@article{AIHPC_1987__4_4_337_0, author = {Viterbo, Claude}, title = {A proof of {Weinstein{\textquoteright}s} conjecture in $\mathbb {R}^{2n}$}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {337--356}, publisher = {Gauthier-Villars}, volume = {4}, number = {4}, year = {1987}, mrnumber = {917741}, zbl = {0631.58013}, language = {en}, url = {http://www.numdam.org./item/AIHPC_1987__4_4_337_0/} }
Viterbo, Claude. A proof of Weinstein’s conjecture in $\mathbb {R}^{2n}$. Annales de l'I.H.P. Analyse non linéaire, Tome 4 (1987) no. 4, pp. 337-356. http://www.numdam.org./item/AIHPC_1987__4_4_337_0/
[B1] Un problème variationnel sans compacité dans la géométrie de contact, C.R. Acad. Sc. T. 299 Série I, 1984, pp. 757-760. | MR | Zbl
,[B2] Pseudo orbites des formes de contact, preprint.
,[B-L-M-R] Existence of Multiple Periodic Orbits on Starshaped Hamiltonian Surfaces, Comm. Pure and Appl. Math., Vol. 38, 1985, pp. 253-289. | MR | Zbl
, , and ,[Bo] Seminar on Transformation Groups, Annals of Math. Studies, No. 46, Princeton University Press, New York, 1960. | MR | Zbl
,[C-E] Hamiltonian Trajectories Having Prescribed Minimal Period, Comm. Pure and Appl. Math., Vol. 33, 1980, pp. 103-113. | MR | Zbl
and ,[E-T] Convex Analysis and Varational Problems, North Holland, 1976. | MR | Zbl
and ,[F-R] Generalized Cohomological Index Theories for Lie Group Action with an Application to Bifurcation Questions for Hamiltonian Systems, Invent. Math., Vol. 45, 1978, pp. 139-174. | MR | Zbl
and ,[H-Z] Periodic Solutions on Hypersurfaces and a Result by C. Viterbo, Invent. Math. (to appear). | MR | Zbl
and ,[R] Periodic Solutions of Hamiltonian Systems, Comm. Pure and Appl. Math., Vol. 31, 1978, pp. 157-184. | MR | Zbl
,[Se] Periodische Bewegungen mechanischer Systeme, Math. Z., Vol. 51, 1948, pp. 197-216. | MR | Zbl
,[W.1] Periodic Orbits for Convex Hamiltonian Systems, Ann. of Math., Vol. 108, 1978, pp. 507-518. | MR | Zbl
,[W.2] On the hypotheses of Rabinowitz' periodic orbit theorem, Journal of Diff. Eq., Vol. 33, 1979, pp. 353-358. | MR | Zbl
,