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ABSTRACT. – We establish a central limit theorem for the density fluctuations of a one
dimensional particle system known as the totally asymmetric simple exclusion process (TASEP).
Because of our method in this article, it is more convenient to regard TASEP as a growth model.
Let the configuration space� consists of functionsh :Z → Z such that 0� h(i+1)−h(i)� 1 for
all i ∈ Z. With rate one, eachh(i) increases by one unit provided that the resulting configuration
does not leave the configuration space; otherwise the growth is suppressed. We establish a central
limit theorem for the rescaled height functionuε(x, t) = εh([ x

ε
], t
ε
) wherex ∈ R, [ x

ε
] denotes

the integer part ofx
ε
, andh(·, t) denotes the configuration aftert seconds. We assume that

initially, the probability law ofuε(x,0) is the same asg(x)+ √
εB(x)+ o(

√
ε) for a continuous

functiong and a continuous random processB(·). It is expected that at later times, the rescaled
processuε(x, t) can be stochastically represented asū(x, t) + √

εZ(x, t) + o(
√
ε) whereū is

the unique solution of the Hamilton–Jacobi equationūt = ūx(1 − ūx) with the initial condition
ū(·,0)= g(·), andZ(x, t) is a random process that is given by a variational expression involving
B(·). This will be established ifg is piecewise convex. We also define a random lattice curve
as a microscopic backward characteristic curve and prove a law of large numbers for it. 2002
Éditions scientifiques et médicales Elsevier SAS

RÉSUMÉ. – Un théorème limite central est établi pour les fluctuations de la densité d’un
système de particules unidimensionnel connu comme le processus d’exclusion simple totalement
asymétrique. La méthode employée conduit à la considérer comme un modèle de croissance.
 2002 Éditions scientifiques et médicales Elsevier SAS

1. Introduction

Various phenomena such as the formation of crystals and the spread of infections are
modeled by stochastic growth models. To simplify the geometry, we regard a crystal as
a collection of cubes of small size with their centers lying on somen-dimensional lattice
(in practicen is 2 or 3), and assume that the growth can only occur in the direction of the
last coordinate axis. It is customary to take cubes of side length one in our microscopic
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description, and then multiply the side lengths by a small factorε that will go to zero at
the end. If initially the center of cubes lie in a set of the form

A(0)= {
(i, k) ∈ Z

d+1: k � h(i)
}

for someh :Zd → Z, then at later times our crystal is of the same form and the centers
of their cubes lie in the set

A(t)= {
(i, k) ∈ Z

d+1: k � h(i, t)
}

for a functionh :Zd × [0,∞)→ Z. For themacroscopicdescription of our crystal we
rescaleh and study

uε(x, t)= εh
([
x

ε

]
,
t

ε

)
, (1.1)

where(x, t) ∈ R
d × [0,∞) and[a] denotes the integer part ofa. We normally assume

that the growth is random, and the rate at whichh(i) increases toh(i)+ 1 depends on
the height differences(h(i)− h(j): j ∈ Z

d). Whend = 1 and if we assume thath is
always nondecreasing, then a different interpretation of our model is available. One may
interpret the height differenceη(i)= h(i + 1)− h(i) as the number of particles that are
sitting at the sitei. With such interpretation the increase ofh(i) by one unit is equivalent
to the jump of a particle from the sitei + 1 to the sitei, modeling a one-dimensional
fluid. For a class of such models, it was shown in Rezakhanlou [9] that the limit of
uε(x, t) asε→ 0 exists and the limiting function̄u solves aHamilton–Jacobiequation
of the form

ūt +H(ūx)= 0, (1.2)

for a suitable functionH . In [9] the macroscopic densitȳρ(x, t)= limε→0η([ xε ], tε ) was
studied in the context of hydrodynamic limit and it was shown that the functionρ̄ = ūx
satisfies a conservation law of the form

ρ̄t +H(ρ̄)x = 0. (1.3)

It is well-known that Eq. (1.3) enjoys the followingmonotonicityproperty: If ρ1 and
ρ2 are two solutions of (1.3) and ifρ1(x,0) � ρ2(x,0), then ρ1(x, t) � ρ2(x, t) for
all t . A refined version of this principle leads to the so-calledentropy inequalities.
In general (1.3) does not possess classical solutions, and (1.3) has infinitely many
nonclassical (weak) solutions that share the same initial data. If we require that for
a solution, the entropy inequalities hold, then for a given initial data there exists a
unique solution. Such a solution is physically relevant because the entropy inequalities
are closely related to the second law of thermodynamics. To apply the method of [9],
one needs to have two properties for the underlying particle system. First, one needs
to assume that for each densityρ there exists an ergodic invariant measure for theη-
process that has the average density equal toρ. Secondly, one needs to assume that the
jump rates (or the growth rates for theh-process) satisfy certain monotonicity so that the
aforementioned monotononicity for the solutions of (1.3) are also true microscopically.
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The two properties we just described are true for the so-calledtotally asymmetic simple
exclusion process(TASEP). In the TASEP, one assumes that there exists at most one
particle per site, and the jump fromi + 1 to i is suppressed if the sitei is occupied.
In this case,H(ρ) = −ρ(1 − ρ), which is nothing other than the average of the jump
rate with respect to the unique ergodic invariant measure with densityρ. In [14],
Seppäläinen was able to derive (1.3) for the generalized exclusion processes. He calls
a particle systemK-exclusion if each site can have at mostK particles and a jump is
suppressed if such restriction is violated. The important aspect of his work is that it does
not rely on the existence of the ergodic invariant measures. In [14] however, only the
existence ofH is shown and no simple expression for the functionH is given. In [12],
Rezakhanlou generalizes the work of [14] to a class of growth models that are defined
in all dimensions. It was observed in [12] that the key property in [14] that was used for
the derivation of (1.2) is some type ofstrong monotonicity. To motivate the definition of
strong monotonicity, first recall that ifH is convex, then by Hopf–Lax–Oleinik formula,
ū can be expressed by a variational formula of the form

ū(x, t)= inf
y

{
ū(y,0)+ tL

(
x − y
t

)}
, (1.4)

whereL is the convex conjugate ofH :

L(q)= sup
p

(
pq −H(p)).

Let us writeg(y) for ū(y,0) and let us denoteu(·, t) by Ttg. ThenTt is a semigroup, and
more importantly, a consequence of (1.4) is the following strong monotonicity property
of Tt :

Tt(inf
α
gα)= inf

α
Ttgα. (1.5)

In [12] we showed that a microscopic version of such a strong monotonicity is valid
for a class of growth models that includes theK-exclusion processes. For a given
nonnegative functionv :Zd → Z with v(0) = 0, we define� = �v to be the set of
functionsh :Zd → Z such thath(i) − h(j) � v(i − j) for every i, j ∈ Z

d . Now h(i)

increases toh(i) + 1 with rate one, but this increase is suppressed if the resulting
configurationhi does not belong to�. If we choosev(x) = Kx+ with x ∈ Z and
K ∈ Z

+, then our model coincides with aK-exclusion process. Let us call our model av-
exclusion process.It turns out that a microscopic analog of (1.5) is true for allv-exclusion
processes (see (2.3) of Section 2). A consequence of such a strong monotonicity property
is the following microscopic version of (1.4):

uε(x, t)= inf
y

{
uε(y,0)+wε(x, y, t)}, (1.6)

wherewε(x, y, t) = εw([ x
ε
], [ y

ε
], t
ε
), a ndw(i, j, t) denotes the height function at time

t that initially starts fromw(i, j,0) = v(i − j). See (2.7) of Section 2 for a proof of
(1.6). The formula (1.6) for the first time appeared in [14]. The analog of (1.6) for a
closely related particle system known as Hammersley Process was derived by Aldous
and Diaconis in [1].
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Apparently, the onlyv-exclusion process with an explicit simple formula for its
invariant measures is TASEP.

Our goal in this article is to establish a central limit theorem for the convergence ofuε

to ū in the case of TASEP. To motivate the statement of the main results of this article, let
us start with formulating some conjectures for thev-exclusion processes or even more
general growth models. Let us pretend thath(x, t) is defined for allx ∈ R

d , t � 0, andh
is a sufficiently nice function. It is expected thath satisfies

ht +H(hx)= divA(hx)+ ξ +R (1.7)

whereA is a suitable vector-valued function,ξ is a space-time white noise, andR is
the remainder. Of courseR may involve differential operators of higher orders and more
complicated randomness. The main aspect of the almost meaningless formula (1.7) is
that various terms in (1.7) are scaled differently, and after a rescaling ofh, the remainder
becomes smaller than the other terms and can be ignored. More precisely, we expect for
the functionuε to satisfy,

uεt +H (
uεx

) = ε divA
(
uεx

) + ε d+1
2 ξ(x, t)+ o(ε). (1.8)

The derivation of (1.8) even for TASEP seems to be a difficult problem. To have a more
mathematically tractable problem, we address two consequences of (1.8). Whend � 3,
we may ignor the random term on the right–hand side to write

uεt +H (
uεx

) = εdivA
(
uεx

) + o(ε). (1.9)

What we will establish in this article is a consequence of (1.8). Assumed = 1. The
expression (1.8) certainly implies

uεt +H(uεx)= o
(√
ε

)
. (1.10)

If at time t = 0, we have a central limit theorem of the form

uε(x,0)= g(x)+ √
εB(x)+ o

(√
ε

)
, (1.11)

then we expect to have

uε(x, t)= ū(x, t)+ √
εZ(x, t)+ o

(√
ε

)
, (1.12)

for a suitable random processZ(x, t). In fact,Z(x, t) can be calculated by replacing
o(

√
ε) with zero in (1.10). The result is

Z(x, t)= inf
y∈I (x,t)B(y) (1.13)

whereI (x, t) is the set ofy at which the infimum in (1.4) is attained. (For calculatingL,
we should defineH(ρ)= −ρ(1− ρ) for ρ ∈ [0,1] and setH(ρ)= +∞ if ρ /∈ [0,1].)



F. REZAKHANLOU / Ann. I. H. Poincaré – PR 38 (2002) 437–464 441

In fact we can prove more, namely, if we replacex with x + √
εe on the left-hand side

of (1.12), then (1.12) is still valid provided that the processZ is replaced with the

Ze(x, t)= inf
y∈I (x,t)

{
B(y)+ eL′

(
x − y
t

)}
. (1.14)

We establish (1.12) in the case of TASEP, provided that the setI (x, t) is finite and for
everyy ∈ I (x, t), the functiong is convex in a neighborhood ofy.

In some sense, the processZ is a solution to the linear equation

Zt +H ′(ūx)Zx = 0, (1.15)

with the random initial conditionZ(x,0)= B(x). Similarly, if the initial conditiong is
differntiable, then the processZe satisfies the same equation but now with the initial
condition B(x) + g′(x)e. Since in generalg is not differentiable and the coefficient
H ′(ūx) is multivalued at the nondifferentiability points of the functionū, Eq. (1.15)
does not possess classical solutions and the formulas (1.13)–(1.14) offer some type of
generalized solutions to (1.15).

To describe our next result, let us assume that ifx1 �= x2, thenB(x1) �= B(x2) with
probability one. Such an assumption implies that there exists a unique minimizerȳ(x, t)

such thatZ(x, t) = B(ȳ(x, t)). Let yε(x, t) be any random process such that for each
(x, t) andε > 0, the pointyε(x, t) is a minimizer in the variational problem (1.5). In
the last section we show that the finite dimensional marginals ofyε(x, t) converge to
the finite dimensional marginals of the processȳ(x, t). Whenū is differentable at(x, t),
then the setI (x, t) consists of a single point andyε(x, t) converges to the only element
of I (x, t). Whenū is not differentiable at(x, t), thenI (x, t) consists of more that one
point and the limit ofyε(x, t) is a suitable random point inI (x, t). Such a point(x, t)
lies on adiscontinuity shockand ify ∈ I (x, t), then a characteristic line emenating from
y at time 0, is involved in the formation of such a shock.

The central limit theorem (1.12) for the simple exclusion process was established
by Ferrari and Fonte [5] in two cases, either when theη-process is in equilibrium,
or wheng(x) is the infimum of two linear functions. The latter case in the language
of conservation laws, corresponds to a Riemann solution of (1.3). In Ferrari et al. [6]
the work of [5] is generalized to the case of an initial datag that is the infimum of
finitely many linear functions. In comparison with [6] our result is stronger because we
allow more general initial datag. The work of [5] however applies to simple exclusion
processes for whichh(i) can decrease as well.

The proof of (1.12) is naturally divided into parts:

uε(x, t)� ū(x, t)+ √
εZ(x, t)+ o

(√
ε

)
, (1.16)

uε(x, t)� ū(x, t)+ √
εZ(x, t)+ o

(√
ε

)
. (1.17)

It turns out that the proof of (1.16) is a straightforward consequence of the work of
Johansson [7] and holds for arbitrary initial datag. In fact Johansson shows that if the
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initial height function is of the formh(i,0)= i+, then

uε(x, t)= tL
(
x

t

)
+ O

(
ε2/3). (1.18)

See Section 4 for more details on how (1.18) implies (1.16). Our main contribution is
(1.17) and for this we need to assume that the initial data is piecewise convex. Our
approach can been used to obtain (1.16) provided that we assume the initial data is
piecewise concave. Such an assumption can be avoided if we appeal to (1.18).

In spirit our method is close to the method of Rezakhanlou–Tarver [13] and
Rezakhanlou [11]. In these papers a central limit theorem for the convergence ofuε

is established whereuε satisfies a Hamilton–Jacobi equation

uεt +H
(
x

ε
,uεx,ω

)
= 0,

where the random HamiltonianH(x
ε
,p,ω) is stationary and ergodic in the spatial

variable. If we assumeH(y,ρ,ω) is convex inρ, then formula (1.6) is true wherewε is
now given by

wε(x, y, t)= inf

{ t∫
0

L
(
ε−1γ (θ), γ ′(θ),ω

)
dθ

}
.

Here the infimum is over smooth curvesγ : [0, t] → R with γ (0)= y andγ (t)= x, and
L(y, q,ω) denotes the convex conjugate ofH(y,ρ,ω) in theρ-variable. The sequence
uε converges to a function̄u that solves ahomogenizedHamilton–Jacobi equation of
the form (1.2). The main result of [11] asserts that (1.12) is valid for the sequenceuε

provided that we have a central limit theorem for the solutions of the form

uερ(x, t)= qε(x, t,ω)− tH̄ (ρ)= εq
(
x

ε
,ω

)
− tH̄ (ρ),

whereq satisfies limε→0q
ε(x,ω)= xρ. In the case of TASEP, the role ofuερ are played

by random height functions for which the height differences are distributed according
to an equilibrium measure with densityρ. As we mentioned earlier, a result of Ferrari
and Fontes [4] establishes a central limit theorem for the convergence ofuερ . To apply
the arguments of [11], we need a stronger version of [4] result, namely, the family of
processes

J ε(x, t, ρ) := ε−1/2(uερ(x, t)− xρ)
is convergent asε goes to zero. (See condition (iv) of Theorem 2.8 of [11].)
Unfortunately we have not been able to prove this for our model. In fact such a strong
central limit theorem would allow us to have (3.2) of Section 3 withY ε in place ofRε.
The piecewise convexity assumption on the initial data can be dropped if we can prove
(3.2) withY ε. An interested reader should compare (3.2) with Assumption 2.3 of [11].

The organization of this paper is as follows. In the next section the main results are
stated. A suitable bound on the fluctuations ofuε is given in Section 3 when the initial
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height function ish(i,0)= i+. The statement (1.12) is established in Section 4. The last
section is devoted to a law of large numbers for the processyε.

2. Notations and main results

The space of configurations� consists ofk :Z → Z such that 0� k(i+ 1)− k(i)� 1
for all i ∈ Z. We also write�̄ for the set of functionsg :R → R with

g(x)− g(y)� (x − y)+,
for every x, y ∈ R. The processh(i, t) is a Markov process with the infinitesimal
generator

(AF)(k)= ∑
i

1
(
ki ∈ �)(

F
(
ki

) − F(k)) (2.1)

whereF :ZZ → R is any cylindrical function (F(k) depends on finitely manyk(i)’s)
andki is defined by

ki(j)=
{
k(i)+ 1 if j = i,
k(j) if j �= i. (2.2)

When necessary, we writeh(i, t;k) for the process with the initial configurationk, i.e.,
h(i,0;k)= k(i). The functionv(i)= i+ ∈ � plays a key role in our arguments. In fact,
one can easily see that ifk ∈ � andk(j)= a, thenk(i) � a + v(i − j). It was shown
in [12] that we always have

h(i, t; inf
α
kα)= inf

α
h(i, t;kα) (2.3)

where{kα} is a family of configurations of� with infα kα = k finite. From

k(i)= inf
j

{
k(j)+ v(i − j)} (2.4)

and (2.3) we deduce

h(i, t;k)= inf
j
h
(
i, t;v(·, j, k(j))), (2.5)

wherev(r, j, k(j))= k(j)+ v(r − j).
The proof of (2.3) follows from a suitable construction of the processh(i, t) in terms

of a sequence of independent rate one Poisson processes(.i(·): i ∈ Z). LetD denote the
set of step functions. : [0,∞)→ Z

+ such that for an increasing sequence of numbers
σ0(.)= 0, σ1(.), . . . , we have.(t) = k for t ∈ [σk(.), σk+1(.)). We set0dy = DZ and
let Pdy denote the law of a sequence of independent rate one Poisson processes. Given a
realization

ω1 = (
.i(·): i ∈ Z

) ∈0dy,
we can define a sequence(σr(.i): r, i ∈ Z)whereσr(.i) is ther th time the process.i has
increased by one unit. We set0̂dy to be the set of realizationsω1 for which allσr(.i) are
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distinct. It is not hard to show thatPdy(0̂dy)= 1. For everyω1 ∈ 0̂dy we can construct
the processh(i, t;k)= h(i, t;k,ω1) by adding one toh(i) at each timeσr(.i) provided
that the resulting configurationhi stays in�. From our construction we see that if for
somea ∈ Z, we havek̂(i)= k(i)+ a for everyi ∈ Z, then

h(i, t; k̂)= h(i, t;k)+ a. (2.6)

In particular

h
(
i, t;v(·, j, k(j))) = k(j)+ h(i, t;vj ),

wherevj (i)= v(i − j).
To ease the notation, we writew(i, j, t) = w(i, j, t;ω1) for h(i, t;vj ). As a result,

(2.5) becomes

h(i, t;k)= inf
j

{
k(j)+w(i, j, t)}. (2.7)

This is (4.9) of [14]. See also [1] where a similar formula is derived for the Hammersly
Process. (The Hammersly process is another example of a strongly monotone particle
system.)

Throughout the paper we writeω0 ∈ 00 for the randomness of the initial data,
ω1 ∈0dy for the randomness of the dynamics, andω for the pair(ω0,ω1). The space of
such pairs will be denoted by0. Recall that the probability distribution ofω1 is denoted
by Pdy . The corresponding expectation is denoted byEdy . In the nonequilibrium case
we writepε(dω0) for the probability measure at time zero (that may depend onε) and
this combined with the probability measure coming from dynamics will be denoted by
P ε(dω0,dω1). The correspondind expectation is denoted byEε.

Given a realizationω1 = (.i(·): i ∈ Z) ∈0dy , we define

τjω1 = (
.i−j (·): i ∈ Z

) ∈0dy.
We also define the shift operatorτj on� by

τjk(i)= k(i − j),
for everyk ∈ � and everyj ∈ Z. From our construction, it is not hard to see

h(i − j, t;k,ω1)= h(i, t; τjk, τjω1). (2.8)

The translation invariant equilibrium measures for the TASEP are well-known. To
define them, let us consider a random height funcionh

ρ
0(·;ω0) and a probability measure

pρ(dω0) so thathρ0(0;ω0)= 0, and the sequence

(
η
ρ
0(i;ω0)= hρ0(i + 1;ω0)− hρ0(i;ω0): i ∈ Z

)
are independent identically distributed random variables with

pρ
({
ω0: η

ρ
0(i;ω0)= 1

}) = ρ.
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The probability measurepρ(dω0) at time zero combined with the probability measure
associated with the dynamics is denoted byPρ(dω0,dω1). The corresponding expecta-
tion is denoted byEρ . Define

hρ(i, t)= hρ(i, t;ω)= hρ(i, t;ω0,ω1) := h(i, t;hρ0(·;ω0),ω1
)
. (2.9)

We may choose00 = {0,1}Z so thatω0 ∈00 is of the form

ω0 = (
η0(i): i ∈ Z

)
.

For such a realizationω0, the shifted realization is defined in an obvious way:

τjω0 = (
η0(i − j): i ∈ Z

)
.

Note that we always have

h
ρ
0(i;ω0)− hρ0(j ;ω0)= hρ0(i − j ; τ−jω0).

From this, (2.6) and (2.8) we deduce

hρ(i, t;ω0,ω1)− hρ(j,0;ω0)= h(i, t;hρ0(·;ω0)− hρ0(j ;ω0),ω1
)

= h(i, t; τj hρ0(·; τ−jω0),ω1
)

= hρ(i − j, t; τ−jω0, τ−jω1). (2.10)

It is shown in Ferrari and Fontes [4] that

lim
ε→0

ε−1Eρ
[
uερ(x, t)− uερ

(
x − tH ′(ρ),0

) − tL(
H ′(ρ)

)]2 = 0, (2.11)

whereuερ(x, t) = εhρ([ x
ε
], t
ε
) andL is the convex conjugate ofH . A simple caculation

revealsL(H ′(ρ))= ρ2. Note that the translation invariance ofPρ and (2.10) imply that
the left-hand side of (2.11) is independent ofx. In particular, (2.11) is equivalent to

lim
ε→0

ε−1Eρ
[
uερ

(
tH ′(ρ), t

) − tL(
H ′(ρ)

)]2 = 0.

Also, in (2.11) we may replacex with x + √
εe. This equivalent variation of (2.11) will

be used in Section 3.
We now state a definition for the convergence of processes.

DEFINITION 2.1. –Let (0,F,p) and (0̄, F̄, p̄) be two probability measures and
supposeD ⊆ R

r . LetXε :D ×0→ R be a sequence of measurable functions such that
for eachω ∈0, the functionXε(·,ω) is continuous. LetX :D× 0̄→ R be a measurable
function such that for each̄ω ∈ 0̄, the functionX(·, ω̄) is continuous. We may regardXε

(respectivelyX) as a function from0 (respectively0̄) into the space of continuous
functionsC(D;R). Then we say that the processesXε converge to the processX if for
every compact setA⊆D and every bounded continuous functionF :C(A;R)→ R, we
have

lim
ε→0

∫
F

(
Xε(ω)

)
p(dω)=

∫
F

(
X(ω̄)

)
p̄(dω̄). (2.12)



446 F. REZAKHANLOU / Ann. I. H. Poincaré – PR 38 (2002) 437–464

We say the finite-dimensional marginals ofXε converge to the finite-dimensional
marginals ofX if we require(2.12)to hold only for setsA⊆D that are finite.

In our second definition, we define several sets of points(x, t) for which different
versions of our central limit theorem (1.12) will be established.

DEFINITION 2.2. –Let ū be a solution of(1.2) and letI (x, t) consist of pointsy at
which the infimum in(1.4) is attained. LetG1 be the set of points(x, t) for which the set
I (x, t) is bounded, the set

Î (x, t) := I (x, t) ∩ (x − t, x + t)
is finite, and for everyy ∈ Î (x, t) the functiong(·)= ū(·,0) is convex in a neighborhood
of y. We also define

G2 = {
(x, t): g is differentiable at everyy ∈ I (x, t)},

G3 = {
(x, t): I (x, t)⊆ [x − t, x + t]},

G4 =G1 ∩G2, G5 =G4 ∩G3.

See Lemmas 4.2–4.4 of Section 4 and Remark 2.7 for some relavant information about
the setsG1 −G5.

To state our main results, first take a functiong ∈ �̄. Let (00,F,pε) be a family of
probability measures and(gε :R ×00 → R: ε > 0) be a family of measurable functions
such thatgε(·,ω0) ∈ �̄ for everyω0, and the processes

Bε(x;ω0)= ε−1/2(gε(x,ω0)− g(x)); ε > 0 (2.13)

converge to a continuous processB(x,ω0) as ε → 0. Setĝε(i,ω0) = [ε−1gε(iε,ω0)].
Define

uε(x, t;ω)= εh
([
x

ε

]
,
t

ε
; ĝε(·,ω0),ω1

)
.

THEOREM 2.3. –Let e : R → R be a continuous function and setxε = x + e(x)√ε.
Then the finite-dimensional marginals of the processes

Xε
(
xε, t,ω1,ω0

) = 1√
ε

(
uε

(
xε, t;ω) − ū(x, t)); (x, t) ∈G4, (2.14)

converge to the finite-dimensional marginals of the process

Ze(x, t,ω0)= inf
y∈I (x,t)B

e(x, y, t;ω0); (x, t) ∈G4, (2.15)

where,

Be(x, y, t;ω0)= B(y;ω0)+L′
(
x − y
t

)
e(x).

Whene≡ 0, the setG4 may be replaced with the possibly larger setG1.
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The main ingredient for the proof of Theorem 2.3 is a variant of

wε(x, y, t)= tL
(
x − y
t

)
+ o

(√
ε

)
. (2.16)

(Note that (2.16) is consistent with Theorem 2.3 because the initial dataw(·, j,0)
is deterministic.) A variant of (2.16) will be established in Section 3. The proof of
Theorem 2.3 will be given in Section 4.

Given a point(x, t) and a realizationω = (ω0,ω1), let I ε(x, t) = I ε(x, t;ω) denote
the set ofy at which the infimum in (1.6) is attained. We also writeyε+(x, t)= yε+(x, t;ω)
(respectivelyyε−(x, t) = yε−(x, t;ω) ) for the largest (respectively smallest) number in
I ε(x, t).

THEOREM 2.4. –Letxε be as in the previous theorem. Suppose that forτ > 0, every
(x, t) and every pair of distinct points(y1, y2), we haveBe(x, y1, t) �= Be(x, y2, t)

almost surely, and that|Be(x, y1, t)−Be(x, y2, t)| � τ occurs with positive probability.
Chooseȳ(x, t) = ȳ(x, t;ω) to be the unique pointy ∈ I (x, t) at which the infimum in
(2.15)is attained;

Ze(x, t)= B(
ȳ(x, t)

) +L′
(
x − ȳ(x, t)

t

)
e
(
ȳ(x, t)

)
.

Then the finite dimensional marginals of(yε±(xε, t): (x, t) ∈G5) converge to the finite
dimensional marginals of(ȳ(x, t): (x, t) ∈G5). Again, whene≡ 0, we may replace the
setG5 with the setG1 ∩G3.

Note that Lemma 4.4 of Section 4 implies that if(x, t) /∈G3, thenI (x, t) contains a
nonempty interval. That is why the processesy± in Theorem 2.4 are restricted to the set
G5 ⊆G3 so that the setI (x, t) is finite whenever(x, t) ∈G5.

Example2.5. – Letρ0 :R → [0,1] be a function that has first-kind discontinuities
and assumeρ0 is right continuous. Choose the measurepε in such a way that the
random variables(η(i,0): i ∈ Z) are independent andpε(η(i,0) = 1) = ρ0(εi+).
The configurationh(·,0) is defined uniquely fromh(0,0) = 0 and h(i + 1,0) −
h(i,0) = η(i,0). But standard arguments, one can show that the processesBε(x) =
ε−1/2(uε(x,0) − ∫ x

0 ρ
0(y)dy) converge to a continuous Gaussian processB(x) with

B(0) = 0 and the varianceEB2(x) = ∫ x
0 ρ

0(1 − ρ0)dy if x > 0, andEB2(x) =∫ 0
x ρ

0(1− ρ0)dy if x < 0. By convergence ofBε to B, we mean the convergence of the
processeŝBε to the processB whereB̂ε is a continuous process with|B̂ε(x)−Bε(x)| �
ε for all x. The processB̂ε is defined by linear interpolation between the points
(iε,Bε(iε)). It is not hard to see that the conditions of Theorem 2.4 are satisfied for
the correspondingBe(x, y, t).

We write Bε(x, ρ;ω0) for Bε(x;ω0) when the initial dataρ0 is identically the
constantρ.

Remark2.6. – A better rate of convergence is expected for (2.11). It is conjectured
that in fact

Eρ
[
uερ

(
tH ′(ρ), t

) − tL(
H ′(ρ)

)]2 = O
(
ε4/3).
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If we assume this, then one can readily check that our results are still valid if
√
ε is

replaced withεα , provided thatα ∈ (0,2/3).
Remark2.7. – When the function̄u is differentiable at(x0, t0), then I (x0, t0) =

{y(x0, t0)} is a singleton and

ūx(x0, t0)= ρ(x0, t0)=L′
(
x0 − y(x0, t0)

t0

)
.

In general, the set

D∗ū(x0, t0) :=
{
L′

(
x0 − y
t0

)
: y ∈ I (x0, t0)

}

coincides with the set of the limit points of the set

{
ūx(x, t): u is differentiable at(x, t)

}
as(x, t) approaches the point(x0, t0). (See for example [2].) In particular, ifI (x0, t0) ∩
(−∞, x0 − t0] �= ∅, then 1∈D∗ū(x0, t0). Similarly, if I (x0, t0)∩ [x0 + t0,∞) �= ∅, then
0∈D∗ū(x0, t0).

3. A bound on the fluctuations of wε

In this section, we use (2.11) to establish a suitable version of (2.16). Recall that
xε = x + e(x)√ε, wheree is a continuous function. Set

Rε(x, y, t)=Rε(x, y, t;ω1)=wε(x, y, t;ω1)− tL
(
x − y
t

)
,

Y ε(x, y, z, t;ω1)=
{
(y−z)2

4t +Rε(xε, y, t;ω1) if
∣∣ x−y
t

∣∣ � 1,

Rε(xε, y, t;ω1) if
∣∣ x−y
t

∣∣> 1,

Iρ(x, t)=



{x − tH ′(ρ)} if ρ ∈ (0,1),
[x + t,∞) if ρ = 0,
(−∞, x − t] if ρ = 1.

(3.1)

The setIρ(x, t) is simply the setI (x, t) when the initial data isg(y) = ρy. The main
result of this section is Lemma 3.1.

LEMMA 3.1. –Let A be a finite subset ofR × (0,∞). Let ρ ∈ [0,1] and define
ŷ(x, t)= x− tH ′(ρ). Then there exist a functionψρδ (·)=ψρδ (·;A) with limθ→0ψ

ρ
δ (θ)=

0, and a set0ε(δ, ρ)=0ε(δ, ρ;A)⊂0dy such that

Pdy
(
0dy −0ε(δ, ρ)) � δ,

and ifψ(·) is any function withlimθ→0ψ(θ)= 0, ψ � ψρδ , then

lim
ε→0

sup
(x,t)∈A

sup
ω1∈0ε(δ,ρ)

inf|y−Iρ(x,t)|�ψ(ε)
ε−1/2Y ε

(
x, y, ŷ(x, t), t;ω1

) = 0. (3.2)
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We state several lemmas that will be needed for the proof of Lemma 3.1. The first
lemma appeared as Lemma 4.2 of [11] and its proof is omitted.

LEMMA 3.2. –Let ū be as in(1.4)and let the setA be as in Lemma3.1.Define

a.(λ)= inf
(x,t)∈A

[
min

{
g(y)+ tL

(
x − y
t

)
: |y| � ., |y − I (x, t)| � λ

}
− ū(x, t)

]
.

Thena.(λ) > 0 if λ > 0 and limλ→0a.(λ)= 0 for sufficiently large..

Next we state and prove a lemma that is related to the fact that the speed of propagation
in our model is finite.

LEMMA 3.3. –For everyT > 0, there exists a function.εT (ω1) such that

uε(x, t)= inf
{
uε(y,0)+wε(x, y, t): |y| � .εT (ω1)

}
, (3.3)

for every(x, t) with |x| � T , t ∈ [0, T ], and

lim sup
ε→0

.εT (ω1)� 2T , (3.4)

in probability.

Proof. –Define random walksx±
i (t;ω1) with x±

i (0;ω1)= i such thatx−
i jumps to the

left andx+
i jumps to the right with rate one. We use the realizationω1 = (.j (·): j ∈ Z) of

the Poisson processes to decide when to jumpx±
i . More precisely, ifx±

i (t−,ω1)= j and
.j(t+)= .j (t−)+1, thenx±

i (t+;ω1)= j±1. From the definition of the processh, it is
not hard to show that ifk1(j)= k2(j) for j ∈ [i − ., i + .], and ifx+

i−.(t) < i < x
−
i+.(t),

then

h(i, t;k1)= h(i, t;k2). (3.5)

Givenk ∈ � and. ∈ Z
+, define

k.(r)= inf|j−i|�.
{
k(j)+ v(r − j)}.

Evidentlyk.(j)= k(j) for j ∈ [i − ., i + .]. From this, (2.3) and (3.5) we deduce that

h(i, t;k)= h(i, t;k.)= inf|j−i|�.
{
k(j)+w(i, j, t)}, (3.6)

wheneverx+
i−.(t) < i < x

−
i+.(t). We now define

.εT (ω1)= ε.
([
T

ε

]
,
T

ε
;ω1

)
. (3.7)

where

.(L1,L2;ω1)= inf
{
.: x+

−.(L1;ω1) <−L2<L2< x
−
. (L1;ω1)

}
,
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for every pair of positive numbers(L1,L2). Eq. (3.3) is an immediate consequence of
(3.6) and the definition.εT .

It remains to show

lim sup
ε→0

.εT (ω1)� 2T

in probability. This is a straightforward consequence of

Pdy
(
.(L1,L2;ω1) > r

)
� Pdy

(
x+

−r (L1)� −L2
) + Pdy(x−

r (L1)�L2
)
,

and a law of large numbers for the random walksx±. ✷
The next lemma appeared as Theorem 4.1 in [12] and its proof is omitted.

LEMMA 3.4. –For everyT > 0,

lim
ε→0

Edy sup
|x|�T

sup
t�T

sup
|y|�T

∣∣∣∣wε(x, y, t)− tL
(
x − y
t

)∣∣∣∣ = 0. (3.8)

To this end let us fix a functionβ :Z+ → (0,∞) and a sequence of non-decreasing
functionsα = (αr : r ∈ Z

+) with limθ→0αr(θ)= 0 for everyr ∈ Z
+. LetK(α,β) denote

the set of functionsb(x) such that

|b(x1)− b(x2)| � αr(|x1 − x2|), |b(x1)| � β(r),

for everyx1, x2 with |x1|, |x2| � r and eachr ∈ Z
+. We then define

0ε0(α,β)=
{
(ω0,ω1): B

ε(·;ω0) ∈K(α,β)
}
.

Note that our assumption on the processBε implies that for everyδ > 0, there exists
(αδ, βδ) andε0(δ) > 0 such that

inf
0<ε<ε0(δ)

P ε
(
0ε0

(
αδ,βδ

))
� 1− δ. (3.9)

We write 0ε0(α,β;ρ) for 0ε0(α,β) when the initial distribution is the equilibrium
measurepρ . Hence

inf
0<ε<ε0(δ)

P ρ
(
0ε0

(
αδ,βδ;ρ))

� 1− δ. (3.10)

Furthermore, givenδ > 0, Lemma 3.3 implies that there exist a set of realizations0ε1
and a positive numberε1(δ) such that

(x, t) ∈ [−T ,T ] × [0, T ], ω1 ∈0ε1(δ)⇒ .εT (ω1)� 2T + 1,

inf
0<ε<ε1(δ)

Pdy
(
0ε1(δ)

)
� 1− δ.

(3.11)

As the next step, we show that every minimizer in (1.6) is close to a minimizer in (1.4).
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LEMMA 3.5. –Let the setA be as in Lemma3.1. For every., ε, δ > 0, there exist
ε2(δ)= ε2(δ;A)> 0, two functionsψδ(·)=ψδ(·;A), ψδ,.(·)=ψδ,.(·;A) with

lim
θ→0

ψδ(θ)= 0, lim
θ→0

ψδ,.(θ)= 0,

and a set0ε(δ)=0ε(δ;A)⊆0ε0(αδ, βδ) such that

P ε
(
0ε(δ)

)
> 1− 3δ,

and if ε ∈ (0, ε2(δ)), (x, t) ∈A, ω ∈0ε(δ), z ∈ I ε(xε, t;ω)∩ [−., .], then

uε
(
xε, t;ω) = inf

{
uε(y,0;ω0)+wε(xε, y, t;ω1

)
: |y − I (x, t)| � ψδ(ε)

}
, (3.12)

and,

|z− I (x, t)| �ψδ,.(ε). (3.13)

Proof. –AssumeA⊆ [−T ,T ] × (0, T ] and setT1 = T + 1. Define

Mε,.(ω1) = sup
|x|�T1

sup
t�T

sup
|y|�.

∣∣∣∣wε(x, y, t;ω1)− tL
(
x − y
t

)∣∣∣∣,
µ(ε, .) = EdyMε,.,

0ε2 = {
ω1: Mε,.(ω1)� µ(ε, .)1/2

}
.

(3.14)

By Chebychev Inequality,

Pdy
(
0dy −0ε1

)
� µ(ε, .)

µ(ε, .)1/2
=µ(ε, .)1/2.

By Lemma 3.4, we can findε3(δ) such that forε ∈ (0, ε3(δ)),

Pdy
(
0dy −0ε2

)
� δ. (3.15)

We then set

0ε(δ)= {
(ω0,ω1): (ω0,ω1) ∈0ε0

(
αδ,βδ

)
,ω1 ∈0ε1 ∩0ε2

}
. (3.16)

From (3.9), (3.11) and (3.15) we deduce,

P ε
(
0ε(δ)

)
� 1− 3δ, (3.17)

for every positiveε < ε2(δ)= min{ε0(δ), ε1(δ), ε3(δ)}.
For (3.13), it suffices to find a functionψδ,.(·) such that limθ→0ψδ,.(θ)= 0, and for

every(ω0,ω1) ∈0ε(δ), (x, t) ∈A, and everyy with |y| � ., |y − I (x, t)|>ψδ,.(ε),
uε

(
xε, t;ω0,ω1

)
< uε(y,0;ω0)+wε(xε, y, t;ω1

)
. (3.18)
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To constructψδ,., let us writea−1
. for the right-continuous inverse ofa.. By Lemma 3.2,

we certainly havea−1
. (λ) > 0 if λ > 0 and limλ→0a

−1
. (λ) = 0. We now claim that

ψδ,.(ε) = a−1
. (c1

√
ε + 2µ(ε, .)1/2) will do the job for a suitable constantc1 to be

determined later. To see this, suppose(x, t) ∈A, |y − I (x, t)|> λ, |y| � . and letȳ(y)
denote the closest point inI (x, t) to y. Take(ω0,ω1) ∈0ε(δ). We certainly have

∣∣uε(y,0;ω0)− g(y)
∣∣ �

√
εβδ(.),∣∣∣∣wε(xε, y, t;ω)− tL

(
xε − y
t

)∣∣∣∣ � µ(ε, .)1/2.

Choose.0 large enough so that if̄y ∈ I (x, t) for some(x, t) with |x| � T andt ∈ [0, T ],
then|ȳ| � .0. Hence, for.� .0,

uε(y,0;ω0)+wε(xε, y, t;ω1
)

� g(y)+ tL
(
xε − y
t

)
− √

εβδ(.)−µ(ε, .)1/2

� g(y)+ tL
(
x − y
t

)
− √

εβδ(.)−µ(ε, .)1/2 − c0
√
ε

� ū(x, t)+ a.(λ)− √
εβδ(.)−µ(ε, .)1/2 − c0

√
ε

= g(ȳ(y)) + tL
(
x − ȳ(y)

t

)
+ a.(λ)− √

εβδ(.)−µ(ε, .)1/2 − c0
√
ε

= g(ȳ(y)) + tL
(
xε − ȳ(y)

t

)
+ a.(λ)− √

εβδ(.)−µ(ε, .)1/2 − 2c0
√
ε

� uε
(
ȳ(y),0;ω) +wε(x, ȳ(y), t;ω1

) + a.(λ)− 2
√
εβδ(.)

− 2µ(ε, .)1/2 − 2c0
√
ε

for some constantc0. Setc1 = 2βδ(.)+ 2c0. Then if a.(λ)− c1
√
ε − 2µ(ε, .)1/2 > 0,

the point y can not be in the setI ε(xε, t;ω). Thus, if |y − I (x, t)| > ψδ,.(ε), then
y /∈ I ε(xε, t;ω), proving (3.13).

Defineψδ =ψδ,.1, where.1 = max(2T +1, .0). Now (3.12) follows from Lemma 3.3,
(3.11) and (3.13). ✷

Remark3.6. – Evidently (3.12) is also true if we replaceψδ with anyψ �ψδ .

Proof of Lemma 3.1. –By definition

wε
(
xε, y, t;ω1

) = tL
(
xε − y
t

)
+Rε(xε, y, t;ω1

)
. (3.19)

Fix ρ ∈ (0,1) and define

Sε(x, t, ρ;ω0,ω1)= uερ(x, t;ω0,ω1)− uερ
(
x − tH ′(ρ),0;ω0

) − tL(
H ′(ρ)

)
. (3.20)



F. REZAKHANLOU / Ann. I. H. Poincaré – PR 38 (2002) 437–464 453

Note that (2.11) implies

lim
ε→0

ε−1Eρ sup
(x,t)∈A

[
Sε(x, t, ρ;ω0,ω1)

]2 = 0.

From this and (2.10) we deduce

lim
ε→0

ε−1Eρ sup
(x,t)∈A

[
Sε

(
xε, t, ρ;ω0,ω1

)]2 = 0. (3.21)

Define

0ε1(ρ)=
{
ω: sup

(x,t)∈A
ε−1/2Sε

(
xε, t, ρ;ω)

< φ(ε)
}

where

φ(ε)= ε−1/4Eρ
{

sup
(x,t)∈A

[
Sε

(
xε, t, ρ;ω0,ω1

)]2}1/4
.

By Chebyshev inequality,

Pρ
(
0−0ε1(ρ)

)
� ε−1Eρ(supSε)2

(φ(ε))2
= (
ε−1Eρ

(
supSε

)2)1/2
,

where the supremum is over the setA. From this and (3.21) we learn that there exists a
positiveε4(δ) such that ifε ∈ (0, ε4(δ)), then

Pρ
(
0ε1(δ, ρ)

)
� 1− δ. (3.22)

We apply Lemma 3.5 where the initial distribution is the equilibrium measurepρ . As
a result, for everyδ > 0, there existε5(δ), ψ

ρ
δ (·) and a set0ε2(δ, ρ) such that

lim
θ→0

ψ
ρ
δ (θ)= 0, P ρ

(
0ε2(δ, ρ)

)
� 1− δ, (3.23)

for every positiveε < ε5(δ), everyω ∈0ε2(δ, ρ), and everyψ(·) with limθ→0ψ(θ)= 0,
ψ �ψρδ ,

uερ
(
xε, t;ω0,ω1

) = inf|y−Iρ |�ψ(ε)

{
uερ(y,0;ω0)+ tL

(
xε − y
t

)
+Rε(xε, y, t;ω1

)}
,

whereIρ = Iρ(x, t) was defined in (3.1). We next define

0ε3(δ, ρ)=0ε1(ρ)∩0ε2(δ, ρ)∩0ε0
(
αδ,βδ;ρ)

.

By (3.10), (3.22) and (3.23),

Pρ
(
0ε3(δ, ρ)

)
� 1− 3δ. (3.24)
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To ease the notation, let us writêy for ŷ(x, t) = x − tH ′(ρ). For every positive
ε < ε6(δ)= min(ε4(δ), ε5(δ)), (x, t) ∈A, and every(ω0,ω1) ∈0ε3(δ, ρ),

uερ
(
ŷ + √

εe(x),0;ω0
) + tL(

H ′(ρ)
) + Sε(xε, t, ρ;ω0,ω1

)
= uερ

(
xε, t;ω0,ω1

)
= inf

|y−ŷ|�ψ(ε)

{
uερ(y,0;ω0)+ tL

(
xε − y
t

)
+Rε(xε, y, t;ω1)

}

= inf
|y−ŷ|�ψ(ε)

{
ρy + √

εBε(y, ρ;ω0)+ √
εL′

(
x − y
t

)
e(x)

+ tL
(
x − y
t

)
+Rε(xε, y, t;ω1

)} + o
(√
ε

)
= √

εBε(ŷ, ρ;ω0)+ √
εL′

(
x − ŷ
t

)
e(x)

+ inf
|y−ŷ|�ψ(ε)

{
ρy + tL

(
x − y
t

)
+Rε(xε, y, t;ω1

)} + o
(√
ε

)

(3.25)

where for the second equality we used Lemma 3.5, and for the last identity we used the
the fact that0ε3(δ, ρ)⊂0ε0(αδ, βδ;ρ). Here and below, by o(

√
ε) we mean an error term

rε1(ω) for which there exists a functionψ1(ε) such that

lim
ε→0

ψ1(ε)√
ε

= 0,
∣∣rε1(ω)∣∣ � ψ1(ε),

for everyω ∈0ε3(δ, ρ). Observe that forω ∈0ε0(αδ, βδ;ρ),
uερ

(
ŷ + √

εe(x),0;ω0
) = (

ŷ + √
εe(x)

)
ρ + √

εBε
(
ŷ + √

εe(x), ρ;ω0
)

= (
ŷ + √

εe(x)
)
ρ + √

εBε(ŷ, ρ;ω0)+ o
(√
ε

)
.

From this, (3.25) and the fact that0ε3(δ, ρ) ⊂ 0ε1(ρ) we deduce that ifω ∈ 0ε3(δ, ρ),
then

(
ŷ + √

εe(x)
)
ρ + tL(

H ′(ρ)
) = inf

|y−ŷ|�ψ(ε)

{
ρy + tL

(
x − y
t

)
+Rε(xε, y, t;ω1

)}

+ √
εL′

(
x − ŷ
t

)
e(x)+ o

(√
ε

)
. (3.26)

Note that sinceρ ∈ (0,1), we have

∣∣∣∣x − ŷ
t

∣∣∣∣< 1.

Moreover, since|y − ŷ| �ψ(ε), we also have

∣∣∣∣x − y
t

∣∣∣∣< 1, (3.27)
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provided thatε is sufficiently small. An elementary calculation yields

ρy + tL
(
x − y
t

)
− ρŷ − tL(

H ′(ρ)
) = (y − ŷ)2

4t
, ρ = L′

(
x − ŷ
t

)
. (3.28)

From this and (3.26) we deduce (3.2) in the case ofρ ∈ (0,1), provided that we choose

0ε(δ, ρ)= {
ω1: (ω0,ω1) ∈0ε3(δ, ρ) for someω0

}
.

We now turn to the caseρ ∈ {0,1}. We only treat the caseρ = 1 because the case
ρ = 0 can be treated in the same way. Note that in this case

uε1(x, t)= x + O(ε). (3.29)

Also, the set

Aε := {
y: |y − I1(x, t)| � ψ(ε)

}
can be written as the union of two sets;

Aε =A1 ∪Aε2 := (−∞, x − t] ∪ {
y: 0< y − ŷ �ψ(ε)

}
,

whereŷ = x − t . We certainly have

inf
y∈Aε2

{
uε1(y,0;ω0)+ tL

(
xε − y
t

)
+Rε(xε, y, t;ω1

)}

= inf
y∈Aε2

{
y + tL

(
x − y
t

)
+ √

εL′
(
x − y
t

)
e(x)+Rε(xε, y, t;ω1

)} + o
(√
ε

)

= inf
y∈Aε2

{
y + tL

(
x − y
t

)
+Rε(xε, y, t;ω1

)} + √
εL′

(
x − ŷ
t

)
e(x)+ o

(√
ε

)

= inf
y∈Aε2

{
(y − ŷ)2

4t
+Rε(xε, y, t;ω1

)} + x + √
εe(x)+ o

(√
ε

)
, (3.30)

where for the last equality, we usedL′(1)= 1 and the elementary identity

y + tL
(
x − y
t

)
= x + (y − ŷ)2

4t
,

for y ∈ (ŷ, x + t), which follows from the fact thatL(q)= (q + 1)2/4 for q ∈ [−1,1].
On the other hand,

inf
y∈A1

{
uε1(y,0;ω0)+ tL

(
xε − y
t

)
+Rε(xε, y, t;ω1

)}

= inf
y∈A1

{
y + tL

(
xε − y
t

)
+Rε(xε, y, t;ω1

)} + O(ε)

= x + √
εe(x)+ inf

y∈A1
Rε

(
xε, y, t;ω1

) + O(ε). (3.31)
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This is because ifx
ε−y
t
> 1, then

tL

(
xε − y
t

)
= xε − y,

and if
xε − y
t

� 1,
x − y
t

� 1,

then,

tL

(
xε − y
t

)
= xε − y + O(ε).

Finally observe that (3.29)–(3.31) imply

x + √
εe(x)= uε1

(
xε, t;ω0,ω1

)
= inf
y∈Aε

{
uερ(y,0;ω0)+ tL

(
xε − y
t

)
+Rε(xε, y, t;ω1

)}

= min
{

inf
y∈A1

Rε
(
xε, y, t;ω1

)
, inf
y∈Aε2

[
(y − ŷ)2

4t
+Rε(xε, y, t;ω1

)]}

+ x + √
εe(x)+ o

(√
ε

)
.

This evidently implies (3.2) whenρ = 1. ✷
4. Proof of Theorem 2.3

This section is devoted to the proof of Theorem 2.3. We start with four lemmas. The
first lemma is an immediate consequence of (1.18) and the translation invariance of the
measurePdy . Lemma 4.2 is a trivial consequence of the definition of the setI (x, t). The
proofs of Lemmas 4.1 and 4.2 are omitted.

LEMMA 4.1. –Supposexε = x + √
εe and yε = y + √

εe. Then for every(x, t) ∈
R × (0,∞),

wε
(
xε, yε, t

) = tL
(
x − y
t

)
+ O

(
ε2/3),

in probability.

LEMMA 4.2. –Supposēy ∈ I (x, t) andg is differentiable atȳ. Then

g′(ȳ)= L′
(
x − ȳ
t

)
. (4.1)

LEMMA 4.3. –Supposēy ∈ I (x, t) andg is convex in the set[ȳ − r, ȳ + r]. Then

g(y)− g(ȳ)� L′
(
x − ȳ
t

)
(y − ȳ), (4.2)

for everyy ∈ [ȳ − r, ȳ + r].
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Proof. –If ȳ ∈ I (x, t), then the fact that̄y is a minimizer implies that

−L′
(
x − ȳ
t

)
+ g′(ȳ−)� 0 � −L′

(
x − ȳ
t

)
+ g′(ȳ+).

This and the convexity ofg imply,

g′(ȳ−)� L′
(
x − ȳ
t

)
� g′(ȳ+), g(y)− g(ȳ)� g′(ȳ±)(y − ȳ).

This evidently implies (4.2). ✷
LEMMA 4.4. –If ȳ ∈ I (x, t) ∩ (−∞, x − t), then [ȳ, x − t] ⊆ I (x, t) and g(y) =

g(ȳ) + v(y − ȳ) for everyy ∈ [ȳ, x − t]. Similarly, if ȳ ∈ I (x, t) ∩ (x + t,∞), then
[x + t, ȳ] ⊆ I (x, t) andg(y)= g(ȳ)+ v(y − ȳ) for everyy ∈ [x + t, ȳ].

Proof. –We only establish the first claim because the proof of the second claim
is similar. Recallv(z) = z+ and thatL(z) = v(z) for every z with |z| � 1. Suppose
ȳ ∈ I (x, t)∩ (−∞, x − t) andy ∈ [ȳ, x − t]. Then

g(y)+ tL
(
x − y
t

)
= g(y)+ v(x − y)� g(ȳ)+ v(x − ȳ)

= g(ȳ)+ tL
(
x − ȳ
t

)
, (4.3)

because

g(y)− g(ȳ)� v(y − ȳ)= y − ȳ = (x − ȳ)− (x − y)= v(x − ȳ)− v(x − y).

From (4.3) we deduce thaty ∈ I (x, t). This implies that in fact the inequality in (4.3) is
an equality. Hence

g(y)− g(ȳ)= v(x − ȳ)− v(x − y)= v(y − ȳ). ✷
The rest of this section is devoted to the statement and the proof of Lemma 4.5 which

is the main ingredient for the proof of Theorem 2.3. We omit the straightforward proof
of the fact that Lemma 4.5 implies Theorem 2.3 and refer the reader to Section 5 of [13].

To this end, let us define

Ze,ε(x, y, t;ω0)=Bε(y;ω0)+L′
(
x − y
t

)
e(x),

Ze,ε(x, t;ω0)= inf
ȳ∈I (x,t)Z

e,ε(x, ȳ, t;ω0).

LEMMA 4.5. –LetA be a finite subset ofG4. For everyε, δ, η > 0, there exists a set
0̄ε(δ, η)= 0̄ε(δ, η;A)⊂0 such that

P ε
(
0− 0̄ε(δ, η))< 7δ,
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and

lim sup
ε→0

sup
(x,t)∈A

sup
ω∈0̄ε(δ)

ε−1/2∣∣uε(xε, t;ω) − ū(x, t)− √
ε Ze,ε(x, t;ω0)

∣∣ � η. (4.4)

Proof. –Givenδ > 0, let0ε(δ) andψδ be as in Lemma 3.5. Recall

P ε
(
0ε(δ)

)
� 1− 3δ, 0ε(δ)⊂0ε0

(
αδ,βδ

)
, (4.5)

and limθ→0ψδ(θ)= 0. For every functionψ with limθ→0ψ(θ)= 0, ψ � ψδ , and every
(ω0,ω1) ∈0ε(δ),

uε
(
xε, t;ω0,ω

)
= inf|y−I (x,t)|�ψ(ε)

{
uε(y,0;ω0)+wε(xε, y, t;ω1

)}
= inf|y−I (x,t)|�ψ(ε)

{
g(y)+ √

εBε(y;ω0)+wε(xε, y, t;ω1
)}

= inf
ȳ∈I (x,t) inf|y−ȳ|�ψ(ε)

{
g(y)+ √

εBε(y;ω0)+wε(xε, y, t;ω1
)}

= inf
ȳ∈I (x,t)

{√
εBε(ȳ;ω0)+ inf|y−ȳ|�ψ(ε)

[
g(y)+wε(xε, y, t;ω1

)]} + o
(√
ε

)

= inf
ȳ∈I (x,t)

{√
εBε(ȳ;ω0)+ inf|y−ȳ|�ψ(ε)

[
g(y)+ tL

(
xε − y
t

)
− ū(x, t)

+Rε(xε, y, t;ω1
)]}

+ ū(x, t)+ o
(√
ε

)

= inf
ȳ∈I (x,t)

{√
εBε(ȳ;ω0)+ inf|y−ȳ|�ψ(ε)

[
g(y)+ tL

(
x − y
t

)
− ū(x, t)

+ √
εL′

(
x − ȳ
t

)
e(x)+Rε(xε, y, t;ω1

)] + ū(x, t)
}

+ o
(√
ε

)
. (4.6)

Let us writeMε(ȳ;ω) for the expression inside the curely brackets in the last line of
(4.6) and set

M̂ε(ω)= inf
ȳ∈Î (x,t)

Mε(ȳ;ω), M̃±
ε (ω)= inf

ȳ∈Ĩ±(x,t)
Mε(ȳ;ω),

M±
ε (ω)= inf

ȳ∈I±(x,t)
Mε(ȳ;ω),

where

Î (x, t)= I (x, t) ∩ (x − t, x + t), Ĩ±(x, t)= I (x, t)∩ {x ± t},
I−(x, t)= I (x, t) ∩ (−∞, x − t), I+(x, t)= I (x, t)∩ (x + t,∞).

Now (4.6) can be written as

uε(xε, t;ω)= min
{
M̂ε(ω),M

−
ε (ω),M

+
ε (ω), M̃

−
ε (ω), M̃

+
ε (ω)

} + o
(√
ε

)
. (4.7)

On the other hand, if̄y ∈ I (x, t), −t � x − y � t , −t � x − ȳ � t , andy is sufficiently
close toȳ, then
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g(y)+ tL
(
x − y
t

)
− ū(x, t)= g(y)+ tL

(
x − y
t

)
− g(ȳ)− tL

(
x − ȳ
t

)

= g(y)− g(ȳ)−L′
(
x − ȳ
t

)
(y − ȳ)+ (y − ȳ)2

4t

� (y − ȳ)2
4t

, (4.8)

where for the last inequality, we used Lemma 4.3. For everyȳ ∈ Î (x, t), set0̂ε(δ, ȳ) :=
0ε(δ/r, ρ(ȳ)), whereρ(ȳ) is the unique numberρ ∈ (0,1) that satisfiesx− tH ′(ρ)= ȳ,
the numberr is the cardinality of the set̂I (x, t), and the set0ε(·, ·) is as in Lemma 3.1.
We then set

0̂ε(δ)= ⋂
ȳ∈Î (x,t)

0̂ε(δ, ȳ)∩0ε(δ).

From Lemma 3.1 and (4.5) we deduce

P ε
(
0̂ε(δ)

)
� 1− 4δ. (4.9)

Let us assume

ψ � max
ȳ∈Î (x,t)

ψ
ρ(ȳ)
δ . (4.10)

From (4.8) we deduce that forω ∈ 0̂ε(δ),
Mε(ω)� inf

ȳ∈Î (x,t)

{√
εBε(ȳ;ω0)+ √

εL′
(
x − ȳ
t

)
e(x)

+ inf|y−ȳ|�ψ(ε) Y
ε(x, y, ȳ, t;ω1)

}
+ ū(x, t)+ o

(√
ε

)

= ū(x, t)+ √
ε inf
ȳ∈Î (x,t)

{
Bε(ȳ;ω0)+L′

(
x − ȳ
t

)
e(x)

}
+ o

(√
ε

)
, (4.11)

where for the equality we used (4.10) and Lemma 3.1.
We now turn to the termM̃±

ε . If the setĨ±(x, t) is not empty, we haveI±(x, t)= {ȳ±}
for ȳ± = x ± t . We claim

M̃−
ε (ω)�

√
εBε(ȳ−;ω0)+ √

εL′
(
x − ȳ−
t

)
e(x)

+ inf|y− ¯y−|�ψ(ε) Y
ε(x, y, ȳ−, t;ω1)+ ū(x, t)+ o

(√
ε

)

�
√
εBε(ȳ−;ω0)+ √

εL′
(
x − ȳ−
t

)
e(x)

+ inf|y−I1(x,t)|�ψ(ε)
Y ε(x, y, ȳ−, t;ω1)+ ū(x, t)+ o

(√
ε

)
. (4.12)

The second inequality is obvious becauseȳ− ∈ I1(x, t) = (∞, x − t], and for the first
inequality in (4.12), we simply apply (4.8) with̄y = ȳ− when∣∣∣∣x − y

t

∣∣∣∣ � 1, (4.13)
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and use

g(y)+ tL
(
x − y
t

)
− ū(x, t)� 0, (4.14)

when ∣∣∣∣x − y
t

∣∣∣∣> 1. (4.15)

From (4.12) and Lemma 3.1 we deduce

M̃−
ε (ω)� ū(x, t)+

√
ε

{
Bε(ȳ−;ω0)+L′

(
x − ȳ−
t

)
e(x)

}
+ o

(√
ε

)
, (4.16)

provided thatω ∈ 0ε(δ) ∩ 0ε(δ,1) andψ � ψ1
δ . In the same way we show that if

ω ∈0ε(δ)∩0ε(δ,0) andψ � ψ0
δ , then

M̃+
ε (ω)� ū(x, t)+

√
ε

{
Bε(ȳ+;ω0)+L′

(
x − ȳ+
t

)
e(x)

}
+ o

(√
ε

)
. (4.17)

We now turn to the termsM±
ε . The numbers̄y± = x ± t are defined as before. Again we

use (4.8) withȳ = ȳ− when (4.13) holds and apply (4.14) when (4.15) holds. We obtain

M−
ε (ω)� inf

ȳ∈I−(x,t)

{√
εBε(ȳ;ω0)+ √

εL′
(
x − ȳ
t

)
e(x)

+ inf|y−ȳ|�ψ(ε) Y
ε(x, y, ȳ−, t;ω1)

}
+ ū(x, t)+ o

(√
ε

)

� inf
ȳ∈I−(x,t)

{√
εBε(ȳ;ω0)+ √

εL′
(
x − ȳ
t

)
e(x)

}

+ inf|y−I1(x,t)|�ψ(ε)
Y ε(x, y, ȳ−, t;ω1)+ ū(x, t)+ o

(√
ε

)

= ū(x, t)+ √
ε inf
ȳ∈I−(x,t)

{
Bε(ȳ;ω0)+L′

(
x − ȳ
t

)
e(x)

}
+ o

(√
ε

)
, (4.18)

where for the second inequality we usedI−(x, t)⊆ I1(x, t) and for the last equality we
used Lemma 3.1. The termM+

ε can be treated likewise.
Set0̃ε(δ)= 0̂ε(δ)∩0ε(δ,1)∩0ε(δ,0). Evidently (4.9) implies

P ε
(
0̃ε(δ)

)
� 1− 6δ. (4.19)

Additional to (4.10), we assume

ψ � max
(
ψ0
δ ,ψ

1
δ

)
.

From (4.7), (4.11) and (4.16)–(4.18) we deduce that ifω= (ω0,ω1) ∈0ε(δ), then

uε
(
xε, t;ω)

� ū(x, t)+ √
εZe,ε(x, t;ω)+ o

(√
ε

)
. (4.20)

If ȳ ∈ I (x, t) andȳε = ȳ + √
εe(x), then by (1.6) and Lemma 4.1,
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uε
(
xε, t;ω0,ω1

)
� uε

(
ȳε,0;ω0

) +wε(xε, ȳε, t;ω1
)

= uε(ȳε,0;ω0
) + tL

(
x − ȳ
t

)
+ O

(
ε2/3),

in probability. Define

0ε0(ȳ)=
{
ω:

∣∣∣∣wε(xε, ȳε, t;ω1
) − tL

(
x − ȳ
t

)∣∣∣∣ � ε7/12
}
.

Choose a finite set

J (x, t) := ȳ1, ȳ2, . . . , ȳs} ⊆ I (x, t)
such that for everyω ∈0ε0(αδ, βδ),∣∣ inf

ȳ∈I (x,t)Z
e,ε(x, ȳ, t;ω0)− inf

ȳ∈J (x,t)Z
e,ε(x, ȳ, t;ω0)

∣∣ � η.

Note that the setJ depends onδ, η and can be chosen to be independent ofε . In fact we
may choose the setJ in such a way that everȳy ∈ I (x, t) satisfies|ȳ − J (x, t)| � τ .
First chooser large enought so thatI (x, t) ⊆ [−r, r]. Then use (4.5) and chooseτ
small enough so thatαr(τ) + c0τ � η wherec0 is a bound on the Lipschitz constant
of L′( x−y

t
)e(x) as a function ofy. We then set

0̄ε0(δ, η)=
⋂

(x,t)∈A

⋂
ȳ∈J (x,t)

0ε0(ȳ),

0̄ε(δ, η)= 0̃ε(δ)∩ 0̄ε0(δ, η).
From Lemma 4.1 and (4.19) we know that

P ε
(
0̂ε(δ, η)

)
� 1− 7δ,

for sufficiently smallε. Forω ∈ 0̄ε(δ, η) andȳ ∈ J (x, t),
uε

(
xε, t;ω0,ω

)
� g

(
ȳε

) + tL
(
x − ȳ
t

)
+ √

εBε
(
ȳε;ω0

) + ε7/12

= g(ȳε) + tL
(
x − ȳ
t

)
+ √

εBε(ȳ;ω0)+ o
(√
ε

)

= g(ȳ)+ √
εg′(ȳ)e(x)+ tL

(
x − ȳ
t

)
+ √

εBε(ȳ;ω0)+ o
(√
ε

)

= g(ȳ)+ √
εL′

(
x − ȳ
t

)
e(x)+ tL

(
x − ȳ
t

)
+ √

εBε(ȳ;ω0)+ o
(√
ε

)
= ū(x, t)+ √

εZe,ε(x, ȳ, t;ω0)+ o
(√
ε
)
,

where for the third equality we used Lemma 4.2. As a result,

uε
(
xε, t;ω0,ω1

)
� ū(x, t)+ √

ε inf
ȳ∈J (x,t)Z

e,ε
(
x, ȳ, t;ω0

) + o
(√
ε

)
� ū(x, t)+ √

ε inf
ȳ∈I (x,t)Z

e,ε
(
x, ȳ, t;ω0

) + η√ε+ o
(√
ε

)
. (4.21)
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This and (4.20) complete the proof of (4.4).✷
Remark4.6. – Note that for the proof of (4.20), we only need to assumeA⊂G1. It is

only for (4.21) that we need the differentiability ofg at the pointsȳ in I (x, t).

5. Proof of Theorem 2.4

The main ingredient for the proof of Theorem 2.4 is Lemma 5.1. Once we have this
lemma, we can repeat the proof of Theorem 2.5 of [11] to conclude Theorem 2.4.

Write I ε. (x, t,ω) for I ε(x, t,ω)∩ [−., .].
LEMMA 5.1. –Let 0̄ε(δ, η) be as in Lemma4.5 and assume thatA is a finite subset

ofG5. For every positive.,

lim sup
ε→0

sup
(x,t)∈A

sup
ω∈0̄ε(δ,η)

sup
z∈I ε

.
(xε,t,ω)

∣∣Ze,ε(x, z, t;ω0)− inf
ȳ∈I (x,t)Z

e,ε
(
x, ȳ, t;ω0

)∣∣ � η.

Proof. –Let z ∈ I ε. (xε, t,ω) andω= (ω0,ω1) ∈ 0̄ε(δ, η). Letψ be any function with
limθ→0ψ(θ)= 0. We certainly have,

uε
(
xε, t;ω0,ω1

)
= inf|y−z|�ψ(ε)

{
uε(y,0;ω0)+wε(xε, y, t;ω1

)}

= inf|y−z|�ψ(ε)

{
g(y)+ √

εBε(y;ω0)+ tL
(
xε − y
t

)
+Rε(xε, y, t;ω1

)}

= inf|y−z|�ψ(ε)

{
g(y)+ tL

(
x − y
t

)
+Rε(xε, y, t;ω1

)}

+ √
εL′

(
x − z
t

)
e(x)+ √

εBε(z;ω0)+ o
(√
ε

)
. (5.1)

Let us writeȳ(z) for the closest point in the setI (x, t) to the pointz. As in (4.8) we can
write,

g(y)+ tL
(
x − y
t

)
− ū(x, t)

= g(y)+ tL
(
x − y
t

)
− g(ȳ(z))− tL

(
x − ȳ(z)

t

)

= g(y)− g(ȳ(z)) −L′
(
x − ȳ(z)

t

)(
y − ȳ(z)) + (y − ȳ(z))2

4t

� (y − ȳ(z))2
4t

, (5.2)

provided that ∣∣∣∣x − y
t

∣∣∣∣ � 1.
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Otherwise we use

g(y)+ tL
(
x − y
t

)
− ū(x, t)� 0.

From this, (5.2) and (5.1) we deduce,

uε
(
xε, t;ω0,ω1

)
� ū(x, t)+ inf|y−z|�ψ(ε)Y

(
x, y, ȳ(z); t)

+ √
εZe,ε(x, z, t;ω0)+ o

(√
ε

)
. (5.3)

Note that sinceA⊆G5, we haveI (x, t)⊆ [x − t, x + t]. Also note that|y − z| � ψ(ε)
implies |y − ȳ| � ψ̄(ε) whereψ̄ =ψ +ψδ,. andψδ,. is as in Lemma 3.5. Define

J ε(ȳ)=



{y: |y − ȳ| � ψ̄(ε)} if ȳ ∈ (x − t, x + t),
{y: y − ȳ � ψ̄(ε)} if ȳ = x − t ,
{y: ȳ − y � ψ̄(ε)} if ȳ = x + t ,

Evidently (5.3) implies

uε
(
xε, t;ω0,ω1

)
� ū(x, t)+ inf

y∈J ε(ȳ(z)) Y
(
x, y, ȳ(z); t) + √

εZe,ε(x, z, t;ω0)+ o
(√
ε

)
,

where o(
√
ε) is uniform inω ∈ 0̄ε(δ, η) andz ∈ I ε. (xε, t,ω). We then apply Lemma 3.1

to deduce,

uε
(
xε, t;ω0,ω1

)
� ū(x, t)+ √

εZe,ε(x, z, t;ω0)+ o
(√
ε

)
.

This and Lemma 4.5 imply

Ze,ε(x, z, t;ω0)− inf
ȳ∈I (x,t) Z

e,ε(x, ȳ, t;ω0)� o(1)+ η, (5.4)

where o(1) goes to zero uniformly inω ∈ 0̄ε(δ, η) andz ∈ I ε. (xε, t,ω). On the other
hand, by (3.13)

Ze,ε(x, z, t;ω0)−Ze,ε(x, t;ω0)

= Ze,ε(x, y(z), t;ω0
) − inf

ȳ∈I (x,t)Z
e,ε(x, ȳ, t;ω0)+ o(1)� o(1).

This and (5.4) complete the proof of lemma.✷
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