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1. Introduction

Fractional Brownian motion (fBm) has received a great deal of attention in recent
years. Various authors have developed stochastic calculus applicable to fBm (see ft
example, [1,3-5,10] for recent development).

This paper is motivated by the problem of absolute continuity for fBm with respect to
its translation. Lef2 be the space of real valued continuous functiefis), t € R, with
w(0) = 0. Define

D (w1, w2) = i i SUP_, << l@1(1) — @2(1)]
1, W2) = 2014 SUp., ¢ o, l01(D) — 02(D)]

(1.1)

Then it is easy to see that is a metric o2 and(2, D) is a polish space (see [20]). Let
F be the Boreb-algebra of2. For any given numbeH < (0, 1), there is a probability
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measureP” on (22, F) such thatB/' : @ — R, t € R, defined byB/ (w) = (1), 1 € R,
is a fractional Brownian motion with Hurst parameted. Namely, (B ,t € R) is a
Gaussian process with mean 0, and covariance

E(BYBY) = cu (112" + s — |t — 527),
wherecy w We shall call($2, F, P¥) the canonical fractional Wiener
space with Hurst parametéf The expectation on this probability space is denoted by
EX . It is customary to denote the elementsfoy B. WhenH = 1/2, we obtain the

(usual) canonical Wiener space and we will omit the dependendé whenH = 1/2.
Now let A be a transform frontQ2, F, P#) to (2, F, P) defined by

B — BH —I—/g(s) ds, 1.2)
0

where g is an anticipative stochastic process. Under suitable conditiansduces
another probability measu® o A~ on (22, F) given by

PH o AT HA) = PH(ATY(A) = PH ({o, A(w) € A}), VYAeF.

We are interested in the problem of absolute continuity 8fo A~ with respect taP”.

In the classical Brownian motion case (i.e., whn= 1/2) this problem has been
studied by many authors. We refer to [2,21] and in particular the references therein.

In the general fractional Brownian motion casd & 1/2), this problem has been
studied extensively wheg is a deterministic function (see [11] and the references
therein).

This paper studies the general (anticipative) case. We obtain a general theorem abo
the absolute continuity and a general formula for the Radon—Nikodym density.

Presumably, we may utilize the general formula of Ramer—Kusuoka and compute thq
Carleman—Fredholm determinant appeared in the Ramer—Kusuoka formula. This he
been the idea for example in [2,21] in the classical Brownian motion case. However, this
paper develops another method which makes use of the known results in the classic
Brownian motion case.

By a theorem (see Theorem 2.1 below) in the framework of measure theory, it is
known that if we can find a measure-preserving one-to-one magpingm (2, 7, P)
to (2, F, P) and a measurable mappifigrom Q to Q suchthatA o7 =T oI". Then

dP# oAt dPor't |
apn -~ ap T (1.3)

as long as we know tha?l’%ﬁl exists.
It is interesting to directly construct a mappifigirom (2, F, P) to (2, F, P¥) and
a mappingl” from (2, F, P) to itself such thatA o T =T o I". We may then obtain
the Radon— Nikodym derivative by using (1.3) since there is an extensive study on the
computation oi““”"F in the classical Brownian motion case.
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However, we will extend (1.3) to a more general case. We introduce the concep
of probability structure preserving mapping from the set of measurable functions
on (Q, F, P) to the set of measurable functions ef2, 7, P). I (and A) can be
considered as transform which maps a function(@nF, P) (and on(2, F, P¥)) to
another function o2, 7, P) (and on(R2, F, P#)). We shall prove that ifA o V =
V oT, then

dP" o A1 dPor1
° Vo2 (1.4)

dpH dap

This is an extension of (1.3). From this result and a result on the Radon—Nikodym
derivative for the classical Brownian motion, we obtain a formula for the Radon—
Nikodym derivative for the fractional Brownian motion.

The idea of the probability structure preserving mapping may carry many other
established results on one probability space to another probability space. We do not clail
that all results on classical Brownian motion may be extended to fractional Brownian
motion by using this idea. However, many other results on the classical Brownian motior
may also be extended to the fractional Brownian motion case through this probability
structure preserving mapping.

The probability structure preserving mappivigntroduced in this paper is similar to
a correspondence introduced by the author and his adviser, Prof. P.A. Meyer in [7-9]
However, in that correspondence the multiple Stratonovich integrals play an importan
role. In the mapping considered in this paper, the similar role is played by multiple 1t6
type integrals.

In Section 2, we give the definition of the probability structure preserving magping
and prove that this mapping may be defined for any measurable function. We also prese
a general way to construct this mapping for abstract Wiener space case.

In Section 3, we introduce a particular probability structure preserving magping
between Brownian motion and fractional Brownian motion with Hurst paraméter
and establish some useful propertiesof We use this mapping and the definition
of stochastic integral for Brownian motion to define stochastic integral for fractional
Brownian motion.

In Section 4, we apply the probability structure preserving mappingtroduced in
Section 3 to obtain a Girsanov type theorem for fractional Brownian motion.

2. Probability structure preserving

Let (21, F1, P1) and (2, F>, P») be two measurable spaces. [lebe an invertible
measurable mapping froM, to 2, such that

/ F o T () Pi(dooy) = / F (2) Pa(deop)
Q1 Q2

for all bounded measurable functidh: 2 — Q2. Namely,T is a measure-preserving one
to one transform.
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THEOREM 2.1. — LetT" be a measurable transformation frofty to itself and letA
be a measurable transformation frafy to itself. Assume that the following diagram

Q) — > Q

lr i (2.1)

commutes. Then
dPo A™*  dPyol'!
dap,, —  dp;

Proof. —This result may be known. However, | could not find it in a standard
reference. | will sketch a simple proof.
Let A € 7, andB = T~1(A) € F;. Then

P, AHA) = Po(ATIT(B)) = Po(TTX(B)) = PL(I'Y(B))

B dPioT ! _ dPol=t
_!T(x)pl(m)_!7<T ¥) Pa(dy).

oT7L. (2.2)

dp;

This proves (2.2). O

Let (2, H, P) be an abstract Wiener space, whéfds a Hilbert space with scalar
product(, -)5. There is no ambiguity to us# both for the Hurst parameter and for a
Hilbert space. For any € H, there is a Gaussian random variable, denoted«hy:),
such that it has mean 0 and covariance

E((, h1) (- h2)) = (h1, ho) .

Define F the smallestr-algebra such that for all € H, (w, h) is F-measurable. Let
h e H. ThenF(w) = exp({w, h)) is called anexponential functionabr anexponential
vector Let £ = £(R, F, P) be the space of finite linear combination of the exponential
functionals (abbreviated as FLICEF). Thénis a linear space which is closed with
respect to multiplication, i.e., if, G € £,thenFG € £. £ is also dense ii.” (2, F, P)
foranyp € [1, c0). N

_Let (2, H, P) be another abstract Wiener space. Edbe the space of FLICEF on
(R, F, P).

DEFINITION 2.2.— A mapping V from £ to £ is called probability structure
preserving mapping if

V(F+G)=V(F)+V(G), VF,Ge€, (2.3)
V(FG)=V(F)V(G), VF,GE€E, (2.4)
E[F1=E[VF], VFe&, (2.5)

where E and E denote the expectations on the probability spacgsF, P) and
(R, H, P), respectively.
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The correspondence introduced in [7-9] satisfies the properties (2.3)—(2.4). Howevel

it does not satisfy (2.5).

Example2.3. — If T is an invertible measurable mapping franto Q and if P =
PoT 1 thenVF :=F o T~! (WhereF € &) is a the probability structure preserving

mapping.

Itis clear that wherV is given by an invertible measurable mapping theis defined

for all measurable functiof” andV (FG) = (VF)(VG).

Now we will show that in general case it is also true, i¥.can be defined for all

measurable functiolr andV (FG) = (VF)(VG).

LEMMA 2.4.—If F e L3(Q, F, P), thenV F is well-defined.

Proof. —Let {F,, n > 1} be a sequence i& with the property thatF, — F in
L?(Q, F, P). Then for anyn, m > 1, we have

E|VE, — V Fy,|? —E[(VF)2+(VF )2 —2VF,VF,]
=E[V(F)?+ V(F.)? = 2V(F,F,)]
=E[V(F?+ F2 — 2F, F,,)]

=EWf+ﬁ—2&&ﬂ
=E(F, — F,)>

Thus{VF,, n > 1} is a Cauchy sequence Ir%(Q, F, P). It is also easy to see that the
limit is independent of the choice ¢¥ F,,, n > 1}. Therefore the limit of the sequence
{(VF,, n>1}canbedefinedag F. O

LEMMA 25.—If F,G € L*(Q, F, P), then
V(FG) =(VF)(VG).

Proof. —The assumption of the lemma implies tfaandG are inL?(Q, F, P). Thus
V(F) and V(G) are well-defined by Lemma 2.4. Sinéeand G are inL4(Q, F, P),

there are sequencés),, n > 1} c £ and{G,, n > 1} C £ such that

lim E|F, — F|*= lim E|G, — G|* =
n—0oo n—oo

Similar to the proof of Lemma 2.4, we obtain

E|V(F,G,) — V(FG)|> = E|F,G, — FG|?

< (BIF,Y)Y*(EIG, - GIY

-0 (n— ).

1/2 1/2

+ (BIG|Y*(BIF, — FI*)

Thus there is a subsequence (without loss of generality we may choose the sequen

itself) such thatV(F,G,) converges toV (FG) almost surely as: — oco. On the
other hand, sinceV (F,) — V(F) and V(G,) — V(G) in L*Q,F,P) we can
find a subsequence such thétF,,) — V(F) and V(G,,) — V(G) almost surely.
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ThenV (F,G,) = V(F,)V(G,,) — V(F)V(G) almost surely. Consequently, we have
VIFG)=V(F)V(G). O

LEMMA 2.6.—If F € L*(Q2, F, P) and if f — R is a continuous function, then

VI(F)=f(VF).

Proof. —Let M > 0 be such thatF| < M a.s. By the Weierstrass approximation
theorem, there is a sequence of polynomigts(x), n > 1} such thatP, converges
uniformly to f(x) on[—M, M]. By Lemma 2.5 itis easy to see tHa®,(F) = P,(V F).
Since P, converges tof, VP,(F) = P,(VF) converges tof (VF) a.s. on the event
{{IVF| < K} foranyK > 0. Letting K — oo, we see thaV P,(F) converges tof (V F)
a.s. On the other hand,

E|V (P,(F)) — V(f(F))|? =E|P,(F) — f(F)* >0 (1n— o).

This proves the lemma easily.CO

LEMMA 2.7.— Let F € L*(Q2, F, P) and let f be a continuous function. Then for
anye € R,

P(f(VF)>e)=P(f(F)>e). (2.6)
Proof. —Notice thatg, , := e "¢~/®™" is a continuous function of, wherea*
denotes the positive part afand that

nll_)moo gn,s(x) = I{f(x)}s} Vx e R,

where! denotes the indicate function. Then
ﬁ(f(VF) 2 8) - IEI{f(VF)}g} = IE I|m e—n(f—f(VF))+

n—oo

= lim Ee /M7 = |im Eye /D"

n—oo n—oo
= lim Ee"C~/" [} |im g~/
n—oo n—oo

=Elyr)ze) = P(f(F) > ¢).
This proves the lemma. O
Now we are ready to state and prove the main theorem of this section.

THEOREM 2.8. — Let F: Q2 — R be measurable and' < oo a.s.

() If F, — F in probability, whereF, € L*(Q2, F, P), then V F, converges in
probability. The limit in probability ofV F,, is defined ad/ F.

(i) If f is continuous, then

VI(F)=f(VF). (2.7)
Proof. —(i) From Lemma 2.7, it follows that

P([VFy —VFEu|>¢e)=P(IV(Fy—Fy)l >&)=P(|Fy— Ful >¢).
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This shows tha{V F,,, n > 1} is a Cauchy sequence with respect to the convergence
in probability. The unique limit of this sequence is independent of the choice of
{VF,,n>1}. This limitis defined ay/ F.

(i) Now let F, = Flyp<,. Since VF, — VF in probability, then there is a
subsequence, such thatV F,, — VF a.s. Thus

V(f(Fy)=f(VFy) — f(VF) as. (2.8)

Let K > O be a given arbitrary number. Singes uniformly continuous ofi— K, K1,
thereis & > O such that f (x) — f(y)| <eforall x,y e [- K, K] with |x — y| <§. By
Lemma 2.7, it follows that

P([V(f(E)) =V (f(F)|>e)=P(If(F) — f(F)| >¢)
=P({|f(F)— f(F)|>e}n{IFI<K})
+P{|f(F)— f(F)|=e}n{IF|>K})
<SP{IF)—F|=8})+P({IFI>K}). (2.9)

From this inequality it follows thatV(f(F,)) — V(f(F)) in probability. When
combined with (2.8), this implies the second part of the theorem.

Remark?2.9. — By Theorem 2.8, we shall call a probability structure preserving
mapping from(2, 7, P) to (2, F, P).

COROLLARY 2.10. -V isinjective.

Proof. —Let F be measurable such thEtF = 0 a.s. Then
P(|F|>0)=P(|VF|>0)=0.

This implies thatF =0 a.s. O

It is interesting to know the general conditions under which a probability structure
preserving mapping is given by a measurable transfbrine.,Vo F =F o T.

Now let I be an invertible measurable mapping fraento itself and letA be an
invertible measurable mapping frofnto itself. T" induces a mapping froréi to another
functional space3. This mapping is still denoted by. Namely,(I' F)(w) = F o I'(w),
forall F € £ andw € Q. Let A be the corresponding induced mapping frérto 5. We
are going to establish

THEOREM 2.11. — Let V be a probability structure preserving mapping from
(Q2,F,P) to (Q,F,P). LetT (and A) be invertible measurable mapping frof
(and 2) to themselves. Assume that the following diagram

Vo o~
—_—

&
r \LA (2.10)

vV o~
HB

<— 0

(o8
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commutes. IfP o ™! is absolutely continuous with respect &, then PoAlis
absolutely continuous with respect Fo Moreover, the following identity holds

5 oA-1 -1
dPo AT _ (ﬂ) (2.11)

P dp
Proof. —Assume that? o ' is absolutely continuous with respect®o Let G € £
and denoteg” = V~1G. By the commutativity of the diagram (2.10) we obtain that
GoA=Vo(Fol).

Denote
Ry(x) dﬁoF_l() o
X)=———(x), xeq.
! dp

From the probability structure preserving propertyfit follows that

/GoA(y)ﬁ(dy):/FoF(x)P(dx):/F(x)Rl(x)P(dx)
S Q Q

Q

- / V(FRy)(y) P(dy) = / (VF)3)(VR) () B(dy)
Q Q

_ / G()(VRy)(y) P(dy).
Q

This yields that

dPo AL ~
———— () =(VR)(y), forasyeq,
dp
proving the theorem. O
Multiple stochastic integral over a Wiener space is well-defined (see [6] and the
references therein). Let us recall that any elementf2, F, P) can be represented
by its chaos expansion:

<1 P |
Fzzﬁlnm), with Z;nfnni,@n <00
n=0""" n=0"""

where f, € H®" (the symmetric tensor product Hilbert space o¥£y and I, is the
multiple 1t6 type multiple stochastic integral. It is known that

o0

1
E(F?) =Y ;||fn||f{®n < 00.

n=0"""

The Fock space ovdt is a Hilbert space defined by

SH)={f=(fo. fr,-s fur-- ), fu€H®"}
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with the Hilbert norm

o]

2
11 = Z ||fn||,,®n

n=| 0

Thus we have an isometry betweéd(Q2, F, P) and the Fock spacé(H) over the
Hilbert spacet (see [6,12,16], and the references therein for more detail).
Let p be a one-to-one mapping frofd to H such that

(p(h1), p(h2)) 7z = (h1, ho)p.

Thusp induces a mapping frof¥®" to H®" in the following way: Letes, .. ., e, ... be
orthonormal system off. Thene, = p(ex), k=1, 2, ..., is orthonormal system aff .
If f=>ai..e6,® e, then we define

p®nf = Zail“‘inéil K- & éin-
It is easy to see that for ang g € H®",

<'O®nf’ p®ng>ﬁ®n = (f,g)l-[@n.

For any elemenyf = (fo, f1,..., fu,...) In ®(H) we define

®(p)f = (for p(fD)s s P2 (f)s--2).

Then it is easy to check that(p) is an isometry between the Fock spade§i) and
O (H).

Since there is an isometrypeQNegﬁ(Q, F, P) and®(H), we obtain an isometry
betweenL?(Q, F, P) and L%(Q, H, P). The explicit form of this isometry may be
described as follows: For an§ € L%(Q, F, P),

* 1

ThenF = ®(p)F is given by

1
— :0®nfn
l’l

THEOREM 2.12. —Let p be an isometry betweei and H Then ®(p) is a
probability structure preserving mapping frof®, F, P) to (2, H, P).

Proof. —Recall that€ is the set of finite linear combinations efh) := exp((-, h) —
|hl%), h € H and EhatE is an algebra and a dense subsef &, F, P). It is easy to
verify thatE(F) = E(®(p) F) and®(p)(F + G) = ®(p) F + ®(p)G. We need to prove
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the product preserving property (2.4). It is easy to see that

o0

1
e(h) :Z;In(h@’”).

n=0"""

Thus

oo

1
P(p)e(h) =3 —In(p()®) =e(p(h)).

n=0"""
On the other hand, it is easy to verify that
e(h1)e(ha) = exp((:, ha + ha) — lIhallF — A2l
=¢(hy+ hp) exp((hy, ho)n).
Thus
@ (p) [e(h1)e(ha)] = exp[(ha, ha)u] D (p) [e(h1 + h2)]
p[(h1, ho)u]e(p(h1+ h))
=exp[(p(h1), p(h2))u]e(p(h1) + p(h2))
=e(p(h1)e(p(ha))
= [®(p)e(hD)] [P (p)e(h2)].
From this the theorem follows. O

ex
ex

Remark2.13. — We shall call®(p) the probability structure preserving mapping
induced byp.

LEMMA 2.14. —If p is an isometry from the Hilbert spadé to the Hilbert spaceH
and if V = @ (p) is the probability structure preserving mapping inducedoyhen for
anyF,G €&,

V(FoG)=(VF)o(VG), (2.12)
where diamond denotes the Wick prod{see[5]).
Proof. —Let F = g(h1) andG = ¢(h,), wherehq, h, € H. We have

FoG=¢(hy+ ho).
Hence
V(FoG)=e(plhy+h2) =¢(php) o (p(h) = (VF) o (VG).

This proves the lemma through a linearity argumertt

3. Stochastic integral for fractional Brownian motions

Let us recall some results from [19] and [11]. From now(h F, P) will be the
classical canonical Wiener space affd, 7, P) = (Q, F, P*) will be the canonical
space for fractional Brownian motion with Hurst parameiee (0, 1).
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Fractional integrals of order € (0, 1) (of Riemann—Liouville type) of a functiorf
onR are defined as

1 o0
I8 f(x) = e /t"“lf(x +1)dr, (3.1)
0

whereI (x) is the gamma function. They are also called fractional integral of Weyl type
in [14]. Whena = —8 is negative,/{ will be the fractional derivatives (of Marchaud

type)

e g B T —fED
I$f(x)=Dif(x)= F(l—ﬂ)/ v dr. (3.2)
0

We denote by
f(é)=f(f)(é)=/éxsf(X)dx, §eR
R

the Fourier transform of a functiofi. The following lemma is from [19], Theorem 7.1.

LEMMA 3.1.-If 0 <« <1 and f € LY(R), then the Fourier transform of% f is
given by

FUL)E = (Fi&) *f&), &eR, (33)
where
(Fig) @ = |g| T Fsione,
Denote byS(R) the Schwartz space of rapidly decreasing functions.
From the definition off¢ f and from this lemma it follows easily that if € S(R),

then (3.3) holds for any real number
The following equation holds ([19], Egs. (5.16) and (5.17)):

Jeorrwde= [ eorzewds (3.4)
R R

forall f, g € S(R).
If feS@)andlI?(f)=0,then by (3.3) we see that

(i) f(& =0,
Thus £(£) = 0 for almost allé € R. We have thery = 0. Denote
SUR) =1%(SMR)) = {I%(f), feSMR)}.

ThenI® is a bijective linear transformation fro$(R) to S (R).
For any two elementg andg of S¢(R), define

1 .
(f. 8oy =5 / EM2 F©)8E)dgE, Vf, ge SM).
i R
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It is easy to verify that:, -)e,, is an inner product 0§% (R). ThenS* (R) is a pre-Hilbert
space with respect to the Hilbert norm induced by this inner product:

I fllon =1/ (f:&en = $/I€I1‘2”|f(€)lzd€-
R

Let ® denote its completion with respect to the Hilbert nofml||e, . Therefore,®y
i
is a Hilbert space. For anj € S(R) denoteg(x) = (12 Hf)(x), x € R. Then by (3.3)

§6) =362 f©).
From the definition of the norr - ||, and Parserval identity

2 _i 1-2H |5 2 _i 1-2H|ie\H-3 7£1]2
||g||@,,—2n¥m 1266)] dé—zjr]!m (Gi6)"% f6) e

1 o
== [1f@Fd = [170Pdr = 11f 12,
R R

This means that

1_
127" Fllo, =1 f 2@, Vf € SMR).
SinceS(R) is dense inL?(R) andS® (R) is dense in® (by the definition of® ;) we

1_
can extend? " to an isometry betweeh?(R) and®.
Namely, we have

1/2—H

LEMMA 3.2.—1 can be extended to an isometry frdri(R) to © .

It is interesting to say more about the Hilbert spéie.
ProPOSITION 3.3. —=S(R) is a dense subset 6f.

_1
Proof. —Let g be an element af (R) and definef = 1 2g. Then

F@& =213
It is clear that

/|f<s)\2ds=/|§|1—2H|§<s)\2ds <0
R

R
sinceg e S(R) andH < 1. Thusf € L?(R). But

FAYERF)©) = (16" V2i5) Y g(5) = §(5),

where F(g) denotes the Fourier transform of This means thal V>~ f = g. This
implies thatS(R) is a subset 0B 4.
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Now we need to show tha& (R) is dense in®y. First let us assume thdf < 1/2.
Let¢ € C*(R) be a positive smooth function with compact support and such that

/¢@nuzl
R
Denote
0 t >0,
"O= G- m) <o,
and
¢8(x):¢();/8), >0, xeR.

Thereforeg, is C* and with compact support (henge € S(R)). Consider

he(t) = o % :=/¢g<x)h<r ~x)dr,
R

where and in what follows denote the convolution. Then it is easy to see thds an
element ofS(R). For any functionf € S(R), define

Je(x) = (he x f)(x).
Then f, is an element o8 (R). On the other hand we have
Je=hex f=(¢exh)* f = (hxf).
By Eq. (5.4) of [19], we see that
hx f=1Y2Hp

Namely,
fe=¢ex (IV*7f).
Applying the Fourier transformation, we obtain
[:&) =)&) V2 [ (®).
It is easy to verify that

¢:.(5)—>1 and |.(5)|<1
for almost all¢. Thus by Lebesgue’s dominate convergence theorem, we see that

fo(&) = ¢ () (()T7Y2f ()
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converges tdig)# Y2 f(£) in L2(R) ase — 0. Hencef, converges td 27 f in ©
ase — 0. This implies thatS(R) is dense in®@y5. When H > 1/2, we need to use
[Y2-H = [3/2=H 4 |n this case we define

N 0 t >0,
O=Vt-#/r@—m <o,

and

he(t) = e *h=/¢s<x)h<r—x>dx,
R

which is an element af (R), whereg, is defined as above. For any functigne S(R),
define

fs(x) = (hE‘ * f/)(x)a

where f’ is the derivative off. Then f, is an element o (R). On the other hand we
have

fé‘:hé‘*f:(¢€*h)*f/:¢5*(h*f/)
By Eq. (5.4) of [19], we see that

hs f=I132Hp =137

Namely,

fa =¢s * (Il/z_Hf)-

A similar argument can be applied to show tifatonverges td'/>=# f in ®, ase — 0.
This implies thatS(R) is dense iy inthe caseH > 1/2. 0O

From the above argument, we also conclude that the isonﬁé/ﬁ'y”' ‘L’(R) — Oy
has the inverse which coincides witf /% on S(R). We denote this inverse b’/
which is an isometry fron® to L?(R).

In [18], some other types of space were introduced. For example, it is denoted that

Ay= {f: /[(If‘l/zf)(s)]zds < oo}

:{f: /{/f(u)(u—s)f_e'/zrds<oo},

R R
whenH > 1/2 and

Ay ={f: 3¢ € LAR) such thatf = 17> "¢}

when H < 1/2. The property of these and other relevant spaces are studied also. It i
clear from Theorem 3.2 and Theorem 3.3 of [18] that is a subset 0® . However,
Ay is not appropriate in our paper since it is not a Hilbert space.
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In recent years, there has been a boom of study of a particular family of Gaussiar
processes, calleidactional Brownian motionsFractional Brownian motion witkurst
parameterH < (0, 1) has been introduced by Mandelbrot and Van Ness asahgonal
derivative of Brownian motion. More precisely, fBn#” = (B/',t € R,) with Hurst
parameteiH € (O, 1) is defined as

H

YH=Y/2 _ (_gyH=1/2
B = F(H+1/2)/ — (=977 dB,

+/(t—s)H_1/2st, teR,, (3.5)

whereB = (B, s € R) is a Wiener process on some probability spé&eF, P). This
probability space will be fixed. The expectation ¢, F, P) is denoted byE. The
fractional Brownian motion satisfies

E(B/ B') = cu (It + Is|? — 11 — s27),
wherec 1"(2 2H)cos{nH)
H(1
Asin [11] heurlstlcally we may write (3.5) as

B! = 1By (1) — 1]7?(B)(0).

[Each of these two terms may not be well-defined.] Thus we have

BZ’—; LBy = 1728y o).

Hence formally,B¥ is the fractional integral of ordeH — 1/2 of the white noiseB
whenH > 1/2 andB" is the fractional derivative of order/2 — H of the white noise
B whenH < 1/2.

Using the adjoint operator (i.el,
Jg f()dB} may be well defined by

H— 1/2) H-1/2

of I} , we know that if f € ®4, then

[ st = [ 1772w b, (3.6)
R R

It is easy to see that

E(/f(r)dB,H) —0, E(/f(r)dBﬁ/g(r)dBﬁ) = (. Son
R R R

(See [11] for more discussion.)

From now on we denote by the probability structure preserving mapping between
L2(Q, F, P) andL3(Q, F, PH) induced byr***

Eq. (3.6) can also be used to define the stochastic integral for general random kerne
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DEFINITION 3.4.— Let f:R x @ — R be a stochastic process not necessarily
adapted. Assume that for almost everg Q, f(-,w) € Oy. If [ IE/Z_HV‘lf(t) dB,
exists as a random variable, then we say thatf(r)dB/ exists and define the
anticipative stochastic integral by

/f(t) dBf = V(/If'_l/z(V‘lf)(t) dB,). (3.7)
R R

PROPOSITION 3.5. — If H > 1/2 and if [ f(t)dB/ is well-defined in the sense
of [5], then this definitior{3.7) coincides with the definition introduced [i5].

Proof. —Let F be an exponential function a®, F, P). Considerf (t) = x.»)() F,
t € R, where—oco < a < b < oo are given numbers. Then by the definition of [5], we
have [ f(1)dB = F < (B’ — BY), whereo denotes the Wick product. Here we tem-

porarily denote the stochastic integral in [5] By f (r) E}IB,H. On the other hand, by (3.7),

/ f@)dB/ = V( / (VAR [ x ] () dB,)
R R
-1 H-1/2
= V(V FQ/[I_ X(a,h]] (1) dBt>
R

=F o/x(a,b](t) dB = Fo (B — BY).
R
Hence [, f(t)dB/ = [, f(r)dBF for step functions. The proposition follows from
linearity and a limiting argument. O

Let ey, ..., e, ... be an ONB of L2(R) such thate, € S(R), k = 1,2,.... Then
{e1,é5,...} is an ONB of ®y. The Malliavin derivativeD; of a smooth functional
F=f(Jgei(®)dB,, ..., [z ex(t)dB,) is defined as

D,F = er(H)dB;, ..., [ e (@) dBt>en(s).
S

Now letG = g(Jze1(t)dBY, ..., [z ex(2) dBF). We define the derivativ®! by
H . af ~ H ~ H)\~
DlG=>" » /el(t)dBl ,...,/ek(t)dB, én(s).
n=1""" R R

In the case of no ambiguity (as it usually is) we omit the dependendé D/ .

As in [15] (see also [13,17]) we denote fiy+?(Q2, F, P) the class of processes
u € L3(T x Q) on the probability spaceéQ, F, P) such thatu(¢) € D2 for almost
all ¢, and that

/(Dsu(t))zds dr < co.

R2
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This means that

LY2(Q, F, P)= {f: /Elf(t)lzdt + /IEIDSf(t)Ist dr < oo}.
R R2

The following proposition will be useful.
PROPOSITION 3.6. — Let f e LY%(Q2, F, P). Then

V(/f(t)dB,) :/[IE/Z‘H(Vf)](t) dB”. (3.8)
R R

Proof. —Since for a.aw € @, f(-, w) € L>(R). Vf(-,w) € L?(R). Thus

¢Cw) =12 (V1) () e Oy

and
1772 (.0) = (V) o).
Consequently,
1" vtg) = .
By definition (3.4) we obtain
/(li/z‘”)(Vf)(z) dB” :/g(t) dB! = V(/If‘l/z(v—lg)(t) dB,)
R

R R

= V(H!f(t)dB,).

This proves the proposition. O
LEMMA 3.7.—LetF e LY%(Q, F, P). Then

VD,F =1"""4D),(VF), (3.9)

where1”~?(pH) G denotes the application gt~

Proof. —Let F = exp( [ h(s)dB,). Then

Y2 to D® G (as a function of).
D,F = h(s)F.
Thus

VD,F = h(s)exp(/li/z‘”h(s) dBf).
R
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On the other hand, we have
VF= exp( / 1Y% " h(s)dB! )
R

Hence

DHVF =1 p(s) exp(/li/z‘”h(s) dBf).
R

This proves tha¥/ D,F = 1"~ 1/Z(DH) V F for exponential functions. By linearity of
p Y

V and D, we can conclude that (3.9) is true for @le £. The theorem is proved by a
limiting argument. O

LEMMA 3.8.—Letl:Q — QandA : Q — © be measurable mappings such that the
diagram(2.10)commutes. Le¥ (FoT") = (VF)o A foranyF € £. Thenfor allF € £,

V(FoTl ™) =(VF)o AT (3.10)
Proof. -<FromF = F o 1o T, it follows that
VoF=Vo(Fol'ol)=Vo(Fol ) oA.

ThusVo(FoT ™) =(VoF)oA™. O

LEMMA 3.9.— Let the assumptions of Lemnta8 be satisfied and lef” be
differentiable in the sense that for afye .12, F o T isin L2, Then

V(Dy(FoT ™Y oT)=1"""3(D") [(VF)o A™Y 0 A. (3.11)

Proof. —=From Lemmas 3.7 and 3.8, it follows that

V(Ds(Fol' ™) ol) = [VDy(Fol' )] o A
=1"Y3(D") (V(FoT ™)) oA
= 172D [(VF)o A™Y 0 A.

This proves the lemma. O

4. Application to absolute continuity

Now consider an (anticipative) translation Bf

A: Bﬂ+/f(s,BH) ds. (4.1)
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Define an anticipative translation &fby

B+ /g(s, B) ds, (4.2)
0
whereg = 17/ v=1f Thus f can also be computed fropby f = 1/ "*vg.

LEMMA 4.1. — The following diagram

£E—=¢
. lA (4.3)

B—Y-3

commutes, wheré€ is the set of finite linear combinations of exponential functionals on
(R2,F, P) and & is the set of finite linear combinations of exponential functionals on
(Q,F,PHyandB=T€& andB = A€.

Proof. —Denoteg = V~1f. Let F = exp(; h(s) dBy), whereh € L% (R). As dis-
cussed before we dencfe= 174", Then

FF:eXp_/h(s) dB, —i—/h(s)g(s) ds}

R R
= exp_ h(s)dBs + [ h(s)IF* "5 (s) ds}
Jroon]

= exp-/h(s) dB; + /(Th)(s)g(s) ds} .
‘R i
Thus

erzepr(Th)(s)st” + /(Th)(s)vg(s) ds}
R

R

:epr(Th)(s)st” +/(Th)(s)f(s)ds}
R R
On the other hand,
VF = epr(Tf)(s) dBSH} .
R

Therefore, we have

AVF :exp{ / (Th)(s)dB + / (Th)(s) £ (s) ds}
R R
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This shows that the diagram commute for exponential functionals. The lemma is
completed by a linearity argument

LEMMA 4.2.—Letl':Q — QandA : Q — € be defined by4.1)and (4.2). Then for
all measurableF,

V(FoT)=(VF)oA. (4.4)
Proof. —Let F = exp{ [ h(s) dB,}. Then

Fol :exp{/h(s)st + /h(s)li/z‘”v—lf(s) ds}

:exp{/h(s)st +/(11/2‘”h)(s)v—1f(s)ds}.

Consequently,

V(Fol) = exp{/(li/z‘”h)(s) dB! + /(IE/Z‘Hh)(s)f(s) ds} =(VF)oA.

This proves the lemma for exponential functional. The lemma follows from a linearity
argument. O

Let us recall a result on Radon—Nikodym derivative. The following results can be
found in [2] when the interval i0, 1].

THEOREM 4.3. — Let f and g be as in(4.1)—(4.2)such thatf and g are inLL*2, Let
the following conditions be satisfied
(i) There is a positive number € (0, 1) such that

/ D,g(s)[2ds df is bounded by. (4.5)

(i) There is a positive number> 1 with

E[exp{%/gz(s) dsH < 00. (4.6)
R

Then is invertible andP o ' * is absolutely continuous with respect®o Moreover,
the following identity is true:

dPor1
—aF —KeXp{ /g(s) dB, — —/g (s)ds} (4.7)

with

K:eXp{—// D,g(r)D, [g(s, F;l)}ors}, (4.8)
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whererl; is defined by
I's:B.— B. —|—/g(u)du

andI'; ! is the inverse of ;.

To obtain a Radon—Nikodym derivative for fractional Brownian motions, we define

h(u) =12 (Lol f)w), ueR (4.9)

and
A,:B? — B /h(u)du. (4.10)

The main theorem of this section is

THEOREM 4.4. — Let the following conditions be satisfied
(i) There is a positive number € (0, 1) such that

/|I “2(pH) 1% 1 (£)(s)|* ds dr is bounded by (4.11)

(i) There is a positive number> 1 with

E[exp{%llfllé,, H < 0. (4.12)

ThenT is invertible andP? o A=t is absolutely continuous with respect R .
Moreover, the following identity is true

dPH oAt . ~H y1/2~ !
TapA =L=KeXp{_ R IO éllfllé,,}, (4.13)
R

where

X
Il

exp{ —//1” (™), 2" (H "3 (p™),
R

X (Ii/Z_Hf) (s, Ay) o AT ds dr}, (4.14)

whereA; is defined by

A,:BY — BH +/h(u)du
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and

H— 1/2(

hw) =15 (Lo /> f) @), ueR,

and A 1is the inverse of,.

Proof. —-By Lemma 3.7, we have

{/lD,g(s)| dsdt} V/\D,Il/2 Hy =172 ds dr
RZ

_/|VD 1M Hy=1r P ds o

/|1” Y2(pHy 1377 £|* ds .

Thus (4.11) implies that (4.5) holds. By the probability structure preserving property of
V, we obtain

E[exp{%/gZ(s) dsH =E_Vexp{%/g2(s) dsH

R B R
:E:eXp{%R/|IE/2‘”f(s)|zdsH
ZE:eXp{%IIfIIéHH-

Hence (4.12) implies that (4.6) is true. Therefore under the assumptions of Theorem 4.4

dPg—;d exists. It suffices to computd o dpgj,‘fl. First let's make the following

computation.

Vexp{ /g(s)dB ——/g (s)ds}
_exp{ /11/2 "vg(s)dB! ——/Vg (s)ds}

—eXp{ /11/2 Hplz= ”f(s)dBf—§/|1i/2‘”f|2(s)ds}
R

_ _ 1
=exp{—/11/2 " ”f(s)dBf—§||f||éH}-
R
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Next we have to evaluate= V. Similar to Lemmas 4.1 and 4.2, we can prove that the
following diagram

£—=¢
N iAS (4.15)
\%4

B——p53
commutes and thaf (F o T'y) = (VF) o A, holds. By Lemma 3.7,

V(Dyg(r) = 1772(DM) (Ve = 1"2(DM) 12 () ().

From Lemma 3.9 it follows that
V(D (8(s. Ty ) o ) = 12 72(D™), [(Vg) 0 AY o A,
= 172D (177 £) (s, A7 o A,

N

Thus

Vie =exp{— / / "2y, i7" (H 12 (D),
R O

X (Ii/z_Hf) (s, Ay) o Atds dr}. (4.16)

This proves the theorem.O

Remark4.5. — (a) If f is deterministic, thenD, f = 0. Thusk = 1. Therefore if
f € ®, is deterministic, then

dPH o A1 _ _ 1
—— :exp{— / 1727 H 2 sy dBH — EIIfIIéH}- (4.17)
R

By elementary results from the fractional calculus, we see that this formula coincides
with the formula in [11]. This is in fact Cameron—Martin formula. See [16] for general
Gaussian process case.

(b) To obtain the Girsanov formula for finite interval, one needs to compute the
conditional expectation as indicated in [11].
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