\partial\Omega$ Lipschitz continuous, except for $\sigma=0$ (cf. [10]). In fact, as we already observed in Remark 1.3, the liquid-drop problem (P₀) in bounded domains with angles requires a particular treatment.

(b) Well-known growth conditions at infinity on W guarantee that the minimizers u_{ε} are of class C¹. Of course, if $u_{\varepsilon} \in L^{\infty}(\Omega)$, then u_{ε} is smooth.

PHASE TRANSITIONS

(c) The (relative) compactness of (u_{ε}) in $L^{1}(\Omega)$ may be studied as in Proposition 4 of [10]. It is ensured either by equiboundedness of (u_{ε}) (cf. [9]), or again by a growth condition at infinity on W.

3. A DISCUSSION ABOUT CRITICAL POINT WETTING

We make here more precise some statements of Introduction, about the connection between Theorem 2.1 and the critical point wetting theory by J. W. Cahn [2].

According to this author, and looking in particular at page 3668 and Figure 4 of [2], we assume that the contact energy σ is a non-negative, convex, decreasing function of class C¹. Moreover we denote by W_T the Gibbs free energy at the temperature T (recall that we are concerned with isothermal phenomena), by α_T and β_T the corresponding zeros, by M_T the maximum height of the hump between α_T and β_T . We assume that W_T(t) increases for $t \ge \beta_T$. By thermodynamic and experimental reasons (cf. [2], page 3669), we assume also that β_T and M_T are decreasing in T, α_T is increasing in T and $(\beta_T - \alpha_T) \rightarrow 0$, M_T $\rightarrow 0$ when T increases towards a critical temperature T₀ (critical point of a binary system). The φ and $\hat{\sigma}$ corresponding to σ and W_T will be denoted by φ_T and $\hat{\sigma}_T$.

Let us compute now $\hat{\sigma}_{T}(t)$ for $t \ge \alpha_{T}$. Since σ is decreasing and

$$\lim_{t\to+\infty}\varphi_{\mathrm{T}}(t)=+\infty,$$

we obtain that the minimum of $s \mapsto \sigma(s) + 2 |\phi_T(t) - \phi_T(s)|$ is attained at a point $s = \lambda_{t, T} \ge t$. Moreover, either $\lambda_{t, T} = t$, or

$$-\sigma'(\lambda_{t, T}) = 2 \varphi'(\lambda_{t, T}) = 2 W^{1/2}(\lambda_{t, T}).$$

For T₀-T small enough, that is for a temperature T below and close to the critical one, the hump in the graph of $2 W_T^{1/2}$ between α_T and β_T does not intersect the graph of $-\sigma'$ in the same interval; on the other hand, since σ is convex, the decreasing function $-\sigma'$ does intersect the increasing function $2 W_T^{1/2}$ at a single point $\lambda_T \ge \beta_T$ (see Fig. 2).

It is easy to check that λ_{T} (independent of t) is actually the minimum point of $s \mapsto \sigma(s) + 2 |\phi_{T}(t) - \phi_{T}(s)|$; hence we conclude that

$$\sigma_{\mathrm{T}}(t) = \sigma(\lambda_{\mathrm{T}}) + 2(\varphi_{\mathrm{T}}(\lambda_{\mathrm{T}}) - \varphi_{\mathrm{T}}(t)), \quad \forall t \ge \alpha_{\mathrm{T}};$$

hence

$$\gamma_{\mathrm{T}} = \frac{\hat{\sigma}_{\mathrm{T}}(\alpha_{\mathrm{T}}) - \hat{\sigma}_{\mathrm{T}}(\beta_{\mathrm{T}})}{2(\phi_{\mathrm{T}}(\beta_{\mathrm{T}}) - \phi_{\mathrm{T}}(\alpha_{\mathrm{T}}))} = 1$$

in correspondence with the phenomenon of the perfectly wetting phase β quoted in Introduction. If one prefers not to consider the modified energy $\hat{\sigma}_{T}$, it could be alternatively thought that a very thin layer of a third phase of the fluid, with density $\lambda_{T} > \beta_{T}$, appears on the whole boundary of the container.

When the temperature T is much more below T_0 , a possible relative behavior of $-\sigma'$ and $2 W^{1/2}$ is shown in Figure 3, with both μ_T and λ_T relative minima of

$$s \mapsto \sigma(s) + 2 \left| \phi_{T}(t) - \phi_{T}(s) \right|$$

for every $t \ge \alpha_{\rm T}$.

Annales de l'Institut Henri Poincaré - Analyse non linéaire

FIG. 3

Note that

.

$$\hat{\sigma}_{\mathrm{T}}(\beta_{\mathrm{T}}) = \sigma(\lambda_{\mathrm{T}}) + 2(\phi_{\mathrm{T}}(\lambda_{\mathrm{T}}) - \phi_{\mathrm{T}}(\beta_{\mathrm{T}})),$$

while the value of $\sigma_T(\alpha_T)$ depends on the areas A and B. Indeed, if $A \leq B$, then

$$\hat{\sigma}_{T}(\alpha_{T}) = \sigma(\lambda_{T}) + 2(\phi_{T}(\lambda_{T}) - \phi_{T}(\alpha_{T}))$$

and $\gamma_T = 1$ as above. On the contrary, if A > B, then

$$\sigma_{\mathrm{T}}(\alpha_{\mathrm{T}}) = \sigma(\mu_{\mathrm{T}}) + 2(\varphi_{\mathrm{T}}(\mu_{\mathrm{T}}) - \varphi_{\mathrm{T}}(\alpha_{\mathrm{T}})) < \sigma(\lambda_{\mathrm{T}}) + 2(\varphi_{\mathrm{T}}(\lambda_{\mathrm{T}}) - \varphi_{\mathrm{T}}(\alpha_{\mathrm{T}}))$$

and $\gamma_T < 1$; since we have analogously $\gamma_T > -1$, this means that both the fluid phases wet the container walls. Or, alternatively, two thin layers of fluid, with densities μ_T and λ_T , are interposed between the phases α_T and β_T and the container.

Finally, we want to remark that the equation $\hat{\sigma} = \sigma$ is equivalent to the inequality

$$\left|\sigma(s_1) - \sigma(s_2)\right| \leq 2 \left|\phi(s_1) - \phi(s_2)\right|, \quad \forall 0 \leq s_1 \leq s_2, \tag{35}$$

which gives in particular

$$\sigma'(\alpha) \ge \phi'(\alpha) = W^{1/2}(\alpha) = 0$$

and analogously $\sigma'(\beta) \ge 0$; hence (35) cannot be satisfied in the case $\sigma' < 0$. It would be interesting to know whether the inequality (35), and then the equality $\sigma = \hat{\sigma}$, are verified in some other thermodynamic situation, different from the phenomenon studied in [2] by Cahn.

ACKNOWLEDGEMENTS

This work was carried out during a stay at the Institut für Angewandte Mathematik der Universität Bonn, supported by Sonderforschungsbereich 72 "Approximation und Optimierung".

REFERENCES

- [1] G. ANZELLOTTI and M. GIAQUINTA, Funzioni BV e tracce, Rend. Sem. Mat. Univ. Padova, Vol. 60, 1978, pp. 1-22.
- [2] J. W. CAHN, Critical Point Wetting, J. Chem. Phys., Vol. 66, 1977, pp. 3667-3672.
- [3] J. W. CAHN and R. B. HEADY, Experimental Test of Classical Nucleation Theory in a Liquid-Liquid Miscibility Gap System, J. Chem. Phys., Vol. 58, 1973, pp. 896-910.
- [4] G. DAL MASO and L. MODICA, Nonlinear Stochastic Homogenization, Ann. Mat. Pura Appl., (4), Vol. 144, 1986, pp. 347-389.
- [5] E. GIUSTI, The Equilibrium Configuration of Liquid Drops, J. Reine Angew. Math., Vol. 331, 1981, pp. 53-63.
- [6] E. GIUSTI, Minimal Surfaces and Functions of Bounded Variation, Birkhäuser Verlag, Basel, Boston, Stuttgart, 1984.
- [7] E. GONZALEZ, U. MASSARI and I. TAMANINI, On the Regularity of Boundaries of Sets Minimizing Perimeter with a Volume Constraint, Indiana Univ. Math. J., Vol. 32, 1983, pp. 25-37.
- [8] M. E. GURTIN, Some Results and Conjectures in the Gradient Theory of Phase Transitions, Institute for Mathematics and Its Applications, University of Minnesota, Preprint No. 156, 1985.
- [9] M. E. GURTIN and H. MATANO, On the Structure of Equilibrium Phase Transitions within the Gradient Theory of Fluids (to appear).
- [10] L. MODICA, Gradient Theory of Phase Transitions and Minimal Interface Criterion, Arch. Rat. Mech. Anal., Vol. 98, 1987, pp. 123-142.

(Manuscrit reçu le 13 juin 1986) (corrigé le 3 février 1987.)