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1. Introduction

Fractional Brownian motion (fBm) has received a great deal of attention in recent
years. Various authors have developed stochastic calculus applicable to fBm (see for
example, [1,3–5,10] for recent development).

This paper is motivated by the problem of absolute continuity for fBm with respect to
its translation. Let� be the space of real valued continuous functionsω(t), t ∈ R, with
ω(0)= 0. Define

D(ω1,ω2) =
∞∑
n=1

1

2n

sup−n�t�n |ω1(t)− ω2(t)|
1+ sup−n�t�n |ω1(t)− ω2(t)| . (1.1)

Then it is easy to see thatD is a metric on� and(�,D) is a polish space (see [20]). Let
F be the Borelσ -algebra of�. For any given numberH ∈ (0,1), there is a probability
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measurePH on (�,F) such thatBH
t :� → R, t ∈ R, defined byBH

t (ω)= ω(t), t ∈ R,
is a fractional Brownian motion with Hurst parameterH . Namely, (BH

t , t ∈ R) is a
Gaussian process with mean 0, and covariance

E
(
BH

t BH
s

) = cH
(|t|2H + |s|2H − |t − s|2H )

,

wherecH = �(2−2H)cos(πH)

πH(1−H)
. We shall call(�,F,PH) the canonical fractional Wiener

space with Hurst parameterH . The expectation on this probability space is denoted by
E

H . It is customary to denote the element of� by BH· . WhenH = 1/2, we obtain the
(usual) canonical Wiener space and we will omit the dependence onH whenH = 1/2.

Now let� be a transform from(�,F,PH) to (�,F,PH) defined by

BH
· → BH

· +
·∫

0

g(s)ds, (1.2)

where g is an anticipative stochastic process. Under suitable conditions,� induces
another probability measurePH ◦�−1 on (�,F) given by

PH ◦�−1(A) = PH
(
�−1(A)

) = PH
({ω,�(ω)∈ A}), ∀A ∈F .

We are interested in the problem of absolute continuity ofPH ◦�−1 with respect toPH .
In the classical Brownian motion case (i.e., whenH = 1/2) this problem has been

studied by many authors. We refer to [2,21] and in particular the references therein.
In the general fractional Brownian motion case (H 
= 1/2), this problem has been

studied extensively wheng is a deterministic function (see [11] and the references
therein).

This paper studies the general (anticipative) case. We obtain a general theorem about
the absolute continuity and a general formula for the Radon–Nikodym density.

Presumably, we may utilize the general formula of Ramer–Kusuoka and compute the
Carleman–Fredholm determinant appeared in the Ramer–Kusuoka formula. This has
been the idea for example in [2,21] in the classical Brownian motion case. However, this
paper develops another method which makes use of the known results in the classical
Brownian motion case.

By a theorem (see Theorem 2.1 below) in the framework of measure theory, it is
known that if we can find a measure-preserving one-to-one mappingT from (�,F,P )

to (�,F,PH) and a measurable mapping� from � to� such that�◦T = T ◦�. Then

dPH ◦�−1

dPH
= dP ◦ �−1

dP
◦ T −1 (1.3)

as long as we know thatdP◦�−1

dP exists.
It is interesting to directly construct a mappingT from (�,F,P ) to (�,F,PH) and

a mapping� from (�,F,P ) to itself such that� ◦ T = T ◦ �. We may then obtain
the Radon–Nikodym derivative by using (1.3) since there is an extensive study on the
computation ofdP◦�−1

dP in the classical Brownian motion case.
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However, we will extend (1.3) to a more general case. We introduce the concept
of probability structure preserving mappingV from the set of measurable functions
on (�,F,P ) to the set of measurable functions on(�,F,PH). � (and �) can be
considered as transform which maps a function on(�,F,P ) (and on(�,F,PH)) to
another function on(�,F,P ) (and on(�,F,PH)). We shall prove that if� ◦ V =
V ◦ �, then

dPH ◦�−1

dPH
= V ◦ dP ◦ �−1

dP
. (1.4)

This is an extension of (1.3). From this result and a result on the Radon–Nikodym
derivative for the classical Brownian motion, we obtain a formula for the Radon–
Nikodym derivative for the fractional Brownian motion.

The idea of the probability structure preserving mapping may carry many other
established results on one probability space to another probability space. We do not claim
that all results on classical Brownian motion may be extended to fractional Brownian
motion by using this idea. However, many other results on the classical Brownian motion
may also be extended to the fractional Brownian motion case through this probability
structure preserving mapping.

The probability structure preserving mappingV introduced in this paper is similar to
a correspondence introduced by the author and his adviser, Prof. P.A. Meyer in [7–9].
However, in that correspondence the multiple Stratonovich integrals play an important
role. In the mapping considered in this paper, the similar role is played by multiple Itô
type integrals.

In Section 2, we give the definition of the probability structure preserving mappingV

and prove that this mapping may be defined for any measurable function. We also present
a general way to construct this mapping for abstract Wiener space case.

In Section 3, we introduce a particular probability structure preserving mappingV

between Brownian motion and fractional Brownian motion with Hurst parameterH

and establish some useful properties ofV . We use this mapping and the definition
of stochastic integral for Brownian motion to define stochastic integral for fractional
Brownian motion.

In Section 4, we apply the probability structure preserving mappingV introduced in
Section 3 to obtain a Girsanov type theorem for fractional Brownian motion.

2. Probability structure preserving

Let (�1,F1,P1) and(�2,F2,P2) be two measurable spaces. LetT be an invertible
measurable mapping from�1 to �2 such that∫

�1

F ◦ T (ω1)P1(dω1) =
∫
�2

F(ω2)P2(dω2)

for all bounded measurable functionF :� → �. Namely,T is a measure-preserving one
to one transform.
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THEOREM 2.1. – Let� be a measurable transformation from�1 to itself and let�
be a measurable transformation from�2 to itself. Assume that the following diagram

�1
T

�

�2

�

�1
T

�2

(2.1)

commutes. Then

dP2 ◦ �−1

dP2
= dP1 ◦ �−1

dP1
◦ T −1. (2.2)

Proof. –This result may be known. However, I could not find it in a standard
reference. I will sketch a simple proof.

Let A ∈F2 andB = T −1(A) ∈ F1. Then

P2�
−1(A)=P2

(
�−1T (B)

) = P2
(
T �−1(B)

) = P1
(
�−1(B)

)
=

∫
B

dP1 ◦ �−1

dP1
(x)P1(dx) =

∫
A

dP1 ◦ �−1

dP1
(T −1y)P2(dy).

This proves (2.2). ✷
Let (�,H,P ) be an abstract Wiener space, whereH is a Hilbert space with scalar

product〈·, ·〉H . There is no ambiguity to useH both for the Hurst parameter and for a
Hilbert space. For anyh ∈ H , there is a Gaussian random variable, denoted by〈ω,h〉,
such that it has mean 0 and covariance

E
(〈·, h1〉〈·, h2〉) = 〈h1, h2〉H .

DefineF the smallestσ -algebra such that for allh ∈ H , 〈ω,h〉 is F -measurable. Let
h ∈ H . ThenF(ω) = exp(〈ω,h〉) is called anexponential functionalor anexponential
vector. Let E = E(�,F,P ) be the space of finite linear combination of the exponential
functionals (abbreviated as FLICEF). ThenE is a linear space which is closed with
respect to multiplication, i.e., ifF,G ∈ E , thenFG ∈ E . E is also dense inLp(�,F,P )

for anyp ∈ [1,∞).
Let (�̃, H̃ , P̃ ) be another abstract Wiener space. LetẼ be the space of FLICEF on

(�̃, F̃, P̃ ).

DEFINITION 2.2. – A mapping V from E to Ẽ is called probability structure
preserving mapping if

V (F +G)=V (F)+ V (G), ∀F,G ∈ E, (2.3)

V (FG)=V (F)V (G), ∀F,G ∈ E, (2.4)

E[F ] = Ẽ[VF ], ∀F ∈ E, (2.5)

where E and Ẽ denote the expectations on the probability spaces(�,F,P ) and
(�̃, H̃ , P̃ ), respectively.
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The correspondence introduced in [7–9] satisfies the properties (2.3)–(2.4). However,
it does not satisfy (2.5).

Example2.3. – If T is an invertible measurable mapping from� to �̃ and if P̃ =
P ◦ T −1, thenVF := F ◦ T −1 (whereF ∈ E) is a the probability structure preserving
mapping.

It is clear that whenV is given by an invertible measurable mapping thenV is defined
for all measurable functionF andV (FG) = (V F)(VG).

Now we will show that in general case it is also true, i.e.,V can be defined for all
measurable functionF andV (FG) = (V F)(VG).

LEMMA 2.4. – If F ∈ L2(�,F,P ), thenVF is well-defined.

Proof. –Let {Fn, n � 1} be a sequence inE with the property thatFn → F in
L2(�,F,P ). Then for anyn,m � 1, we have

Ẽ|VFn − VFm|2 = Ẽ
[
(V Fn)

2 + (V Fm)
2 − 2VFnV Fm

]
= Ẽ

[
V (Fn)

2 + V (Fm)
2 − 2V (FnFm)

]
= Ẽ

[
V

(
F 2
n + F 2

m − 2FnFm

)]
= Ẽ

[(
F 2
n + F 2

m − 2FnFm

)]
= E(Fn − Fm)

2.

Thus{VFn, n � 1} is a Cauchy sequence inL2(�̃, F̃, P̃ ). It is also easy to see that the
limit is independent of the choice of{VFn, n � 1}. Therefore the limit of the sequence
{VFn, n � 1} can be defined asVF . ✷

LEMMA 2.5. – If F,G ∈ L∞(�,F,P ), then

V (FG) = (V F)(VG).

Proof. –The assumption of the lemma implies thatF andG are inL2(�,F,P ). Thus
V (F) andV (G) are well-defined by Lemma 2.4. SinceF andG are inL4(�,F,P ),
there are sequences{Fn, n � 1} ⊂ E and{Gn, n � 1} ⊂ E such that

lim
n→∞ E|Fn −F |4 = lim

n→∞ E|Gn −G|4 = 0.

Similar to the proof of Lemma 2.4, we obtain

Ẽ|V (FnGn)− V (FG)|2 = E|FnGn −FG|2
�

(
E|Fn|4)1/2(

E|Gn −G|4)1/2 + (
E|G|4)1/2(

E|Fn −F |4)1/2

→ 0 (n → ∞).

Thus there is a subsequence (without loss of generality we may choose the sequence
itself) such thatV (FnGn) converges toV (FG) almost surely asn → ∞. On the
other hand, sinceV (Fn) → V (F) and V (Gn) → V (G) in L2(�,F, P̃ ) we can
find a subsequence such thatV (Fnk ) → V (F) and V (Gnk ) → V (G) almost surely.
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ThenV (FnGn) = V (Fnk )V (Gnk ) → V (F)V (G) almost surely. Consequently, we have
V (FG) = V (F)V (G). ✷

LEMMA 2.6. – If F ∈ L∞(�,F,P ) and iff → R is a continuous function, then

Vf (F) = f (V F).

Proof. –Let M > 0 be such that|F | � M a.s. By the Weierstrass approximation
theorem, there is a sequence of polynomials{Pn(x), n � 1} such thatPn converges
uniformly tof (x) on [−M,M]. By Lemma 2.5 it is easy to see thatVPn(F ) = Pn(V F).
SincePn converges tof , VPn(F ) = Pn(V F) converges tof (VF) a.s. on the event
{|VF | � K} for anyK > 0. LettingK → ∞, we see thatVPn(F ) converges tof (V F)

a.s. On the other hand,

E
∣∣V (

Pn(F )
) − V

(
f (F )

)∣∣2 = E
∣∣Pn(F )− f (F )

∣∣2 → 0 (n → ∞).

This proves the lemma easily.✷
LEMMA 2.7. – Let F ∈ L∞(�,F,P ) and letf be a continuous function. Then for

anyε ∈ R,

P̃
(
f (V F) � ε

) = P
(
f (F ) � ε

)
. (2.6)

Proof. –Notice thatgn,ε := e−n(ε−f (x))+ is a continuous function ofx, where a+
denotes the positive part ofa and that

lim
n→∞gn,ε(x) = I{f (x)�ε} ∀x ∈ R,

whereI denotes the indicate function. Then

P̃
(
f (V F) � ε

) = Ẽ I{f (V F )�ε} = Ẽ lim
n→∞ e−n(ε−f (VF ))+

= lim
n→∞ Ẽe−n(ε−f (VF ))+ = lim

n→∞ ẼV e−n(ε−f (F ))+

= lim
n→∞ E e−n(ε−f (F ))+ = E lim

n→∞ e−n(ε−f (F ))+

= E I{f (F )�ε} = P
(
f (F ) � ε

)
.

This proves the lemma.✷
Now we are ready to state and prove the main theorem of this section.

THEOREM 2.8. – LetF :� → R be measurable andF < ∞ a.s.
(i) If Fn → F in probability, whereFn ∈ L∞(�,F,P ), then VFn converges in

probability. The limit in probability ofVFn is defined asVF .
(ii) If f is continuous, then

Vf (F) = f (V F). (2.7)

Proof. –(i) From Lemma 2.7, it follows that

P̃
(|VFm − VFm| � ε

) = P̃
(|V (Fm −Fm)| � ε

) = P
(|Fm − Fm| � ε

)
.
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This shows that{VFn, n � 1} is a Cauchy sequence with respect to the convergence
in probability. The unique limit of this sequence is independent of the choice of
{VFn,n � 1}. This limit is defined asVF .

(ii) Now let Fn = FI{|F |�n}. Since VFn → VF in probability, then there is a
subsequencenk such thatVFnk → VF a.s. Thus

V
(
f (Fnk )

) = f (V Fnk ) → f (V F) a.s. (2.8)

LetK > 0 be a given arbitrary number. Sincef is uniformly continuous on[−K,K],
there is aδ > 0 such that|f (x)− f (y)| � ε for all x, y ∈ [−K,K] with |x − y| < δ. By
Lemma 2.7, it follows that

P̃
(∣∣V (

f (Fn)
) − V

(
f (F )

)∣∣ � ε
) =P

(|f (Fn)− f (F )| � ε
)

=P
({∣∣f (Fn)− f (F )

∣∣ � ε
} ∩ {|F | � K

})
+P

({∣∣f (Fn)− f (F )
∣∣ � ε

} ∩ {|F | >K
})

� P
({|Fn)− F | � δ

}) + P
({|F | >K

})
. (2.9)

From this inequality it follows thatV (f (Fn)) → V (f (F )) in probability. When
combined with (2.8), this implies the second part of the theorem.✷

Remark2.9. – By Theorem 2.8, we shall callV a probability structure preserving
mapping from(�,F,P ) to (�̃, F̃, P̃ ).

COROLLARY 2.10. – V is injective.

Proof. –Let F be measurable such thatVF = 0 a.s. Then

P(|F | > 0) = P̃ (|VF | > 0) = 0.

This implies thatF = 0 a.s. ✷
It is interesting to know the general conditions under which a probability structure

preserving mapping is given by a measurable transformT , i.e.,V ◦ F = F ◦ T .
Now let � be an invertible measurable mapping from� to itself and let� be an

invertible measurable mapping from̃� to itself.� induces a mapping fromE to another
functional spaceB. This mapping is still denoted by�. Namely,(�F)(ω) = F ◦ �(ω),
for all F ∈ E andω ∈ �. Let� be the corresponding induced mapping fromẼ to B̃. We
are going to establish

THEOREM 2.11. – Let V be a probability structure preserving mapping from
(�,F,P ) to (�̃, F̃, P̃ ). Let � (and �) be invertible measurable mapping from�
(and�̃) to themselves. Assume that the following diagram

E V

�

Ẽ
�

B V
B̃

(2.10)
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commutes. IfP ◦ �−1 is absolutely continuous with respect toP , then P̃ ◦ �−1 is
absolutely continuous with respect tõP . Moreover, the following identity holds:

dP̃ ◦�−1

dP̃
= V ◦

(
dP ◦ �−1

dP

)
. (2.11)

Proof. –Assume thatP ◦ �−1 is absolutely continuous with respect toP . Let G ∈ Ẽ
and denoteF = V −1G. By the commutativity of the diagram (2.10) we obtain that

G ◦� = V ◦ (F ◦ �).

Denote

R1(x) = dP̃ ◦ �−1

dP̃
(x), x ∈ �.

From the probability structure preserving property ofV , it follows that∫
�̃

G ◦ �(y)P̃ (dy)=
∫
�

F ◦ �(x)P (dx) =
∫
�

F(x)R1(x)P (dx)

=
∫
�̃

V (FR1)(y)P̃ (dy) =
∫
�̃

(V F)(y)(V R1)(y)P̃ (dy)

=
∫
�̃

G(y)(V R1)(y)P̃ (dy).

This yields that

dP̃ ◦�−1

dP̃
(y) = (V R1)(y), for a.s.y ∈ �̃,

proving the theorem. ✷
Multiple stochastic integral over a Wiener space is well-defined (see [6] and the

references therein). Let us recall that any element ofL2(�,F,P ) can be represented
by its chaos expansion:

F =
∞∑
n=0

1

n!In(fn), with
∞∑
n=0

1

n!‖fn‖2
H⊗n <∞

wherefn ∈ H⊗n (the symmetric tensor product Hilbert space overH ) and In is the
multiple Itô type multiple stochastic integral. It is known that

E
(
F 2) =

∞∑
n=0

1

n!‖fn‖2
H⊗n < ∞.

The Fock space overH is a Hilbert space defined by

+(H)= {
f = (f0, f1, . . . , fn, . . .), fn ∈ H⊗n

}
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with the Hilbert norm

‖f ‖2
+(H) =

∞∑
n=0

1

n!‖fn‖2
H⊗n .

Thus we have an isometry betweenL2(�,F,P ) and the Fock space+(H) over the
Hilbert spaceH (see [6,12,16], and the references therein for more detail).

Let ρ be a one-to-one mapping fromH to H̃ such that〈
ρ(h1), ρ(h2)

〉
H̃

= 〈h1, h2〉H .

Thusρ induces a mapping fromH⊗n to H̃⊗n in the following way: Lete1, . . . , ek, . . . be
orthonormal system ofH . Thenẽk = ρ(ek), k = 1,2, . . . , is orthonormal system of̃H .
If f = ∑

ai1···inei1 ⊗ · · · ⊗ ein , then we define

ρ⊗nf = ∑
ai1···in ẽi1 ⊗ · · · ⊗ ẽin .

It is easy to see that for anyf,g ∈ H⊗n,〈
ρ⊗nf, ρ⊗ng

〉
H̃⊗n = 〈f,g〉H⊗n .

For any elementf = (f0, f1, . . . , fn, . . .) in +(H) we define

+(ρ)f = (
f0, ρ(f1), . . . , ρ

⊗n(fn), . . .
)
.

Then it is easy to check that+(ρ) is an isometry between the Fock spaces+(H) and
+(H̃).

Since there is an isometry betweenL2(�,F,P ) and+(H), we obtain an isometry
betweenL2(�,F,P ) and L2(�̃, H̃ , P̃ ). The explicit form of this isometry may be
described as follows: For anyF ∈ L2(�,F,P ),

F =
∞∑
n=0

1

n!In(fn).

ThenF̃ = +(ρ)F is given by

F̃ =
∞∑
n=0

1

n!In
(
ρ⊗nfn

)
.

THEOREM 2.12. –Let ρ be an isometry betweenH and H̃ . Then +(ρ) is a
probability structure preserving mapping from(�,F,P ) to (�̃, H̃ , P̃ ).

Proof. –Recall thatE is the set of finite linear combinations ofε(h) := exp(〈·, h〉 −
‖h‖2

H), h ∈ H and thatE is an algebra and a dense subset ofL2(�,F,P ). It is easy to
verify thatE(F )= Ẽ(+(ρ)F ) and+(ρ)(F +G)= +(ρ)F ++(ρ)G. We need to prove
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the product preserving property (2.4). It is easy to see that

ε(h)=
∞∑
n=0

1

n!In
(
h⊗n

)
.

Thus

+(ρ)ε(h)=
∞∑
n=0

1

n!In
(
ρ(h)⊗n

) = ε
(
ρ(h)

)
.

On the other hand, it is easy to verify that

ε(h1)ε(h2)= exp
[〈·, h1 + h2〉 − ‖h1‖2

H − ‖h2‖2
H

]
= ε(h1 + h2)exp

(〈h1, h2〉H )
.

Thus

+(ρ)
[
ε(h1)ε(h2)

] = exp
[〈h1, h2〉H ]

+(ρ)
[
ε(h1 + h2)

]
= exp

[〈h1, h2〉H ]
ε
(
ρ(h1 + h2)

)
= exp

[〈ρ(h1), ρ(h2)〉H ]
ε
(
ρ(h1)+ ρ(h2)

)
= ε

(
ρ(h1)

)
ε
(
ρ(h2)

)
= [

+(ρ)ε(h1)
][
+(ρ)ε(h2)

]
.

From this the theorem follows.✷
Remark2.13. – We shall call+(ρ) the probability structure preserving mapping

induced byρ.

LEMMA 2.14. – If ρ is an isometry from the Hilbert spaceH to the Hilbert spaceH̃
and ifV = +(ρ) is the probability structure preserving mapping induced byρ, then for
anyF,G ∈ E ,

V (F �G) = (V F) � (VG), (2.12)

where diamond denotes the Wick product(see[5]).

Proof. –Let F = ε(h1) andG = ε(h2), whereh1, h2 ∈ H . We have

F �G = ε(h1 + h2).

Hence

V (F �G) = ε
(
ρ(h1 + h2)

) = ε
(
ρ(h1)

) � ε
(
ρ(h2)

) = (V F) � (VG).

This proves the lemma through a linearity argument.✷
3. Stochastic integral for fractional Brownian motions

Let us recall some results from [19] and [11]. From now on(�,F,P ) will be the
classical canonical Wiener space and(�̃, F̃, P̃ ) = (�,F,PH) will be the canonical
space for fractional Brownian motion with Hurst parameterH ∈ (0,1).
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Fractional integrals of orderα ∈ (0,1) (of Riemann–Liouville type) of a functionf
on R are defined as

I α
±f (x) = 1

�(α)

∞∫
0

tα−1f (x ± t)dt, (3.1)

where�(x) is the gamma function. They are also called fractional integral of Weyl type
in [14]. Whenα = −β is negative,I α± will be the fractional derivatives (of Marchaud
type)

I α
±f (x) = Dβ

±f (x) = β

�(1− β)

∞∫
0

f (x)− f (x ∓ t)

t1+β
dt. (3.2)

We denote by

f̂ (ξ ) = F(f )(ξ)=
∫
R

eixξf (x)dx, ξ ∈ R

the Fourier transform of a functionf . The following lemma is from [19], Theorem 7.1.

LEMMA 3.1. –If 0 < α < 1 and f ∈ L1(R), then the Fourier transform ofI α±f is
given by

F
(
I α
±f

)
(ξ)= (∓iξ)−αf̂ (ξ), ξ ∈ R, (3.3)

where

(∓iξ)−α = |ξ |−αe∓ απ i
2 signξ .

Denote byS(R) the Schwartz space of rapidly decreasing functions.
From the definition ofI α±f and from this lemma it follows easily that iff ∈ S(R),

then (3.3) holds for any real numberα.
The following equation holds ([19], Eqs. (5.16) and (5.17)):∫

R

g(x)I α
±f (x)dx =

∫
R

f (x)I α
∓g(x)dx (3.4)

for all f,g ∈ S(R).
If f ∈ S(R) andI α−(f ) = 0, then by (3.3) we see that

(iξ)αf̂ (ξ) = 0.

Thusf̂ (ξ ) = 0 for almost allξ ∈ R. We have thenf = 0. Denote

Sα
−(R) = I α

−
(
S(R)

) = {
I α
−(f ), f ∈ S(R)

}
.

ThenI α− is a bijective linear transformation fromS(R) to Sα−(R).
For any two elementsf andg of Sα−(R), define

〈f,g〉2H
:= 1

2π

∫
R

|ξ |1−2H f̂ (ξ)ĝ(ξ)dξ, ∀f,g ∈ S(R).
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It is easy to verify that〈·, ·〉2H
is an inner product onSα−(R). ThenSα−(R) is a pre-Hilbert

space with respect to the Hilbert norm induced by this inner product:

‖f ‖2H
=

√
〈f,g〉2H

=
√√√√∫

R

|ξ |1−2H |f̂ (ξ )|2 dξ .

Let 2H denote its completion with respect to the Hilbert norm‖ · ‖2H
. Therefore,2H

is a Hilbert space. For anyf ∈ S(R) denoteg(x) = (I
1
2−H

− f )(x), x ∈ R. Then by (3.3)

ĝ(ξ )= (iξ)H− 1
2 f̂ (ξ ).

From the definition of the norm‖ · ‖2H
and Parserval identity

‖g‖2
2H

= 1

2π

∫
R

|ξ |1−2H |ĝ(ξ )|2 dξ = 1

2π

∫
R

|ξ |1−2H ∣∣(iξ)H− 1
2 f̂ (ξ )

∣∣2 dξ

= 1

2π

∫
R

|f̂ (ξ )|2 dξ =
∫
R

|f (x)|2 dx = ‖f ‖2
L2(R).

This means that ∥∥I 1
2−H

− f
∥∥
2H

= ‖f ‖L2(R), ∀f ∈ S(R).

SinceS(R) is dense inL2(R) andSα−(R) is dense in2H (by the definition of2H ) we

can extendI
1
2−H

− to an isometry betweenL2(R) and2H .
Namely, we have

LEMMA 3.2. – I
1/2−H
− can be extended to an isometry fromL2(R) to 2H .

It is interesting to say more about the Hilbert space2H .

PROPOSITION 3.3. –S(R) is a dense subset of2H .

Proof. –Let g be an element ofS(R) and definef = I
H− 1

2− g. Then

f̂ (ξ ) = (iξ)
1
2−H ĝ(ξ).

It is clear that ∫
R

∣∣f̂ (ξ )
∣∣2 dξ =

∫
R

|ξ |1−2H ∣∣ĝ(ξ )∣∣2 dξ < ∞

sinceg ∈ S(R) andH < 1. Thusf ∈ L2(R). But

F
(
I 1/2−Hf

)
(ξ) = (iξ)H−1/2(iξ)1/2−H ĝ(ξ)= ĝ(ξ ),

whereF(g) denotes the Fourier transform ofg. This means thatI 1/2−Hf = g. This
implies thatS(R) is a subset of2H .
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Now we need to show thatS(R) is dense in2H . First let us assume thatH < 1/2.
Let φ ∈ C∞(R) be a positive smooth function with compact support and such that∫

R

φ(x)dx = 1.

Denote

h(t) =
{

0 t > 0,

|t|−H− 1
2/�

(1
2 −H

)
t < 0,

and

φε(x) = φ(x/ε)

ε
, ε > 0, x ∈ R.

Thereforeφε is C∞ and with compact support (henceφε ∈ S(R)). Consider

hε(t) = φε ∗ h :=
∫
R

φε(x)h(t − x)dx,

where and in what follows∗ denote the convolution. Then it is easy to see thathε is an
element ofS(R). For any functionf ∈ S(R), define

fε(x) = (hε ∗ f )(x).

Thenfε is an element ofS(R). On the other hand we have

fε = hε ∗ f = (φε ∗ h) ∗ f = φε ∗ (h ∗ f ).

By Eq. (5.4) of [19], we see that

h ∗ f = I 1/2−Hf.

Namely,

fε = φε ∗ (
I 1/2−Hf

)
.

Applying the Fourier transformation, we obtain

f̂ε(ξ ) = φ̂ε(ξ)(iξ)
H−1/2f̂ (ξ ).

It is easy to verify that

φ̂ε(ξ) → 1 and
∣∣φ̂ε(ξ)

∣∣ � 1

for almost allξ . Thus by Lebesgue’s dominate convergence theorem, we see that

f̂ε(ξ )= φ̂ε(ξ)(iξ)
H−1/2f̂ (ξ )
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converges to(iξ)H−1/2f̂ (ξ ) in L2(R) asε → 0. Hencefε converges toI 1/2−Hf in 2H

as ε → 0. This implies thatS(R) is dense in2H . WhenH > 1/2, we need to use
I 1/2−H = I 3/2−H d

dx . In this case we define

h(t)=
{

0 t > 0,

|t| 1
2−H/�

(3
2 −H

)
t < 0,

and

hε(t) = φε ∗ h =
∫
R

φε(x)h(t − x)dx,

which is an element ofS(R), whereφε is defined as above. For any functionf ∈ S(R),
define

fε(x) = (hε ∗ f ′)(x),

wheref ′ is the derivative off . Thenfε is an element ofS(R). On the other hand we
have

fε = hε ∗ f = (φε ∗ h) ∗ f ′ = φε ∗ (h ∗ f ′).

By Eq. (5.4) of [19], we see that

h ∗ f = I 3/2−Hf ′ = I
1
2−Hf.

Namely,

fε = φε ∗ (
I 1/2−Hf

)
.

A similar argument can be applied to show thatfε converges toI 1/2−Hf in 2H asε → 0.
This implies thatS(R) is dense in2H in the caseH > 1/2. ✷

From the above argument, we also conclude that the isometryI
1/2−H
− :L2(R) → 2H

has the inverse which coincides withIH−1/2
− onS(R). We denote this inverse byIH−1/2

− ,
which is an isometry from2H to L2(R).

In [18], some other types of space were introduced. For example, it is denoted that

�H =
{
f :

∫
R

[(
I
H−1/2
− f

)
(s)

]2
ds <∞

}

=
{
f :

∫
R

[∫
R

f (u)(u− s)
H−3/2
+

]2

ds < ∞
}
,

whenH > 1/2 and

�H = {
f : ∃φ ∈ L2(R) such thatf = I

1/2−H
− φ

}
whenH < 1/2. The property of these and other relevant spaces are studied also. It is
clear from Theorem 3.2 and Theorem 3.3 of [18] that�H is a subset of2H . However,
�H is not appropriate in our paper since it is not a Hilbert space.
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In recent years, there has been a boom of study of a particular family of Gaussian
processes, calledfractional Brownian motions. Fractional Brownian motion withHurst
parameterH ∈ (0,1) has been introduced by Mandelbrot and Van Ness as thefractional
derivativeof Brownian motion. More precisely, fBmBH = (BH

t , t ∈ R+) with Hurst
parameterH ∈ (0,1) is defined as

BH
t = 1

�(H + 1/2)

0∫
−∞

[
(t − s)H−1/2 − (−s)H−1/2]dBs

+
t∫

0

(t − s)H−1/2 dBs, t ∈ R+, (3.5)

whereB = (Bs, s ∈ R) is a Wiener process on some probability space(�,F,P ). This
probability space will be fixed. The expectation on(�,F,P ) is denoted byE. The
fractional Brownian motion satisfies

E
(
BH

t BH
s

) = cH
(|t|2H + |s|2H − |t − s|2H )

,

wherecH = �(2−2H)cos(πH)

πH(1−H)
.

As in [11], heuristically we may write (3.5) as

BH
t = I

H+1/2
+ (Ḃ)(t)− I

H+1/2
+ (Ḃ)(0).

[Each of these two terms may not be well-defined.] Thus we have

ḂH
t = d

dt
I
H+1/2
+ (Ḃ)(t) = I

H−1/2
+ (Ḃ)(t).

Hence formally,ḂH is the fractional integral of orderH − 1/2 of the white noiseḂ
whenH > 1/2 andḂH is the fractional derivative of order 1/2 − H of the white noise
Ḃ whenH < 1/2.

Using the adjoint operator (i.e.,IH−1/2
− ) of IH−1/2

+ , we know that iff ∈ 2H , then∫
R
f (t)dBH

t may be well defined by∫
R

f (t)dBH
t =

∫
R

I
H−1/2
− (f )(t)dBt. (3.6)

It is easy to see that

E

(∫
R

f (t)dBH
t

)
= 0, E

(∫
R

f (t)dBH
t

∫
R

g(t)dBH
t

)
= 〈f,g〉2H

.

(See [11] for more discussion.)
From now on we denote byV the probability structure preserving mapping between

L2(�,F,P ) andL2(�,F,PH) induced byI 1/2−H
− .

Eq. (3.6) can also be used to define the stochastic integral for general random kernel.
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DEFINITION 3.4. – Let f :R × � → R be a stochastic process not necessarily
adapted. Assume that for almost everyω ∈ �, f (·,ω) ∈ 2H . If

∫
R
I

1/2−H
− V −1f (t)dBt

exists as a random variable, then we say that
∫

R
f (t)dBH

t exists and define the
anticipative stochastic integral by∫

R

f (t)dBH
t = V

(∫
R

I
H−1/2
−

(
V −1f

)
(t)dBt

)
. (3.7)

PROPOSITION 3.5. – If H > 1/2 and if
∫

R
f (t)dBH

t is well-defined in the sense
of [5], then this definition(3.7)coincides with the definition introduced in[5].

Proof. –LetF be an exponential function on(�,F,PH). Considerf (t) = χ(a,b](t)F ,
t ∈ R, where−∞ < a < b < ∞ are given numbers. Then by the definition of [5], we
have

∫
R
f (t)dB̃H

t = F � (BH
b −BH

a ), where� denotes the Wick product. Here we tem-
porarily denote the stochastic integral in [5] by

∫
R
f (t) d̃BH

t . On the other hand, by (3.7),∫
R

f (t)dBH
t = V

(∫
R

(
V −1F

)[
I
H−1/2
− χ(a,b]

]
(t)dBt

)

= V

(
V −1F �

∫
R

[
I
H−1/2
− χ(a,b]

]
(t)dBt

)

=F �
∫
R

χ(a,b](t)dBH
t = F � (

BH
b −BH

a

)
.

Hence
∫

R
f (t) d̃BH

t = ∫
R
f (t)dBH

t for step functions. The proposition follows from
linearity and a limiting argument. ✷

Let e1, . . . , ek, . . . be an ONB ofL2(R) such thatek ∈ S(R), k = 1,2, . . . . Then
{ẽ1, ẽ2, . . .} is an ONB of2H . The Malliavin derivativeDs of a smooth functional
F = f (

∫
R
e1(t)dBt, . . . ,

∫
R
ek(t)dBt) is defined as

DsF =
k∑

n=1

∂f

∂xn

(∫
R

e1(t)dBt, . . . ,

∫
R

ek(t)dBt

)
en(s).

Now letG = g(
∫

R
ẽ1(t)dBH

t , . . . ,
∫

R
ẽk(t)dBH

t ). We define the derivativeDH
s by

DH
s G =

k∑
n=1

∂f

∂xn

(∫
R

ẽ1(t)dBH
t , . . . ,

∫
R

ẽk(t)dBH
t

)
ẽn(s).

In the case of no ambiguity (as it usually is) we omit the dependence onH in DH
t .

As in [15] (see also [13,17]) we denote byL1,2(�,F,P ) the class of processes
u ∈ L2(T × �) on the probability space(�,F,P ) such thatu(t) ∈ D1,2 for almost
all t , and that ∫

R2

(
Dsu(t)

)2
ds dt < ∞.
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This means that

L
1,2(�,F,P ) =

{
f :

∫
R

E|f (t)|2 dt +
∫
R2

E|Dsf (t)|2 ds dt < ∞
}
.

The following proposition will be useful.

PROPOSITION 3.6. – Letf ∈ L
1,2(�,F,P ). Then

V

(∫
R

f (t)dBt

)
=

∫
R

[
I

1/2−H
− (Vf )

]
(t)dBH

t . (3.8)

Proof. –Since for a.a.ω ∈ �, f (·,ω) ∈ L2(R). Vf (·,ω) ∈ L2(R). Thus

g(·,ω) := I
1
2−H

− (Vf )(·,ω) ∈ 2H

and

I
H− 1

2− g(·,ω)= (Vf )(·,ω).
Consequently,

I
H− 1

2−
(
V −1g

) = f.

By definition (3.4) we obtain∫
R

(
I

1/2−H
−

)
(Vf )(t)dBH

t =
∫
R

g(t)dBH
t = V

(∫
R

I
H−1/2
−

(
V −1g

)
(t)dBt

)

= V

(∫
R

f (t)dBt

)
.

This proves the proposition.✷
LEMMA 3.7. – LetF ∈ L

1,2(�,F,P ). Then

VDsF = I
H−1/2
− (D)s(V F), (3.9)

whereIH−1/2
− (DH)sG denotes the application ofIH−1/2

− to DH
s G (as a function ofs).

Proof. –Let F = exp(
∫

R
h(s)dBs). Then

DsF = h(s)F.

Thus

VDsF = h(s)exp
(∫

R

I
1/2−H
− h(s)dBH

s

)
.
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On the other hand, we have

VF = exp
(∫

R

I
1/2−H
− h(s)dBH

s

)
.

Hence

DH
s V F = I

1/2−H
− h(s)exp

(∫
R

I
1/2−H
− h(s)dBH

s

)
.

This proves thatVDsF = I
H−1/2
− (DH)sV F for exponential functions. By linearity of

V andDs , we can conclude that (3.9) is true for allF ∈ E . The theorem is proved by a
limiting argument. ✷

LEMMA 3.8. – Let� :� → � and� : �̃ → �̃ be measurable mappings such that the
diagram(2.10)commutes. LetV (F ◦�) = (V F) ◦� for anyF ∈ E . Then for allF ∈ E ,

V
(
F ◦ �−1) = (V F) ◦�−1. (3.10)

Proof. –FromF = F ◦ �−1 ◦ �, it follows that

V ◦ F = V ◦ (
F ◦ �−1 ◦ �

) = V ◦ (
F ◦ �−1) ◦�.

ThusV ◦ (F ◦ �−1)= (V ◦ F) ◦�−1. ✷
LEMMA 3.9. – Let the assumptions of Lemma3.8 be satisfied and let� be

differentiable in the sense that for anyF ∈ L
1,2, F ◦ � is in L

1,2. Then

V
(
Ds

(
F ◦ �−1) ◦ �

) = I
H−1/2
−

(
DH

)
s

[
(V F) ◦�−1] ◦ �. (3.11)

Proof. –From Lemmas 3.7 and 3.8, it follows that

V
(
Ds

(
F ◦ �−1) ◦ �

) = [
VDs(F ◦ �−1)

] ◦�

= I
H−1/2
−

(
DH

)
s

(
V

(
F ◦ �−1)) ◦�

= I
H−1/2
−

(
DH

)
s

[
(V F) ◦�−1] ◦�.

This proves the lemma.✷

4. Application to absolute continuity

Now consider an (anticipative) translation ofBH

�: BH
· +

·∫
0

f
(
s,BH

)
ds. (4.1)
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Define an anticipative translation ofB by

�: B· +
·∫

0

g(s,B)ds, (4.2)

whereg = I
1/2−H
+ V −1f . Thusf can also be computed fromg by f = I

H−1/2
+ Vg.

LEMMA 4.1. – The following diagram

E V

�

Ẽ
�

B V
B̃

(4.3)

commutes, whereE is the set of finite linear combinations of exponential functionals on
(�,F,P ) and Ẽ is the set of finite linear combinations of exponential functionals on
(�,F,PH) andB = �E and B̃ = �Ẽ .

Proof. –Denote g̃ = V −1f . Let F = exp(
∫

R
h(s)dBs), whereh ∈ L2(R). As dis-

cussed before we denoteT = I
1/2−H
− . Then

�F = exp
[∫

R

h(s)dBs +
∫
R

h(s)g(s)ds
]

= exp
[∫

R

h(s)dBs +
∫
R

h(s)I
1/2−H
+ g̃(s)ds

]

= exp
[∫

R

h(s)dBs +
∫
R

(T h)(s)g̃(s)ds
]
.

Thus

V�F = exp
[∫

R

(T h)(s)dBH
s +

∫
R

(T h)(s)V g̃(s)ds
]

= exp
[∫

R

(T h)(s)dBH
s +

∫
R

(T h)(s)f (s)ds
]
.

On the other hand,

VF = exp
[∫

R

(Tf )(s)dBH
s

]
.

Therefore, we have

�VF = exp
[∫

R

(T h)(s)dBH
s +

∫
R

(T h)(s)f (s)ds
]
.
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This shows that the diagram commute for exponential functionals. The lemma is
completed by a linearity argument.✷

LEMMA 4.2. – Let� :� → � and� : �̃ → �̃ be defined by(4.1)and(4.2). Then for
all measurableF ,

V (F ◦ �)= (V F) ◦�. (4.4)

Proof. –Let F = exp{∫ h(s)dBs}. Then

F ◦ � = exp
{∫

h(s)dBs +
∫

h(s)I
1/2−H
+ V −1f (s)ds

}
= exp

{∫
h(s)dBs +

∫ (
I

1/2−H
− h

)
(s)V −1f (s)ds

}
.

Consequently,

V (F ◦ �) = exp
{∫ (

I
1/2−H
− h

)
(s)dBH

s +
∫ (

I
1/2−H
− h

)
(s)f (s)ds

}
= (V F) ◦�.

This proves the lemma for exponential functional. The lemma follows from a linearity
argument. ✷

Let us recall a result on Radon–Nikodym derivative. The following results can be
found in [2] when the interval is[0,1].

THEOREM 4.3. – Letf andg be as in(4.1)–(4.2)such thatf andg are in L
1,2. Let

the following conditions be satisfied
(i) There is a positive numberγ ∈ (0,1) such that∫

R2

|Dtg(s)|2 ds dt is bounded byγ. (4.5)

(ii) There is a positive numberq > 1 with

E

[
exp

{
q

2

∫
R

g2(s)ds
}]

< ∞. (4.6)

Then� is invertible andP ◦�−1 is absolutely continuous with respect toP . Moreover,
the following identity is true:

dP ◦ �−1

dP
= κ exp

{
−

∫
R

g(s)dBs − 1

2

∫
R

g2(s)ds
}
, (4.7)

with

κ = exp

{
−

∫
R

s∫
0

Dsg(r)Dr

[
g
(
s,�−1

s

)] ◦ �s

}
, (4.8)
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where�s is defined by

�s :B· → B· +
s∧·∫
0

g(u)du

and�−1
s is the inverse of�s .

To obtain a Radon–Nikodym derivative for fractional Brownian motions, we define

h(u) := I
H−1/2
+

(
I[0,s]I

1/2−H
+ f

)
(u), u ∈ R (4.9)

and

�s :BH
· → BH

· +
·∫

0

h(u)du. (4.10)

The main theorem of this section is

THEOREM 4.4. – Let the following conditions be satisfied
(i) There is a positive numberγ ∈ (0,1) such that∫

R2

∣∣IH−1/2
−

(
DH

)
s
I

1/2−H
+ (f )(s)

∣∣2 ds dt is bounded byγ. (4.11)

(ii) There is a positive numberq > 1 with

E

[
exp

{
q

2
‖f ‖2

2H

}]
< ∞. (4.12)

Then� is invertible andPH ◦ �−1 is absolutely continuous with respect toPH .
Moreover, the following identity is true:

dPH ◦�−1

dPH
= L= κ̃ exp

{
−

∫
R

I
1/2−H
− I

1/2−H
+ f (s)dBH

s − 1

2
‖f ‖2

2H

}
, (4.13)

where

κ̃ = exp

{
−

∫
R

s∫
0

I
H−1/2
−

(
DH

)
s
I

1/2−H
+ (f )(r)I

H−1/2
−

(
DH

)
r

× (
I

1/2−H
+ f

)
(s,�s) ◦�−1

s ds dr

}
, (4.14)

where�s is defined by

�s :BH
· → BH

· +
·∫

0

h(u)du
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and

h(u) := I
H−1/2
+

(
I[0,s]I

1/2−H
+ f

)
(u), u ∈ R,

and�−1
s is the inverse of�s .

Proof. –By Lemma 3.7, we have

V

{∫
R2

|Dtg(s)|2 ds dt
}

=V

∫
R2

∣∣DtI
1/2−H
+ V −1f

∣∣2 ds dt

=
∫
R2

∣∣VDtI
1/2−H
+ V −1f

∣∣2 ds dt

=
∫
R2

∣∣IH−1/2
−

(
DH

)
t
I

1/2−H
+ f

∣∣2 ds dt.

Thus (4.11) implies that (4.5) holds. By the probability structure preserving property of
V , we obtain

E

[
exp

{
q

2

∫
R

g2(s)ds
}]

= E

[
V exp

{
q

2

∫
R

g2(s)ds
}]

= E

[
exp

{
q

2

∫
R

∣∣I 1/2−H
− f (s)

∣∣2 ds
}]

= E

[
exp

{
q

2
‖f ‖2

2H

}]
.

Hence (4.12) implies that (4.6) is true. Therefore under the assumptions of Theorem 4.4,
dP◦�−1

dP exists. It suffices to computeV ◦ dP◦�−1

dP . First let’s make the following
computation.

V exp
{

−
∫
R

g(s)dBs − 1

2

∫
R

g2(s)ds
}

= exp
{

−
∫
R

I
1/2−H
− Vg(s)dBH

s − 1

2

∫
R

Vg2(s)ds
}

= exp
{

−
∫
R

I
1/2−H
− I

1/2−H
+ f (s)dBH

s − 1

2

∫
R

|I 1/2−H
+ f |2(s)ds

}

= exp
{

−
∫
R

I
1/2−H
− I

1/2−H
+ f (s)dBH

s − 1

2
‖f ‖2

2H

}
.
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Next we have to evaluatẽκ = V κ . Similar to Lemmas 4.1 and 4.2, we can prove that the
following diagram

E V

�s

Ẽ
�s

B V
B̃

(4.15)

commutes and thatV (F ◦ �s)= (V F) ◦�s holds. By Lemma 3.7,

V
(
Dsg(r)

) = I
H−1/2
−

(
DH

)
s
[Vg(r)] = I

H−1/2
−

(
DH

)
s
I

1/2−H
+ (f )(r).

From Lemma 3.9 it follows that

V
(
Dr

(
g
(
s,�−1

s

)) ◦ �s

) = I
H−1/2
−

(
DH

)
r

[
(V g) ◦�−1

s

] ◦�s

= I
H−1/2
−

(
DH

)
r

(
I

1/2−H
+ f

)(
s,�−1

s

) ◦ �s.

Thus

V κ = exp

{
−

∫
R

s∫
0

I
H−1/2
− (D)sI

1/2−H
+ (f )(r)I

H−1/2
− (D)r

× (
I

1/2−H
+ f

)
(s,�s) ◦ �−1

s ds dr

}
. (4.16)

This proves the theorem.✷
Remark4.5. – (a) If f is deterministic, thenDsf = 0. Thus κ̃ ≡ 1. Therefore if

f ∈ 2h is deterministic, then

dPH ◦�−1

dPH
= exp

{
−

∫
R

I
1/2−H
− I

1/2−H
+ f (s)dBH

s − 1

2
‖f ‖2

2H

}
. (4.17)

By elementary results from the fractional calculus, we see that this formula coincides
with the formula in [11]. This is in fact Cameron–Martin formula. See [16] for general
Gaussian process case.

(b) To obtain the Girsanov formula for finite interval, one needs to compute the
conditional expectation as indicated in [11].
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