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ABSTRACT. — We obtain large deviation upper bounds and central limit theorems for non-
commutative functionals of large Gaussian band matrices and deterministic diagonal matrice
with converging spectral measure. As a consequence, we derive such type of results for th
spectral measure of Gaussian band matrices and Gaussian sample covariance ma@ogas.
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RESUME. — Nous obtenons une borne supérieure de grandes déviations et un théorem
central limite pour des fonctionelles non-commutatives de grandes matrices a bande gaussienr
aléatoires et d'une algébre de matrices diagonales déterministes dont la mesure spectre
converge. Ceci nous permet de démontrer une borne supérieure de grandes déviations et
théoréme central limite pour la mesure spectrale de matrices a bandes gaussiennes ainsi ¢
des matrices de Wishart gaussienme2002 Editions scientifiques et médicales Elsevier SAS

1. Introduction

During the last decade, the understanding of the asymptotic behaviour of large randor
matrices has considerably improved since the pioneer works of Wigner [28], Arnold [1],
Wachter [27], Wishart [29] and Pastur and Marchenko [20]. These papers were mainly
motivated by Quantum Physics and proved convergence of the spectral measure of the
matrices as their size goes to infinity under diverse assumptions on the distributior
of their entries; Wigner [28] studied a random x N Hermitian matrix with i.i.d.
complex (or real) entries (except for the symmetry constraint), Wishart [29] (see alsc
Wachter [27]) introduced th& x N Hermitian matrixXy X3 with X,y a N x M matrix
with i.i.d. complex (or real) entries, Pastur and Marchenko considered band matrice:
where the entries are non zero only on some band surrounding the origin and generalize
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sample covariance (or Wishart) matrices of the fofmR X3 with X as above and a
M x M deterministic matrixk with converging spectral distribution (see [23,17,5]). We
send the reader to [2] and [17] for reviews on the subject.

The fluctuations of the spectral measure around its limit for Wigner's matrix with
Gaussian entries were first obtained by K. Johansson [18] (see also [9]). The fluctuation
of the spectral measure around its expectation were studied under much more genei
assumptions over the entries and for most of the models described above (see [22,8,1
and references therein). However, such statements are weaker than the result obtain
by K. Johansson [18] for the Gaussian ensembles. In this paper, we shall generaliz
K. Johansson’s type of results to band matrices and sample covariance matrices wit
Gaussian entries and for polynomial test functions.

Large deviations for the law of the spectral measure of Wigner's matrix with Gaussian
entries were obtained in [3] and for related models in [4] and [13]. There is actually no
clue how to extend these results to non-Gaussian entries. In [14], the authors obtaine
concentration inequalities for the spectral measure of the above matrices under variot
hypotheses on the distribution of the entries. However, even though this paper provide
concentration on the right scale, there is no hope to deduce complementary lowe
bounds. Here, we shall obtain large deviation upper bounds for the deviations of the
spectral measure of Gaussian band matrices, which we hope optimal. This result i
turn provides a large deviation upper bound for the spectral measure of generalize
Gaussian sample covariance matrices, but a full large deviation principle was very
recently obtained in [15] by O. Zeitouni and myself in this restricted context. Observe at
this point that the joint law of the eigenvalues of Gaussian band matrices (or Gaussia
sample covariance matrices) is a priori complicated, being givenMyxaN Jacobian
which does not lead to simple formulae since the law of Gaussian band matrices are nc
invariant under the action of a group such as the unitary (or orthogonal) group on the
contrary of Wigner’s matrices. In particular, the techniques of [3] are useless here. In the
direction of interests encountered in free probability, deviations of the non-commutative
law of a couple of independent Gaussian Wigner's matrices were studied in [10] using ¢
functional approach based on stochastic calculus. We shall follow a similar approach it
this work.

However, the goal of this paper is not only to consider functions of the spectral
measure of large random matrices but more general non-commutative functional
involving large random matrices and an algebra of deterministic diagonal matrices.
Such functionals were already introduced in [23] where the author obtained law of
large numbers type of statements for the normalized trace of these functionals thanks 1
free probability techniques (more precisely the notion of freeness with amalgamation)
As a consequence, D. Shlyakhtenko deduced the convergence of the spectral meas
for Gaussian band matrices. The strategy followed in this paper is intimately relatec
to the ideas of [23] but we shall push forward the analysis to obtain large deviation
upper bounds and central limit theorems. In particular, we define a good rate functior
governing the large deviations of these non-commutative functionals and a self adjoin
positive definite operator defining the covariance of the central limit theorem. Large
deviations results for non-commutative variables were already obtained in [10] and ¢
central limit theorem in [9] for independent Gaussian Wigner's matrices. The main
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difference here is that we consider a single random matrix and a deterministic algebr
of diagonal matrices. Some of our statements could be interpreted in terms of free
probability. However, we shall not discuss this aspect in details here.

The paper is organized as follows; we begin with the introduction of our notations
and results. We then introduce 1t6’s calculus for band matrices which is the key to all
our proofs. In Section 4, we state and prove a large deviation upper bound. Studying th
minimizer of our rate function, we deduce a law of large humbers theorem in Section 5.
It is supplemented in Section 6 by a central limit theorem. We also describe in the
next section how these results can be interpreted in terms of inhomogeneous samp
covariance matrices.

Throughout this paper, we shall denote by, for two metric spacasd B, C?(A, B)
(resp.CL (A, B)) the set of (resp. boundegd)times continuously differentiable functions
from A into B. When A = B, we denote in shor€} (A, A) = C}(A). Whenp =0,
corresponding to continuous functions, we drop the subscript 0 to simplify the notations

2. Notations and statement of the results

Hereafter, M, will denote the set ofV x N matrices with complex independent
entries.’Hy will be the subset ofM y of Hermitian matrices. We se¥l = |y My
andH = Jycy Hu - tr will denote the natural extension of the traceMogiven, for any
Ae My, NeN,bytr(A) = Z,N:l A;; and try the normalized trace gi(A) = N~1tr(A)
for A e My, N € N. We shall consider, folV € N, the random matrix irt y

(X)i; = (Hy)ijw G, )2,

where Hy is a Hermitian matrix with complex Gaussian entries with covariaNicé
andiy is a non-negative symmetric function ¢h ..., N}? which can be decomposed
as

U, y) = / ¥ ()oN () dp(2)

with a measurep on a Polish spacé, ) with finite mass, and bounded functions
(o), eQ)on{l,..., N} such that — o ¥ (x) is measurable for the sigma-algelxa
foranyx € {1, ..., N}. We can assume without loss of generality that the total mags of
is one to simplify the notations. We shall assume thap ifdenotes theV x N matrix
with diagonal element& N (i), 1 <i < N).

(HO). —For any(ty, ..., 1t,) € ", n € N, the joint distribution(in the non-commuta-
tive sensgof (A, ..., A;,) converges, i.e., there exists a probability measuye .,
on R so that for every bounded continuous functipon R,

N

. 1 “ .
N'inooﬁz <j1;[10,{j(z)> =/f(x)dmrl’_,_7,n(x). (2.1)

i=1

.....
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Following [10], it is convenient to consider, in order to use the powerful tool of
stochastic differential calculuy as the value at time one of tf¢y-valued process

(Xn(®),; = (Hy (@), ¥n G )2,

where Hy (¢) is the Hermitian Brownian motion which is described on the spdgeof
Hermitian matrices of dimensioN as the Markov procesdy (¢)),cr+ With values in
‘Hy and independent complex Brownian motions entries so that

. EAS
E[Hy (1)HY' (5)] = T5f5zﬁ-

More precisely, we can construct the entr{éﬂ]i;j(t), t>0, (i,j)ef{l,...,N}} via

independent real valued Brownian moticis ;, £; )1Si< < by

HY' = if k<.

1 ) ,
NS (Bxi + i8k<iBry)

To take into account the inhomogeneity of the covarianck ef we shall, following
D. Shlyakhtenko [23], consider jointly the matrix-valued proagég(z), ¢ € [0, 1]) and
diagonal matrices. To this end, let us introduce al®etf sequenceg\ of uniformly
bounded converging diagonal matricas’ of Hy (hence with real entries) that is

sequencea = (AY)ycy so that, if(AY, ..., 1Y) denotes the eigenvalues af',
sup sup [AN] <o0 (2.2)
NeN ie{l,..,N}

and% Z,N:l 8, ~ converges ad/ tends to infinity for the weak topology, i.e., there exists
a probability measure:, onR so that for any functiory € C,(R),

1 N
im 32 () = [ redmse. (23)

N—o0

In the sequel, we write in short
m(A) = /x dma(x), VAeD.

We shall consider a sub-algelify that is stable by product and sumdtontaining the
real vector space generated by the identity and the null matrices as well as the sequenc

Dy ={A,=(A) = (3i=jGrN(i))1gi,j<N)NeN’ T € Q}.

We endowD with the norm given, for any\, A € D by

|A—Alo=sup sup |AN — A}
NeN iefl,...,N)
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and assume théd® is separable for this norm.

Exampleq2.4). — (a) The first example one should keep in mind is when

oNi)=o0, (lﬁ)

with o, € C, ([0, 1], R) for T € Q. In the sequel, we shall denote by(¢) the sequence

8@ = ((an @), =56 (17 ) i € o))
NeN
for ¢ € C,([0, 1], R). One can choos® to be the set
D.={A: 3p€C([0,11,R); A=A(¢)}.

D, is an algebra and is separable for |oo since C,,([O, 1], R) is separable for the
uniform norm. (2.3) is fulfilled withm sy = Aj0.1 0 ¢~ if Aj0.1) denotes the Lebesgue
measure ofo, 1].

(b) However, the general scheme proposed above may be useful to include the ca:

where, for instance,
. i e
UTN(I) =07 (N) + lo<i<my O (N)

for some positive real numbe¥y, and bounded continuous functioas and o,. We
assume

. My
lim — =a.
N—soco N

Denoting, forg, ¢ € C»([0, 11, R), A(¢, ¢) the sequence

~ i ~ (i .
AN(¢,¢)I~J-:5,-:,-(¢(N>+1<,N<MTN¢< )) i,je{l,....N}, NeN,
we can choos® to be the separable algebra
Dy={A:3¢,$ €C([0. 1. R); A=A($, )}

(2.3) is also easily checked with, ; 5 = A[0,110¢ ™ +A[0.4] o¢~! This second example
will appear naturally when we shall consider generalized Wishart's matrices.

We shall see an elememt of D as a function fromH into H by setting for any
XeHy, NeN,AX)=AV
In [23], D. Shlyakhtenko considered the random variables

{tra (P(Xn(D),AY,...,AN)), Ar,..., A, eD,neN}

for non-commutative polynomial function® of n + 1 variables, and proved their
convergence a goes to infinity. Because the associated topology inherited for instance
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on the spectral measure &fy is not the weak topology, we shall, as in [10], consider
other test functions than polynomials. Such test functions shall belong to tB&®edf
functions onH so that for anyN € N, F € £(C) mapsHy into My. £(R) will be the
subset of Hermitian matrix-valued functions fC). Note that if f is a real function,
we can define the functioR on’H so that, ifX € H, X = U*DU for a diagonal matrix

D and a unitary matrix,

FX)=U"f(D)U, [f(D)i=36i=;f(Di).

It is straightforward thatF belongs to£(R). In particular, for anyz; € C\R, X —
(z — X)"tis an element of (C). We shall be particularly interested in the following
by the complex vector spade- (X, D) c £(C) generated by

{F:H—>M; F(X)= H (zi —a; X)7rA(X),

1<i<n
(Zi)lgign € (C\R)na o; € {09 1}9 Ai € D» ne N}

Here,[[~ denotes the non-commutative product. Observe Faak, D) is an algebra
sinceD is. Further, it contains 0 and 1 siné2 does. Fr(X, D) shall denote the real
vector space of the Hermitian matrix-valued functionggf X, D).

We shall prove the following law of large numbers

THEOREM(2.5). — Under(HO), forany F € Fc(X, D), anyr € [0, 1], try (F (X n (2)))
converges almost surely &é goes to infinity. Its limit, denoted Qy(F), is described
in Section5.

In particular, ifyy is as in Examples (2.4) and taking functionsff(X, D) which
are products of one Stieltjes functions and one diagonal matrix, we find thaisithe
function on[0, 1]2 given by

Ve, y) = lim yy ([Nx], [Ny]).

COROLLARY (2.6). —Under (HO), for any r € [0,1], any z in C\R, any ¢ €
Cp([0, 1], R),

W03 e - xvo)

converges almost surely towards f01¢(x)k(x, t‘%z) dx where, ifK is the operator in
L?([0, 1]) with kernely, k is the unique analytic solution of

k(. 2) = (2= K (k(, 2)(0)

so thatzk(x, z) goes to one ag| goes to infinity for any < [0, 1].

See Lemma (5.10) for details.
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Further, by density of¢(X, D) in the set of hon-commutative polynomial functions
and controls of the normalized trace of momentsXgf(s), we shall see that Theo-
rem (2.5) implies that

COROLLARY (2.7). =Under (HO), for anyr € [0, 1], any A1, Ao, ..., A, € D, any
non-commutative polynomial functighofn + 1 variablestry (P (Xy (2), AY, ..., AN))
converges almost surely towards a well defined limit denotedioy).

Hence, we find again the results of [23] and [20]. This last result is precised
in Section 6 by a central limit theorem which validity requires the following extra
hypotheses.

(H1). —Forany A € D,
N(try (AY) —m(A))
converges a®v goes to infinity towards a constantA).

Remark that, sinc® must contairiD,,, this last assumption also applies(td,, T
). We shall also impose

(H2). —For any A4,...,A, € D, any m € N, any non-commutative polynomial
function P of n + m variables,

sup supN|try (P(AY, ..., AY AY, ... A))

1., Tn €Q NeN w
—m(P(Agy,s ..oy Ay, A1, .oy Ay))| < 00.
Then, we will show the

THEOREM (2.8). —Under (HO), (H1) and (H2), for anyr € [0, 1], anyn € N; any
A1, ..., A, € D, any non-commutative polynomial functidh of n + 1 variables
N(try(P(Xy(1), AY, ..., AN))—u*(P)) converges in law a8/ goes to infinity towards
a (eventually not center@dsaussian law.

We send the reader to Section 6 for the definition of the mean and the covariance c
the above Gaussian law. Let us give the following

Example(2.9). — We consider again the examples given in (2.4).
(a) In the first example, we consider the case where

Ny [ F
o, (z)_o,(N)

To obtain a central limit theorem, we shall assume thabelongs taC([0, 1], R) for
Tt € Q and that, if|| ||, is the uniform norm o, ([0, 1], R)

sup||o; ||, < oo. (2.10)

TeR

One can then choo<e to be the set

D, ={A(¢), ¢ €Ci([0,1],R) }.
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D is clearly an algebra. Further, (H1) is fulfilled since for ang C ([0, 1]),

1
1 i 1
im N|= ——/ dr | = = (¢(1) — $(0)) := c(A(¢)).
lim_ <N;¢<N> [ow ) S(HD —$(0) =c(A®)
Also, observe that for any;, ..., 1, € Q, any A4, ..., A, € D, any nhon-commutative
polynomial functionP of n +m variables,P(AQi, LAY CAY LAY = AN (9) for
someg € Ci([0, 1], R) and that

N < "Il

1
try (AY(¢)) — / $(x) dr
0

shows that hypothesis (H2) is easily derived from (2.10).
(b) In the case where

. i e
o) =0, (N) + loci<my O (N)

for some positive real numbei; and continuously differentiable functioms anda,
(H1) and (H2) are also fulfilled providedy — a N converges towards a constatitr)
and

supllo’|l, <oo, and supglé!]l, < oo.

TeR TeQ
(H1) is satisfied withc(A(¢,$)) = 271 (1) + ¢(@) — ¢(0) — (0) + c(@)P(@).
Remark that ifMy is an integer number, the first assumption should only be valid along
subsequences in general. We can chdade be

D, ={A: A=A(¢, ) for somesp, € C;([0, 1], R)}.

To state our large deviation upper bound result, we have to be more precise about tf
involved topologies and space of measures.

M is furnished with the operator norm; (f )y denotes the Euclidean scalar product
inCN, (u,v)y = Z,N:l i;v;,and| | its associated norm, we define the operator norm
| | by setting, for anyA € My, N €N,

1
|Aloo = SUP (u, |Alu)y = sup (u, AA*u)y.

lullv=1 lully=1
Recall that |, is a norm which satisfies the product property
|AB|oo < |Also| Bloo-

M is furnished with the involutior, extension of the usual involution on eadH
N e N. Also, there is a partial order oH so thatA < B for A, B € Hy, N € N, iff
(u, Au)y < (u, Bu)y for all u e CV.
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We can endow&(C) with the topology inherited from the norm given for any
F e&(C), by

| Flloo = supsup{|F(A)|_: AeHy}.
N2>1

Itis not hard to check (see [10], Lemma 4.26) that, with (2.2),
LEMMA (2.11). —“Any F € Fc(X, D) has finite]| ||, horm.

We let 7= (X, D) (resp.Fr(X, D)) be the completion of (X, D) (resp.Fr(X, D))
by the| | horm.Fc(X, D) (resp.Fr(X, D)) is a complex (resp. real) Banach space.
Further, they are separable. In fact, sifeewas assumed separable (remark that the
norm defined o agrees with| |«), Fc(X, D) is separable foff |, with a basis
given, for instance, by the set of functions of the form

FX)= ][] G+a;j—ajX)Aj(X), XeH., AjeBp, a;,a;€Q, neN,
1<j<n
(2.12)

if Bp is a basis oD.

We can now define the set of non-commutative probability measuresiIet, D)
be the algebraic dual of¢ (X, D), that is the space of linear complex-valued forms on
Fc(X, D). Let M be the subset af¢ (X, D)’ with real valued restriction tdr (X, D).
M is isomorphic toFg (X, D)’ since for anyu € M, we can write, with* the natural
involution defined by

F*(X)=(F(X))" VXeH,

F F+ F* . (F—F*
u( )—u( > ) +lu( > )
where(F + F*) and(F — F*)/i € Fr(X, D). We furnish M with the weak topology
induced byFr(X, D), denoted byFr (X, D)-topology.

We shall now introduce the analogue of the set of probability measures (that is the
notions of boundedness, positivity and mass 1).

For any positive real number, we denote by\, the subset o\ of linear formsu
such that

VF € Fc(X, D), |;L(F)‘ <allFllso- (2.13)
Further, let us consider the following partial order&R); If (F, G) € E(R), F < G iff

vVXeH, GX)=F(X).
We shall say that a linear form € M is positive iff
VF e Fx(X,D) F>0— u(F)=0.
w will be said to be tracial if

VF,G e Fe(X,D) u(GF)=u(FG).
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Let M be the subset of1,, of positive tracial linear forms. We can define the notion
of total mass for any linear form of M} by

my =Sup{(F), F € Fr(X, D), IFllo <1} = p(D)

The analogue of the commutative set of probability measures will be the s\isetf
M of linear form with total massz,, exactly equal to one.

By a standard diagonalization procedure, it is not hard to check as in the commutative
setting that MT is compact for theFg (X, D)-topology sinceFr(X, D) is separable.
The Fr (X, D)-topology is compatible onM7 with the distance

- 1
d(p, vy =lllp=vill=3_ =

peN

where(F,) ey is a basis of uniformly bounded functions Bf (X, D) as described in
(2.12). Hence M7 is a compact metric space, thus Polish.
Let 1" be given by

M (F) =ty (F(Xy (1)) VF € Fr(X, D), Vi €[0,1].

Then, considering2!™, 0<r<1) asa continuoug\ 17 -valued process and endowing
the setC ([0, 1], Ml) of such processes with the uniform topology on the time variable
and theFg (X, D)-topology on M7, we shall prove that

THEOREM (2.14). —Under (HO), the law of (4", 0 < < 1) satisfies a large
deviation upper bound in the scal&? with good rate functionS described in
Theorem(4.1).

We discuss in Section 4 after Theorem (4.1) the large deviation upper bound obtaine!
by contraction from Theorem (2.14) for the law [be) and its relation with the non-
commutative entropy introduced by D. Shlyakhtenko.

Let us make a few remarks about the corollaries of Theorem (2.14) in terms of
standard large deviation principle. Since we discussed this point in details in [10], we
shall here be rather sketchy. To this end, we recall the link®1gfwith standard spaces
of probability measures. It is based on the following remark of [10] (see Property 4.32
and Lemma 4.26) that

PROPERTY(2.15). —Let F € Fr(X, D).
(1) For any f € C,(R), f o F belongs taFr (X, D).
(2) The linear functionajtr on C,(R) given by

pr(f)=up(foF)

is a compactly supported probability measure®rfior any u € M7 . Further, the map
w — pp from M7, furnished with theFr (X, D)-topology, intoP(R), furnished with
the weak topology, is continuous.

As a consequence, the contraction principle and Theorem (2.14) imply
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COROLLARY (2.16). —Let F € Fr(X, D). Then, the spectral measure process of
(F(Xy (), t €0, 1)) satisfies a large deviation upper bound for the weak topology
in the scaleN? with good rate functior§ given for anyv € C([0, 1], P(R)) by

Sr) =inf{S(u); (ur), =i Vi € [0,11}.

Note that at this point, we do not obtain a large deviation upper bound for the spectra
process ofXy itself since F(X) = X does not belong toFr(X, D). To get such

a result, we shall prove in addition a tightness criterium which requires the next
observations. As in [10], we can define a probability meagyreon R so that for any
feC(®), ux(f) =u(f(X)).In particular,ux is countably additive and the monotone
convergence theorem holds [21, 1.26]. Hence, we can ) = uyx(x?). Let, for

A e R*, KT (A) be the closed subset 8#(7

KT(A)={neM7, ux(x?) < A}

and
KI(00)= | J KT (A) ={ne Mz, ux(x?) <oo}.

AeN
In Theorem (4.1)4™") is considered as an element@d0, 1], M7T) but we see that all
the 1" belong to/CT (A) with probability as large as we wish on the exponential scale
providedA is large enough (but finite). Also, the processes with ent®gynaller than
someM are shown to have covariance uniformly bounded by some constant dependin
on M. This is enough to see that ttfe (X, D)-topology will be equivalent in our setting
with the topology obtained by duality of the set

Fr(X,D) = {F € EM); I(Fnen € Fr(X, D)V, |F = F|(X) <

SR

(X2+1)},

where|F (X)| = /F(X)2. Fr(X, D) contains the canonical proceX¥s(approximateX
by X (14 n2X?)~1 € Fr(X, D)). More precisely, we have the following extension of
Property (2.15):

LEMMA (2.17). —-Let F € Fr(X, D) andu € K7 (A) for someA € R*. Then, we can
define

wr(f)=lm wr (f),  feC®). (2.18)

ur is a probability measure ofR. Moreover, the mapt — ur is continuous from
K1 (A) into P(R) for any A € R¥.

The proof is the same as that of Property 4.33 in [10].

As a consequence, using Theorem (4.1) and standard exponential approximatior
described in [12], Section 4.2.2 (see the proof of Corollary 4.4 of [10] for details) we
obtain

_ COROLLARY (2.19). —The conclusions of Corollary2.16) are valid for any F €
Fr(X, D).



352 A. GUIONNET / Ann. I. H. Poincaré — PR 38 (2002) 341-384

To complete this introduction, we wish to summarize two applications. First, let us
consider the band matrix given by the model studied in this paper with

.. i i '
YN, j) = w(ﬁ, %) = /of <ﬁ>of (%) dp(7)
for bounded continuous functions,. As quoted in Examples (2.4), we can choose
D = D... With such a choice, the law of large number statements (2.5), (2.6) as well as the
large deviation upper bounds results (2.14), (2.16) and (2.19) apply. For the central limi

theorem, under the hypothesis of Examples (2.9), we canflakeD! and conclude.
We can also apply our results to the generalized Gaussian Wishart’s matrices given b

with YV a N x My complex Gaussian matrix with independent entries of covariance
% andT" a My x My diagonal matrix with non-negative eigenvalues. As in [14], we
observe tha" is related to band matrices as follows Xf; is given by

B 0 YN(TN)%>
w=( im0 ) (2:20)

the spectrum ofX y)? is given by the spectrum d¥" with multiplicity two up to some
null eigenvalues since

= (T8 a)
N 0 TNz (¥ Ny YNz )
Further,X y has the law of
.4
(Wn G, DZHY™M D)) 1 vy

with, if 71, ..., 1), denote the eigenvalues &f",

Un (i, J) = Ivpacisvemy igianti + Ivpagicvemy ligisnt -

We assume for simplification that = t(NJr"MN) for some bounded continuous non
negative functiorr. Notice thatyry can be written
i) = [or (= oo (5L ) aro (2.21)
T \N+My/) © \N+My

With p(1) = 8,21 — 820 — 8;—3, ay = (N + 1)(N + My) "t and, fora ¢ R*, x € [0, 1],
o (x) =Lise(t(x) —1) + 1,

05 (x) = Lisat (%),

o3(x)=1-1,>,.
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Hence, following example (b) given in (2.4), ﬁ\le converges a®Vv goes to infinity
towards a constant and if we chooseD to be D, "described in Examples (2.4) (b),
the results (2.5), (2.6), (2.14), (2.16) and (2.19) applyXtp. We denote byS; the
rate function governing the large deviation of the spectral measure pra¢€ssn
the scale(N + My)? coming from Theorem (2.14) with the above specific choice of
measurep and functionso)1<;<s. To deduce the same results &', observe that, if
AY = A(o3™),
N
AY(Xy)2AY = (V‘g 8) .

It is not hard to see that for any € F¢(X, D),
G(X) = F(A3X?A3) € Fo(X, D), (2.22)
since for any; € C\R we can write
2 -1 1 -1 1 -1 -1
(Z—AgX Ag) :Ag(ZZ—i-X) (ZZ—X) Az + (I — A3)z
with any choice of the square ropt of z. Hence, ifur is defined by
ur(F) = n(F(A3X?A3)),  F e Fe(X, D),

the mapu — pr in M7, furnished with theFr (X, D)-topology, is continuous. We can
hence deduce from the contraction principle and Theorem (2.14) the following result.
Set

AN (F)y =try (F(WY)), FeFe(X,D),
with W constructed a® " but with Brownian motion entries.

COROLLARY (2.23). “Assume thatN + 1) /(N + My) converges towards a positive
constante. Then, the law oﬁ(ﬁ) satisfies a large deviation upper bound in the scale
(N + My)? for the Fr(X, D)-topology. The good rate function governing this large
deviations upper bound is given by

Ir () = inf{S7(); v1(F (A3X?A3)) = u(F) + vo((I — A3)F(I — Ag))
VF € Fr(X,D)}.

A large deviation upper bound in the weak topology for the law of the spectral measure
of Wy can of course be deduced from Corollary (2.23) by the contraction principle.
We then refer to [15] for a full large deviation principle when the eigenvalues of
are uniformly bounded below by a positive constant. The central limit theorem for
polynomial functions ofX¥ and W" can also be deduced from Theorem (2.8) under
the hypothesis tha¥Vv + 1 — a(N + My) converges as underlined in Examples (2.9).
This hypothesis is needed to insure the convergence of the expectafititr of— ;) P
but would not be required if we would consider the fluctuations of the spectral measure
around its mean.

The central ingredient to prove the previous theorems is an It6’s formulafot, r e
[0, 1]). We shall prove it in the next section.
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3. Itd’s calculus

To present the stochastic differential calculus for the prodésswe need first to
define a few differential operators. Most of them can be already encountered in [10]
where the reader can find a more detailed introduction.

3.1. Differential operators

Let us first recall the definition of the non-commutative derivation. It is the linear map
Dy from F¢ (X, D) into £(C) ® £(C) so that for anyF, G € Fc(X, D),

|@08—1(F(X +eG(X)) — F(X)) = DxF#G(X)

with the notation(A ® B)iC = AC B and whereR denotes the standard tensor product.
Dy can be equivalently described by the the non-commutative Leibnitz rule and its
action on basic functionals. The non-commutative Leibnitz rule says that for every
F,GeFe(X,D),anyA e H,

Dx(FG)(A) = Dx(F)(A) x 1® G(A) + F(A) ® 1 x Dx(G)(A).

Here x denotes the multiplication in the tensor product space so that foNaaN, any
A,B,C,De My, A® BxCQ® D =AC ® BD. Then,Dy is uniquely defined if we
set for anyA € H, anyz € C\R, any« € R,

D : = L gt
X z—aX _az—aA z—aA

and for anyA € D,
Dx(A)(A) =0.
Notice that
DX(FC(X,D)) C Fe(X,D)® Fc(X,D). (3.2)

We can thus define a second order operaigr from Fc(X,D) ® Fc(X, D) into
Fc(X,D) ® Fc(X,D) ® Fc(X, D) by

1
D§55(0X®1+ 1® Dy) o Dy.

Let, for t € Q, M, be the map from\My @ My ® My into My ® My foranyN e N
so that for anyA, B, C € My,

M, (A®B®C)=AYB® AAYC
for any N € N. We set forX € H,

(L. F)(X) = M. (D3 F (X)) (3.2)
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and
<Mmm=/mﬁxm®u> (3.3)

It is also natural to define the derivati@y from F¢(X, D) into £(C) so that for any
traceu e M7, anyF, G € Fc(X, D),

Iimos‘lu(F(X +eG(X)) — F(X)) = n(Dx F x G(X)).

Dy is often called the cyclic derivative. It was already noticed in [10] that is the
map fromMy @ My into My for all N e N, so thatm(A ® B) = BA,

Dx =mo Dy.
Also, in view of (3.1) and sincé(X, D) is an algebra,
Dx (Fe(X,D)) C Fe(X, D). (3.4)
We also seD* to be the linear operator ofi-(X, D) so that
D*(F)(X) = (DF(X))" VX e™H.

Finally, if we letm,: My — My for all N € N be the left-hand side multiplication by
A, thatis foranyd e Hy, N €N,

m.(A)=AVNA,
we set

L,=—-m;m;oDyxoDy.

NI

Then, we define the operator frofy (X, D) into Fc (X, D) ® Fe(X, D)

C:/[,r dp(7)

that is that for every test functiof € Fc(X, D), anyA € H,

me=/wwwm®uy

3.2. Itd’s formula

LetC1([0, 1], Fr(X, D)) be the set of time-continuously differentiable functions with
values inFr(X, D) and time derivative irFr (X, D). We next show the

LEMMA (3.5). —
(1) Itd’'s formula for the matrix-valued procesXy: for every F e C([0, 1],
Fc(X, D)), anyt € [0, 1],
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F(Xy(0) = Fo(Xn(@) + [ tty @ Id(L(F) (Xy(5))) ds
0

—|—/8SFS(XN(S)) ds—i—/DXF(XN(s))jidXN(s). (3.6)
0 0

(2) Itd’s formula for the measure-valued proces everyF € C1([0, 1], Fr(X, D)),
anyr € [0, 1],

O (1) =try F (X (1)) — try Fo(Xx (0)) — / try [0, F (X ()] ds
0

_ /(trN Qtry) [LF(Xn(s))] ds
0

is a real-valued martingale with bracket

l t
( }N)>t=ﬁ//tr,v [me (D Fy (Xn(5)))me (DY Fy (Xn(5)))] dp(e) .
0

Proof. —The proof follows multi-dimensional 1té’s formula. Indeed, considering
F,(Xy) as a function of the entries dfy, remark that for any, j € {1,..., N}, and

with (XN),']' = /’liij(iv ])%v
ah,‘_,‘ FI(XN) = DXFZ(XN)ﬁ(ahUXN)a

and for anyk,l e {1,..., N},
Oy On;; Fr (Xn) = Dx ® Lo Dy Fi (X n)8(0h XN, Ony; XN)
+ 1® DX o DXFI(XN)ﬂ(ahinNa 8hk1XN)9
where we have denoted by® B ® Ci(D, E) = ADBEC. Also, remark that

Oy Xt = iz ¥ Gy )2 3.7)

Now, recall that multi-dimensional 1td’s calculus yields, sin@@y)u, (Hy)ij): =
N~

N
dF, (Xn (1) =0, F, (X)) dt + > 9, F(Xn®) (dXn(0),;
i,j=1

1 N
+ﬁ Z wN(ivj)ah_,',‘ah,‘_,‘Ft(XN(t)) dt (38)

i,j=1
But, according to (3.7), for ank, I, m,n,o0, p € {1, ..., N}, if we denote byA ® B ®
C)klmnop = Alemncop:
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( Z YN (i, j)on, ah,._,F,<X)>
kil

l]l

N Z Y (i, j) (D )kijjil

l]l

=/ ( 3 000 () (D3 )k,.,.,.,,> dp(r)

i,j=1
=/(trN @ 1d(L, F(X))),, dp(7) (3.9)

giving the first part of the lemma.
For the second part, we need only to take the trace on both sides of (3.6) to obtain

dtI’NF,(XN(t)) =try (8,F,(XN(I))) dr +try (DXF(XN(I))ﬁdXN(I))
+/trN ®try (L. F(Xy (1)) dp(c) dr. (3.10)

The first term in (3.8) gives the martingale term
try (Dx F, (Xn())8dX y (1)) =try (Dx F (X n (1)) dX y (2)).
For the second term, observe that
try @try (L. F(X)) =try @ try (L, F(X)). (3.11)

Indeed, denotingF, F?) a family of functions inFc(X, D) so thatDy F =", F} ®
F?, we find that

D2F == ZZ FN2® F + Fr e (F2); ® (F?)%)
so that
M(DFF) =3 3 S (A @ () TA K + A (F)) @ FEAL(F)?).
On the other hand,
L. F= %m ®m; o DX<Z FfF})

1 1 2
=—ZZ T® AFH(FY ]+ A (FP); @ A (FP)FY)
so that taking the trace satisfying

try (A (F2) ) = try (FLAL (F?)?)
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gives (3.11). Hence,
Q" (1) =try (Dx Fi (Xn (1) dX y (1))
is a martingale. Its bracket is easily computed by
(@Xn)ij (AX i), = 87N~ P (i, j) di.

The fact that the martingale is real valued is clear since; asFr(X, D),

try (F,) =try (F) =try (F)

since tyy is invariant by transposition. O

4. Large deviation upper bound

We shall prove a large deviation upper bound for non-commutative functionals of the
process of X y (t))[0,1) IN this section. The rate function for these deviations is defined
as follows. First, we define the empty stateto be the element ofT (co) so that for
any F € Fr(X, D), F(X) =TI, (2 — i X)72A,,

o(F) =m(F(0)),

wherem (F(0)) is defined by (2.3) sinc€(0) = [[;«; <, z,-‘lA,- € D by construction. We
let C, ([0, 1], MT) be the subset af([0, 1], MT) of continuousM7 -valued processes
u So thatug = g and for anyA € D, anyt € [0, 1],

i (A) =80(A).
Then,S is defined by

Sy = T if w¢Cs([0, 1], M7),
(W) = SUR< <s<1 $°(11)  Otherwise,

with, if for F, G € C1([0, 1], Fr(X, D)), we define for any times & s <t < 1, any
w € C([0, 1], M),
t t

S (F, 1) = 1y (Fy) — 05 (Fy) — / s (3 F) Clt — / j(CF,) du,

N N

(F. G} = [ [ 1 (me Dy Fyme (D3G) dp(o)

1
S5 () = sup (S”(F, w =5 ((F, F>>f;‘).
FeCY([0,1], Fr(X,D))
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Let us denote byi" the linear map otF¢(X, D) so that for anyF € F¢(X, D), any
t €10,1],

M (F) =try (F(Xn(0)).
We infer thati ™ belongs taC([0, 1], M2). We shall prove in this section that

THEOREM (4.1). —The law ofa™ e C([0, 1], ML) satisfies a large deviation upper
bound in the scal&v? with good rate functiors, that is

(1) S is a non-negative function with compact level sets forkR€X, D)-topology.

Further, for anyM > 0, there exists & > 0 so that

Ey ={S <M} cC([0,1], KT (A)).

(2)
IlmsupllmsupilogP( M e ([0, 1], KT (A))) = —o0.

A—oco N—oo

(3) For any closed subsét of C([0, 1], M),

lim sup— logP (4™ € F) < ir;fS.

N—oo

In particular, since the applicatiqn e C([0, 1], M1) — 1 € ML is continuous, we
deduce from the contraction principle that

COROLLARY (4.2). —(1{") satisfies a large deviation upper bound in the scalg

with good rate functlon glven fqu e ML by
Si(p) =inf{S(); veC([0,1], ML): vy =pu}.

Itis natural that the above infimum should be achieved at the limit procesbtained
by conditioning the entries at time 1. It satisfies the differential equation

X
Oy (F) = =7 ® py (LF) + 1y (TDX F) :

u? can also be constructed as the law &f+ X,1_,) where(X, s € [0, 1]) is the limit
of (Xy(s), s €[0,1]) andA has lawu,; and is free from Xy (s), s € [0, 1]). We then
deduce an upper bound 8¢ given by

1
$10 < S(u') < [ w78 du
0
with J the Fisher’s information given, iiIF||i = [ u(m,(F)m.(F*))dp(t), by

1
J(w) = sup {2u®u<£F)—u<XDXF>—EHDXFH,%}

FeFr(X,D)
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andji? the image ofu’ by the homothety of ratia ™~ By a translation on the function
F, we find

1 1
1= _sup {won( [dpem, @m DyoDyF) - IDKFIZ f+5u(x?) -1
FeFp(X,D) 2 2

Thus, J(w) is finite iff 1(X?) < oo and, by Riesz’s theorem, if there exisks ¢
Dx(Fr(X, D)) so that for allF € Dy (Fr(X, D))

pen( [dp@ac®a: x DxF) = [ ulme(Fyme () dp(o),

and then
1
J(p) = —||H||2 (XZ) 1.

Thus, the natural Fisher entropy is here given in terms of the image by the adjoint of
Dy of [dp(r)A, ® A, (compare with Wigner's matrices where one takes the image of
1® 1 by the same adjoint (see [25])). This Fisher's entropy is related to that defined by
D. Shlyakhtenko [24].

The proof of this theorem follows the usual scheme; we first study the rate furfttion
and prove that it is a good rate function. We then show fH&t is exponentially tight
and provide then a weak large deviation upper bound.

4.1. Study of the rate function

LEMMA (4.3). —S is a non-negative function which has compact level sets for the
Fr(X, D)-topology. Further, for any > 0, there exists & > 0 so that

Ey ={S<M}CC([0,1], KT (4)). (4.4)

Proof. —First notice thatS is non-negative since, fqr with S(u) < co, we have

1
S(w)= sup sup (S”(F, M)_E“F’ F>)fjl)
0<s <1<l FeCl([0,1], Fr(X,D))
)\’2
= sup sup sup()»S”(F w — —(F, F)), [)
0<s<r<1 FeCl([0,1], Fa(X. D)) *eR 2
1 SSL(F, w))?
Lt s S0P

20<s<t<l Feci(o,1, Fpx, Dy ((E F))5

is nonnegative ass*'(F, w), ((F, F));" € R x R*. Further, for anyF e C%([0, 1],
Fr(X,D)), u — S¥(F, ) is continuous by the stability properties of (3.1)—(3.4).
For the same reasom, — ((F, F));;" is continuous and hencg®!, as a supremum

of continuous functions, is lower semi-continuous that is has closed level sets. Sinc
M7 is compact, the precompact subset€tf0, 1], ML) can be included in compact
sets of the formiC = N,y K, with £ = {v € C([0,1], MT) | the function(u —
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v, (Fy)) belongs toK } if (K,),eny @ sequence of compact subsetpf0, 1], R) and
(F)nen @ basis offg (X, D). In view of Arzéla—Ascoli theorem, the compact subgéts
of C([0, 1], R) are such that there exists a finite const@nt 0, a family ¢, of positive
real numbersg,, ¢, — 0 asn goes to infinity, a family of positive real numbeissuch
that

K'={feC(01.R).Ifl.<C. sup [f()= f()] <en VneN}.

[t—s|<dn

Hence, to prove that the level sdig, can be included into somE, we need to show
that for everyF € Fr(X, D), and everyn > 0, there exists¥ (F) so that

YveEy, sup |u(F)—u(F)|<
lt—s|<8M (F)

S|

Since by definition we have for all € Fr(X, D), for anyv € E,,
S5 (v, F)2 < 28 () ((F, F))S" < 2M((F, F))5"

we deduce

t

/vu Q v, (LF)du

N

[ (F) — vs(F)| <

+\2M(F, F))3.

By definition of Fr(X, D), (3.1)—(3.4) and Lemma (2.11), all the functions appearing
in the above right-hand side are uniformly boundedjfor||,, so that we conclude that
there exists a finite consta@? (F) such that

Vi (F) = v (F)| < CY(F) (V11 = s+ 1 = 51).
Finally, to prove (4.4), we take

X2 X X

F(X)= =
X 1+eX? i+ /eX —i+.eX

€ Fr(X, D)

and computéy F (X) = 2X (1 + ¢X?)~2, resulting with

LF(X,X) = / Ar® (A (1+£X2) ) dp(r)

B (4.5)
+/A,X® A. x Dx(14eX?) “dp(z).
Further,X ® 1Dx(1+ ¢X?)~2is given by
e > (1+ex)7"X) @ ((L4+eX2) P xtm, (4.6)

n=0,1; p=1,2
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and therefore is easily checked to be the sum of tensor product of bounded operato
with norm bounded above independentlys0fAs a consequencé;, F can be uniformly
bounded in the tensor product space, independentdy of

Hence, there exists a finite constahso that ifiu € Ey,, for all r € [0, 1],

/ 2X 2
0

It is not hard to verify that by the trace and positivity propertiesuQf Cauchy—
Schwartz’s inequality type statements are valid and¥tG € Fr(X, D), F >0,

1s(GF) < |G lloopts (F).

Hence, we compute

2X  \? ) X 2 5
s ((Ar m) ) <A A IS s ((m) ) <A A5 s (F)

so that we conclude, since the operator normAgfis uniformly bounded byl" by
assumption (HO), that

t

1 (F) < (C + M) + 4T2 / 1y (F) ds
0

and hence by Gronwall’'s lemma

sup i1, (F) < (C + M)e*”
t€[0,1]

We can now let | 0 and conclude that sy, ;; (X2 < (T% + M)EM* which proves
the second point of the lemman

4.2. Exponential tightness

LEMMA (4.7). —There exists compact subséis, L € N, of C([0, 1], M7) so that

lim sup— logP(a™ e K5) < —L.

N—oo

The proof follows the description of the precompact $&(9, 1], MT) given in the
last part and is given in details in [10] in a slightly different context. We shall not detalil
it here. Further,

LEMMA (4.8). —

Ilmsupllmsupilog]P)( M e (10,1, K4)°) = —o0.

A—o0 N—>oo
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Proof. —This amounts to prove that

1
lim suplim Sup-3 Iog]P’( sup AN (x?) > A) = —00.

A—00 N—oo t€[0,1]

But

sup ™M (X?) = sup — Z UG, )| Hy ()i

1€[0.1] 0 N 52

wa i sup ((5) 4 (BH)?).

ljl

Since ¥y is uniformly bounded and Désiré-Andre reflection principle ensures that
SUPj0.1(B7)? has some finite exponential moments, we findeas 0 and a finite
constantC, so that

[eastupE[Ol >(X2)} < CN2
which, thanks to Chebyshev’s inequality, allows us to conclude.

4.3. Weak large deviation upper bound

In view of Lemma (4.7), we can get a large deviation upper bound by means of a weal
large deviation upper bound which is an easy consequence of

LEMMA (4.9). —

lim suplim supi logP(D(v, AM) < 8) < —=S(v) (4.10)

840 N—o0

foranyv € C([0, 1], M7).
Proof. —Note that, at time 0,
6" (F) =try (F(0))
converges, a%'(0) € D, towardsm(F(0)) by (HO). Thus, for any; > 0, for N large
enoughd (115", 80) < 8. Hence, withi!") (F) = 15"’ (F) for any F € D, we deduce that

1
lim suplim sup—ln]P( M e Bs(v)) = —o0
840 N—o0

if v¢Cs([0, 1], MT). Therefore, we shall assume hereafter thatC, ([0, 1], MT). We
shall follow the ideas developed in [19]. To this end, we define a family of positives
super-martingalegz\™’, F e CY([0, 1], Fr(X, D))}, equal to 1 atr = 0, thanks to
Lemma (3.5):

L 2 A (N) N*
()= exp(N o)~ ~-(0f >,)
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_exp<N2<SOI( (N) F) ;((F F>>M(N))>
Let v € C([0,1], M7) and F € C([0, 1], Fr(X, D)); then for any 0< s <t < 1, if
EI(:N)(I )_E(N)(t)é_(N)( )—17

S (2, s )}

P(A™) € B(v, 8)) =E [%ww D™
Cp(t,s)

< sup exp(—N2<S“(1/, F)—%((F, F))i;’))

v'eB(v,8)

2 St/ 1 s,t
:exp(—N inf (S"(v,F)——((F,F))v’,>>,

v'eB(,6) 2

where we have usef[¢\" (1, s)] = 1. Notice that ifF belongs ta’([0, 1], Fr (X, D)),
the functionv’ — S%1(v', F) — 3((F, F)%! is continuous. Thus, for any function
F € CY([0, 1], Fr(X, D))

lim suplim sup—ln]P( M e Bv,8)) < (So’l(v, F)— }((F, F))S’l)-
810 N—oo N2 2

We conclude by taking the supremum ovéthat

1
lim suplim sup—InIP( M e B(v,8)) < —Sv). 0
840 N—oo

5. Law of large numbers

According to the large deviation upper bound of the previous section, we know that
AN, as an element @f([0, 1], M7), concentrates almost surely towards the minimizers
of S. In this section, we prove th&t admits a uniqgue minimizer and study it. We then
deduce a law of large numbers theorem for bounded test functions which we strengthe
in a second time to include polynomial functions.

5.1. Study of the minimizers ofS

Since S is a good rate function, it achieves its minimum value, which is zero. Its
minimizers are hence characterized asjtheC, ([0, 1], MT) satisfying

§9Y(w, F)=0 (5.1)

for all test functionsF. We shall prove that
LEMMA (5.2). — (5.1)admits a unique solutiop* € C,([0, 1], M1).

To prove Lemma (5.2), we first show that the minimizers have finite moments and
provide bounds for them;
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LEMMA (5.3). —There exists a finite constaatso that if i« minimizess,

sup Mr(in) <n!C", VneN.
1€[0,1]

In particular, as a standard probability measureis defined by its moments.

Proof. —Set, fore > 0, F(X) = Following (4.5), we have

1+ X2

Dy F'"(X)=2nF"1(X)

(1+¢eX?)2
and
n—2 —
Xé X1 X
Dx oDy F'(X)=4 FA(x Fr vy —————
x o Dx F"(X) né;;lkz_% ( )(1+8X2)®(1+8X2) ( )(1+8X2)2
+2nF" Y(X)®1x Dy o Dy F(X). (5.4)

Noticing that||A; |« < T and for anyk € N,

X X?+1 1
“(Fk(1+sx2))<“(Fk2(1+sx2)) 5 ((F) + u(F),

and recalling from (4.6) thaDy o Dx F is uniformly bounded in the tensor product
space, we find a finite consta@itso that for anyu € M7,

n—2
2 ®//L(£F”) < CHZM(Fk+l+ Fk)M(F”_k_l + Fn—k—Z).
k=0

Hence, ifu satisfies (5.1), angk, (1) = SUR.¢[0.1; SUR<k<n w:(F¥), we have

ma®) <1+ (422C) [y 1512 b,

so that withm,, = sup g 1;m.(?) > 1

< (4n%C + Hm?_; < H (4pc+1)" .
p=1

Hence,

-t ()

exists and is finite for ak. We can therefore extend (5.1) by talkifigtco be polynomial.
We then get the easier formula



366 A. GUIONNET / Ann. I. H. Poincaré — PR 38 (2002) 341-384

n n—k-1 —
em( I1 AX) > D / dp(f)m( I1 A,-XAHIH)

1<ikn k=1 [=0 k4+1<i <k+l
ﬁ
(A, Axo ] AiXAk>
k+1+2<i<n 1<i<k—1

n

+3 /dp(f)m< I ax 1] A,-Xm)
=1I=

k+1<i<n 1<i<]

xu,(A, 11 A,-XAk>

I+1<i<k-1

forany (A, ..., A,) € D. By induction ovem, we deduce tham,(]'[l_;ign AX)=0if
n is odd for everyA; € D. TakingA; =1, we get ifn is even,

n—2/2

01 s (X”) < T2n Z MUt (XZk)Mt(Xn_Zk_z)- (5.5)
k=0

Let

1 n
u, (1) = au,(Xz ).
Then, (5.6) implies

n—1

Bt (1) S T2 (CE_y) U (D14 (0). (5.6)

k=0

with C* = (n!/k!(n — k)!). Observe that = sup,.y > /—5(C* )~ < oo so that by
induction we see that there exigts< oo (C < ¢T?) such that

sup u, (1) < C
te[0,1]

which finishes the proof of the lemman
We are now in position to prove Lemma (5.2):
Proof of Lemmd5.2). — Finally, the moments ofi, are uniquely determined since, if

u, v are two solutions,
Ap(t)y=sup  sup w( 11 A,-X> —m( 11 AiX>,
1<i<n 1<i<n

n<k AeD, [|Alle<1

we have by the above equation

t t
A (1) < 2k°Vk!Ck Tz/Ak_l(s) ds < 2k2\/k!CkT2/Ak(s) ds
0 0
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which, by Gronwall’s lemma impliea, (¢) = 0. In view of Lemma (5.3), this is enough
to guarantee directly that for agy, ..., &, €C, z1,...,z; € C

Mt( H Aiefi(X—ZI‘))
1<i<n
is uniquely defined (check that the expansion indeed converges) and then by integratic
over theg,'s whenJ(z;) # 0 (with sgnJ(zx))&r € (—o0, 0]), that u, (F) are uniquely
determined forF' € Fc(X, D), insuring the uniqueness of, as an element aM 7 for
anyre[0,1]. O

Let us notice thatu, r € [0, 1]) satisfies a scaling property

LEMMA (5.7). —For anyt € [0, 1], if for F € Fo(X, D), F'(X) = F(J/tX),

pi (F) = pi(F"). (5.8)

Proof. —Indeed, £, as a second order differential operator ¥n satisfies for any
F e Fc(X, D),

LF'(X)=t(LF)(V1X). (5.9)

Hence, sinceu is uniquely characterized by (5.1), we have for any [0, 1], A €
(0, t~1], for any functionF e Fc(X, D)

At
B Py =80(F) + [ 13 ® 1 (L) &
0
t
= 5o(F) + / Jk, ®  (ALF) ds
0

t
-1
=8o(F)+ [ 1, @ L, (LFY) (Vi X)) ds
0
Thus,(u?, t € [0, 1]) given by

-1
pwH(F)y=ul,(F(¥A "X)), FeFe(X,D)
satisfies
t
uﬂm=wm+/@®@wmm
0
Since we have seen in the previous section that this equation characjefjzeeldeduce

thatu! = u* for t € [0, 1]. Takingi = to‘l for 1o € [0, 1], we deduceLl(F(\/%_1X)) =
Wi, (F) or equivalently (5.8). O
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In the setting of Examples (2.4) (a) or (b) we can more precisely identify the limit law
of the spectral measure Xy (¢), ¢ € [0, 1]). In fact, let

vix,y) = ngﬂoo ¥y (INx], [Ny])

and denote by the operator in.2([0, 1]) with kernely. Then

LEMMA (5.10). —Letk: [0, 1] x C\R — C be the unique analytic solution of the non-
linear equation

k(x, 2) = (2 — K (k(, 2))(0)

so thatzk(x, z) goes to one asz| goes to infinity for anye € [0, 1]. Then, for any
¢ € Cp([0, 1], R), anyr € [0, 1],

1
1
iA@Y = /¢<x>k(x, %) dr.
0

This result is analogous to that found in [23] and [11].
Proof. —Note first that by (5.1),

(A z—X)h

= —%az / dp(@u (Ao (@ — X)) py (Ao z— X)), (5.11)
Further, according to Lemma (5.7),
(MA@ @ - X)) =i (A@) (e - ViX) T
=V (AW z-X)7Y (5.12)
so that we get by derivation ovek [0, 1],

Z

S- (M@= X)7). (5.13)

1
il (A@z—X)h = —Zu;‘(w)(z -X)™

(5.11) and (5.13) result with
3. (zif (AP (z—X)h) =18, ( / dp(t)u; (A(dor)(z —X)—l)u;‘(m(ff)(z—xrl)).

Noting that lim, o 2t} (A(9)(z — X)) = 8o(A(¢)), we get by integration ovey,

2 (A — X)7Y) = 8o(A@)) + 1 / dp(D) (Ao @ — X))

x (Ao (z — X)7h). (5.14)

Now, observe that for anye [0, 1] andz € C\R, ¢ — w(A(¢)(z — X)71) is a linear
bounded map od.%([0, 1]) since, by Cauchy—Schwartz’s inequality

1 (A — X)) < 3@ 0(A@)2)? = [3)| bl 12q0.
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Hence, Riesz’s theorem shows that there exists z) € L2([0, 1]) such that for any
¢ € L>=([0, 1])

1
wHA@E— X)) = / (1) (x, 2) d. (5.15)
0
We deduce from (5.12) that for almost alk [0, 1],

k(x,2) =T ke (x, \/;_1Z) (5.16)

and from (5.14) that for ang € L?([0, 1]),

/dXd)(X) zka(x, 2) — ka(x, DK (ka(., 2)) (x)) dx /d)(X)dx

so that for almost alk € [0, 1],

k(x,2) = (z — K (k(.. 2)) (0)k(x, 2)) . (5.17)
(5.15) and (5.17) give Lemma (5.10) O
5.2. Law of large numbers

As a direct consequence of Lemma (5.2),

LEMMA (5.18). —For any F € Fc(X, D), (try(F(Xn(t)))):e[0.1; CONVerges almost
surely towards(it) (F));ef0.1;-

We can also improve the law of large numbers stated in Lemma (5.18) by enlarging the
set of test functions. Indeed, denotiRg(X, D) the set of non-commutative polynomial
functions ofX and elements oD, we have

LEMMA (5.19). —For any polynomial functionP of Pc(X,D), ('™ (P))ico
converges inL*~(P) = Ngen L4 (P) towards (i) (P))sef0,15- In other words, for any
q €N,

lim sup E[|a™(P) — i (P)|"] =

N—004¢10,1]

Proof. —We can of course restrict ourselves to
Px)= [ xa:Xx)
1<i<n

for (Ai)1<i<n € D since theA;’s can be identically equal to identity. Set, for- O,

—

P.X)=@" [

1<i<n

A;(X) e Fc (X, D).
i reX (X) € Fc( )
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Then, for anyr € [0, 1],

try (P (Xn () — tr (P (X ()] < ( 11 ||A,~||oo)trN Xy (0?2

1<ign

Note that

Eltry [Xy(®)*']] = ZE[HXN(t)}

yeF biey

(5.20)

(5.21)

with I the set of connected bonés= (i, j) in {1, ..., N}? of length 2 so thath; 1 ~ b;

if

b~b <« b=(,j), b=(k),ijkef{l. ., N3

andb,, >~ b;. In the right-hand side of (5.21), only the contogrso that ifb = (i, j) €

y, b* = (j,i) € y with equal degree contribute, so that

Eltry [Xn(1)?']] = ZE[ II x) (t)Xb*(t)}

yel" b,b*ey

But, withb = (i, j),

XN OXN @) =ynG, HHY O HY (1)

(5.22)

so that, since?” (t)H} (1) > 0 foranyb € {1, ..., N}, we deduce from (5.22) that

Eltry [Xy(®)?*]] < T"E[try [Hy()?']].
It is well known (see, for instance, [22], Theorem 2) that for anyN,

sup sup Eftry [Hy(1)*']] < o0
NeN re[0,1]

so that (5.23) results with, for anye N,

sup sup Eftry [Xy(1)*']] < oo.
NeN t€[0,1]

With (5.20), we find, for any; € N, a finite constant (P, ¢g) so that

sup sup E[[try (P.(Xn())) —try (P(Xn®)))|] < C(P, g)e".

NeNte[0,1]

Recalling by the previous proof that

lim sup |u;(P:) — u(P)|=0
€40 4¢[0,1]

(5.23)

(5.24)

(5.25)
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and by Lemma (5.18) for any > 0 (since P, is uniformly bounded so that dominated
convergence theorem applies)

Jim B[ sup ftry (P (X)) = s (P (X (0))['] =0
—00 te[0,1]

we deduce from (5.25) that for agye N,

Jim_ sup Efjtry (P (Xy(1)) - w(P(Xv®))|']=0. o

6. Central limit theorem

In this section, we shall assume thHat satisfies additionally the hypotheses (H1)
and (H2) of Section 2. We shall then study the fluctuationsiaf¥ (P) for ¢ €
[0,1] and P € Pc(X, D). This is equivalent, by the scaling property to study the
fluctuations of {2{")(P), P € Pc(X, D)}. This result is slightly less powerful than
what T. Cabanal-Duvillard proved in [9], where fluctuations on path space for non-
commutative functionals of independent Hermitian Brownian motions were obtained.
However, to our point of view, the exhibited covariance functions are simpler here and
the generalization to path space somehow not so much motivated.

To describe the mean and the covariance of the limiting Gaussian variables, we sha
introduce the following operators a- (X, D).

We first letX.0x be the differential operator iRz (X, D) given by

X.0xP = DxP#X =0, P(tX)l;=1.

As a counter part, we |é&f be given by

1
Z(P)(X) :/P(ﬁX) du.
0

We define second order operators by
LM=(uioZI@I+IQ@uiol)oL

and

Let Pr(X, D) be the subset oP¢(X, D) of Hermitian-valued polynomial functions.
We recall that according to Lemma (5.3), aRye Pr(X, D) belongs toL?(u}). We
shall prove that

THEOREM (6.1). —
(1) I + E, as an operator fromPg (X, D) into Pr(X, D), is symmetric and invertible.
Further, (I + E)~' is a non-negative operator fromg (X, D) into Pr(X, D), e.g., for
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any P € Pr(X, D),
(P.(I+8)7'P) 25 2 0.

Further, if we sefA ® B)' = B ® A and for Q € Pr(X, D), Dx 0" (X) = (DxQ(X))'
for all X € H, we have the more explicit formula for &, Q € Pr(X, D),

Wi(PEQ)= [ i om. & i om.(DxQ x (DxPY) dp(r).

(2) If (H1) and (H2) are verified, for anyP € Pr(X,D), N1\ (P) — ui(P))
converges in law towards a Gaussian variable with covariance

C(P)= / Wi (me(Dx PY(I + E) " my (Dy P)) dp(2)

and mean
M(P) = co(e*" P(0)).
Before going any further, let us detail the above result in the classical Wigner’s case.

Remarl(6.2). — In the Wigner’s case where, = 1 andP is a polynomial function of
X only, note that we find the result originally due to K. Johansson [18] and in this form
in [9]. Note first that in this casey = 0 and the asymptotic Gaussian law is centered.
Moreover,u; is the semicircle lawr ~1v/4 — x2dx andL can be seen as the operator
from P[X]into P[X, Y] given by

M)
=).

LA = =07 (10— 2=

But, if PV denotes the principal value, the Hilbert transform
HED0 =PV [ =0 dui()

is well known to be equal téf (1})(y) = 2~1y on the suppori\ of ui. Thus, we obtain
on A% that, for anyf € CL(R),

20 =7 2 [ dui - (' w - LU
y—x
_ o S~ £
_ZPV/d;Ll(y) o2
f) .
=—f) —2PV/(X_7y)2dM1(y)- (6.3)

In the last line, we use® V [(y —x)~2duj(x) = —2~1 which can be obtained by formal
derivation from the definition of the Hilbert transform of the semi-circular law. It can
look at first false because it states that the integral of a non-negative quantity is negative
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but one should be careful that we have to take the principal value and actually justify
these equalities by going back to the definition of principal values.

From the second formula in (6.3) it is clear thAtis a symmetric non-negative
operator inL2(u) with

ni(fEg) = /d/f{(X) du’i(y)<f(x; — f(y)) (8(X) - g(y)>

y X—=Yy
giving the identification ofE of Theorem (6.1) (1) sincDy f can be seen as the
symmetric function of two variables

Dy sy = L0

Further, from the last formula in (6.3), we obtain that
= (») ¥
I+ E)f)x)=-2PV / fiyz dui(y)
(x =)
so that if we denote b) the symmetric operator ih?(u3) given by

K(f)= / loglx — yI~1f (y) dit(y).
we find forx € A%,

(I +E)(fH(x) = =20 K ((p1./)/p7) (%)

with uj(dx) = pi(x)dx. Observe that(p;f)'/p; = 9 f with 9} the dual of the
derivative d, in L?(u%). Hence,(I + E) is a definite positive symmetric operator in
L2(u3) and, for any continuously differentiable functigh

C(P) = (P +8)2P) = Jyi3 (PKP).

More generally, we can consider the fluctuations of the trace of polynomial functions
of X + A, with X a Gaussian Wigner matrix as above ake:= A(¢) a diagonal matrix
satisfying the hypotheses of Example (2.9). Weyset m 54 and choose = {A(¢)}.
Then, itis well known that] is the joint law ofX with semi-circular laws and D with
law i, D free fromX. We setA to be the algebra generated Ky+ D andv* € P(R),

v* = ujla, the free convolution ofc ando. In this case, observe that jf ¢ are two
polynomial functions ofX + D,

Wi(fX.0xg) = pi(fEIX|X + D).oxg) = v*(fE[X|X + Dl.oxg).  (6.4)

Now, it is well known by Voiculescu (see [26], Corollary 3.9) that

E[X|X + D|(x)= PV/(x —y) v,
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Thus, we can proceed as above to see that, forfapy A,

HirEe = [ dv*(y)<f o= f ) (s :i(w)

yielding again Theorem (6.1) (1). However, becaid ¢ A, C(P) = uj(P'(1 +
E)"1P') # 2v*(PK~1P) with Kf (x) = [log|x — y|~ £ (y) dv*(), in general.

The proof of Theorem (6.1) follows two steps; we first show igt\"’ (P) — 1% (P))
converges in law towards a centered Gaussian variable and then identifies the covarian
of this Gaussian law.

6.1. A central limit theorem

Since Itd’s calculus is again the basis of our approach, let us first quote that we cal
extendL andLL to Pz (X, D) by saying thatDy satisfies the non-commutative Leibnitz
rule on Pc (X, D) and that for anyA € H

DxX(A)=1®1, DxA=0®0, VAeD,

We can extend naturally Lemma (3.5) by

LEMMA (6.5). —For any F € C1([0, 1], Pr(X, D)), the statements of Lemni&5) are
true.

Let us define, fos € [0, 1], the differential operatof.; on Pg (X, D) given by
Li=(u;1+1xu))L. (6.6)
Note thatL, reduces by one the degree of any polynomial functioa Pr(X, D) as a

function of (X, D), and of two as a function aX. Hence, for any polynomial function
P € Pr(X, D), anyt € [0, 1], we can define

1
P(x)=el 5% p(x) e CL([0, 1], Pr(X. D)) 6.7)
as the unique solution of the differential equation
0, P (X) = —L, P (X), P =P.

We shall prove that

LEMMA (6.8). —Under hypothese@i1) and(H2), for any P € Pg(X, D), N(a" (P)
— wi(P)) converges in law towards a Gaussian variable with covariance

1
é(P) = / / W Tme(Dy Pym, (D% P)] dp(z) di
0

and meanM (P) = c(Py(0)).
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In the next section we shall show that(P) coincides with C(P) defined in
Theorem (6.1). Note that, by definition df¥, we already haver(et" (P)(0)) =
c(Po(0)).

Proof of Lemm4g6.8). —Let us first notice that (5.1) implies that
Oy (Pr) =y (0 P) +py @ uy(LP) =—p; @ pu; (LP)
so that Lemma (6.5) gives
dN (AN — i) (P) = N (M — i) ® (3" — uf)(LP) di + NdQR (1) (6.9)

with (N Q% (1)),c10.1; @ real-valued martingale with bracket
(NOYY, / try [m. (Dx Py (Xn(5)))m. (D4 Py(Xn(s)))] dp(r)ds.  (6.10)

To show that the first term in the r.h.s. of (6.9) goes to zerbHT asN goes to infinity,
we shall prove by induction that

LEMMA (6.11). —-Foranyn e N, any Py, ..., P, € Pc(X, D),

o s | o

Proof. —Let | P| be the degree of a polynomial functiéghthat is, if

sup sup SupE
te[0,1] 11,...,1y€X NeN

M
P(X):Z,Bk< H Ak > nk+1

k=1 1<i<ng
for somen; e N, A e D\{0}, B € R,

|P|= max ny.
kefl,...M}

We let P (X, D) be the polynomial functions with degree less or equalto For
P e PAX,D), P € D and (6.12) is fulfilled under (H2). Le¥ be an integer number.
Assume now that (6.12) has been proved for any any choieesaN, n < M, and any
Pi,...,P, e Pc(X,D)sothaty’) ;|P;|< M. TakePs, ..., P, € Pc(X, D) so that

has degre@/ + 1. By Lemma (6.5), we find that
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N (@ — ) (Py =N (2" — ug) (P) + / AN )y @ AN (L P) ds

+/uj®( (AN — N (LP)Yds + NOY (1)
with a martingale’ N Q' (1), 0< u < 1) with bracket
(NQW). = / / try [me (Dx P(Xy()))me (D P (Xn(9)))] dp(x)ds.  (6.13)
0

Therefore, by Jensen’s inequality, for apy 2N, anyr € [0, 1], we obtain
E[(N (4" = 1) (P))*] < 4qE[(N (20" = 1o)(P))"]

+4‘1/E AN — 1) @ @M (£.P))?] ds

+4"/E[(/x?® (N (A" = i) (LP))")] ds

+HE[(NOY (1))]. (6.14)

Notice that sinceP; (0) € D fori € {1, ..., n}, (H2) implies that

q
sup supE[( (1" — ) ( 1T AT,,Pi(O)>> } <00 (6.15)
1<i<n

T1,...,Tn€QR NeN

forany Py, ..., P, € Pr(X, D).

Moreover, observe that

(i) ForanyP in PY(X,D), M eN, LP € P (X, D) ® P (X, D).

(i) From the uniform bound hypotheS|s (HO) on the operator norm(&f) ;cq
and (2.2), we find that for ang, ..., P, € Pc(X, D), anyq € 2N,

sup  sup supE[(a™(P))?] < oo. (6.16)

71,...,Tn€Q 1€[0,1] NeN

From these two points and our induction hypothesis (with the uniform property with
respect to the’s in 2), we infer that

1
sup sup [ E[(N (" = u7) ® 1" (LPo))"] < 00

71,...,Tn€Q NeN 5
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as well as
1

sup sup [ E[(N (AN — u¥) @ ui(LP))!] < oc. (6.17)

71,...,Ta€Q NeN 5

(i) The third term in (6.14) can be bounded by Burkholder—Davis—Gundy’s
inequality which asserts that there exists for any 2N a finite constant, so that

E| sup (NQSé”(s))q} <SB!

o<s <t
t
q
<e, / Eltry [my (Dx Py (X () )me (D P (X0 (5)))] 2] dp (o) ds,
0
where we have used in the last line (6.13). By remark (ii) above, we deduce

sup  sup SUPE[try [m.(Dx P (Xn(s)))m.(Dy P, (XN(S)))}%] <0
s€[0,1] t1,...,1,€Q2 NeN

and hence

sup sup supE[ sup (NQ(N)(s))q} < 0. (6.18)

TeR 11,...,T€Q NeN 0<s <t

Plugging (6.15), (6 17), (6.18) into (6.14) bouRH(N (/1" — ) (A, P,))?] uniformly
inte[0,1], 71,..., 7, € 2 andN € N and thus completes the proof of the lemmal

We can now finish the proof of Lemma (6.8). Following (6.9), for @g¢ P (X, D),
N (" = u3) (P) = N (16" = 13) (Po) + Ru(P) + N Q2 (1), (6.19)

where Ry (P) is some reminder term. Indeed, observe tifatis for any s € [0, 1]

a polynomial function with coefficients uniformly bounded in time according to
Lemma (5.3). The same observation holdsAdt, which coefficients on the monomial
basis of Pc(X, D) ® Pc(X, D) can be uniformly bounded in time. As a consequence,
Lemma (6.11) implies that for any € 2N,

SUPNIE[|Ry(P)|"] < o0. (6.20)
NeN

In particular, Ry (P) converges almost surely towards zero by Borel-Cantelli's lemma.
Recall now thatP,(0) belongs taD so that,

im N( §Y — 1s) (Po) = c(Po(0)). (6.21)

Turning to the study of the last term in the r.h.s. of (6.19), recall that we have defined
(N Q(N)(t) t € [0, 1]), as a martingal with bracket defined in (6.10). Again, by the above
remarks on the structure @&, and Lemma (5.19), we see th(aVQ(N))t, forr € [0, 1],
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converges in.*~ (and in particular in probability) towards
t
C(Py = [ [ i me(@xPoym. (D3 P dp(r) .
0

Note thatC,(P) is bounded as a consequence of Lemma (5.3). This classically implies
thatNQf,,N (D) converges in law towards a centered Gaussian process with covariance

C(P). Indeed, takingh € R, we know that,(NQ% (1), € [0,1]) being a local

martingale,(exp{iANQ}N)(t)}, t € [0, 1]) is a semi-martingale and fore [0, 1],

E[exp{ikNQ(PN)(t)}]e%é’(P)
)\‘2 ! )\,2 ~
-1-= //E [exp{iANQS?”(s) + ECS(P)}(([LEN) — i)
0

X [m¢(Dx Py)m. (D Py)] )} dp(t)ds.

By Lemma (5.19), the last term in the above right-hand side goes to zekb gses
A2 A .
to infinity. Thus, for anyx € R, limy_ . E[expiAN Q" (1)}] = e Z€1P) that is
N Q(PN)(Q converges in law towards a centered Gaussian variable with covariance
C(P) = Cy1(P). This result with (6.21) and (6.20) gives Lemma (6.8)1
6.2. Study of the covariance

In this last section, we give a more explicit formula for the covariances driving the
previous central limit theorems. The first step of which is to study the opeftor
introduced in Theorem (6.1).

6.2.1. Study of some operators i.2(u?)
We shall in this paragraph obtain the following identities.

LEMMA (6.22). —
(1) Forany P, Q € Pc(X, D),

1i(QDx o (ui I +1Quy)oL(P)) =u;(Qui®1oLoDx(P)). (6.23)
(2)Forany P, Q € Pc(X, D),

1 1
M{(P (M{@IOL—EX.BX) Q) = —E/yfiom,@yf{om,(DxQ x (DxP)") dp().

(3) E=X.0x —2u; ® I oL is a symmetric operator from®z (X, D) into Pr(X, D).
[ + B:Pr(X,D) — Pr(X,D) is invertible. Its inverse(I + E)~1: Pr(X,D) —
Pr(X, D) is symmetric non-negative for the scalar product.);z(, €.g., for any
polynomial functionsP, Q € Pr(X, D),

(P, (I + E)‘1Q>L2(M,D =(0,(+ E)—1P>L2W, and (P, (I + E)—1P>L2(M,{) > 0.
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Proof. —Unfortunately, we could not prove this lemma directly from Eg. (5.1) defining
the minimumuj. Instead, we shall go back to properties of the Hermitian Brownian
motion and deduce it by taking the largelimit.

To prove the first point, let us tak® € Pc(X, D), and consider the derivatives oft®
try o L(P(Xy)) with respect to the entries of the self adjoint matkix = (x;j)1<i j<n
with x;; = (1/v/2N) ¥ (@i, j)¥2(h;j + ~v=1h;;) wheni < j. We first observe that for
anyi, j € {1,...,N}, with (Aij)kl = 8/([:,']',

0., r(P(Xy)) =tr(DP(Xn)EA;) = (Dx P(Xy)) ;- (6.24)
Now, recall that from (3.9) and (3.11),
1 N
try @y LIPY(Xn) = 5o D Y )y, O, Ut (P)(Xy) (6.25)

ij=1

implying with (6.24), that since,,, commutes witho,,,, for anyi, j € {1,..., N}, any
P € Pc(X, D),

1 N
ax,'_,'trN ®trN£(P) = ﬁ Z wN(kvl)ahk[ah[k(DXP)(XN)ji' (626)
k=1

SinceLP € Pc(X,D)® Pc(X, D), (6.24) gives
8xijtrN RtryL(P) = ((DX Rtry +try ® Dx) ([,(P)))]l (627)

Further, by (3.11),

N
> Un kD8 (Dx PY(Xw) ji = (try ® 1 o L(Dx P)(Xw))

2N k=1

proving with (6.26) and (6.27) that
(Dx @try +1try ® Dx) (L(P))(Xy) =try ® I o L(Dx P)(Xy).

As a consequence, for ay € Pc(X, D), we obtain

Eftry [Q(Xn(1)(Dx @ try +1try @ Dx) (L(P))(Xn(1))]]

Hence, using the law of large numbers Theorem (5.19), we obtain at theNaligat
Lemma (6.22) (1).
To prove the second part of the lemma, we recall first that the Ornstein—Uhlenbeck
process
1

1
dy, = ﬁ dg(r) — Eyt dr (6.28)
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with initial distribution yy, the centered Gaussian law with covarian@)™1, is
stationary. We lef Y be the matrix-valued process constructedasbut with, instead
of independent Brownian motions

1<k<I<N 1
i sbia) and (i)
<v2N ! v2N o 1<i<j<N VN 1<i<N
1<k<I<N

independent copiesy; ;, y; )1<i-j<n and (\/iyi,i)lg,-@, of the Ornstein—Uhlenbeck

process (6.28). Note that for any time [0, 1], XQU(7) has the same law thaty (1).

Let Ly be the infinitesimal generator of; ;. y; )1Si<i<v

1 1 /
Ly =757 2 (A4 18,2 + LBy 2) = ZZ(yijay,.j + Lizjyi 0y, )-
i<j i<j '

It is well known that Ly is a symmetric operator irLz(ySNz) and that, for any
f.g:RY SR,

V(L) = 4N§jy (A 3i)By,, 3y, 8 + Linjdy foy 8).  (6.29)

i<j

Now, one can check as in (3.11) that for aRye Pc(X,D), LyP = (try ® IL —
£X.0x) P. Hence, (6.29) implies that for ang, Q € Pc(X, D),

yoN (trN (Q(XN> (trN ® IL - %X-ax) P(XN>)>
=yg (trN(Q(XN)LNP(XN))) (trN(P(XN)LNQ(XN)))
= yﬁ”vz (trN (P(XN) (trN ®IL — %X.ax> Q(XN)>>.

Thus, applying again Lemma (5.19) sinkg has, unde;rz,?”z the same law thaX (1),

we find

that is the symmetry of the operatqQt} ® /L — %X.ax) in Pc(X, D). We can also find
another definition of this symmetric operator thanks again to (6.29) which gives
¥V (try (Q(XN) Ly P(Xy)))
-1 X
4N2 Z Z v (l+ll 1)8M/(Q(XN))II< M/(P(XN))

Lk=1i<j
+ 1,7&] (Q(XN))lk (P(XN))kI)

Now observe that, itA;) = 8ij—u (Y i, )2,
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dy;; (Q(XN))lk = (DxQ8(A;; + A;Fj))lk ifi <j,
3y (Q(XN))y = (Dx Q8N ik,
Ay (Q(Xw)) = (Dx Q8(v=1A;; — \/—_1A:~kj))lk if i <j,

ij

yielding
N (try (Q(XN>LNP<XN)))

Z Z Un G, HYEY ((Dx Q8A ) i(Dx PEA ;1))

lk 1i,j=1
= 2N2 /y trN omy ®trN Omr(DXQ(XN) X Dxp (XN))) dp(‘[)

Now, we can again use Lemma (5.19) to take the lisit> oo and conclude that

wi(o(me - %X-3x> P)= 5 [Hiom @uiom (DxQ x (DxPY) dp(e)
(6.30)
which achieves the proof of the lemma.
For the last point of the lemma, let us first recall tt&tPc(X, D)) C Pc(X, D).
Further, if P € Pr(X, D), (E(P)(X))* = E(P)(X) because
o X.0xP =lim, o 2(P@* — P) =lim, o 2(PXT)* — P)* = (X.0x P)*.
e Similarly, L(P) = (L(P))* if (A ® B)* = B*® A* from which one sees that

(11 ® I o L(P)(X)* = pui ® [ o L(P)(X).

Moreover, if we define formally/ + &)t =3,.,(—8)", then(I + 8)~* is well
defined onP¢ (X, D) since for anyP € P (X, D), for n large enoughz” P = 0. Further,
it is not hard to check that for ang € Pc(X, D), I + E)YI +E) P =1 +B)1( +
E)P = P, implying that 7 + E is invertible with inverse(l + E)~1: Pr(X, D) —
Pr(X, D). Clearly, the symmetry of : Pr(X, D) — Pr(X, D) implies that of (1 +
2)~L. Finally, for any polynomial functiorP € Pr(X, D), ifweletQ = + E)tP e
Pr(X,D),

(P, +B)P) 2, 5 =(U+ E)710, Q)2 5 >0

since by (2),(EQ, Q) 2uy) = 0 for any Q € Pr(X, D). The proof of the lemma is
complete. O

6.2.2. Ildentification of the covariance
Hereafter, a polynomial functio® € Pr (X, D) will be fixed and we shall denote by

'rud
0,(X) = el L “Q. Set, for anys € [0, 1], anyt € £,

A(S, f) = M? [mr(DX Qv)mr(D; Qs)] .
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Note first that by Lemma (5.7), for anye [0, 1], anyt € X,

A(s, ) = i [m. (Dx Q5) (Vs X))m. (D5 Q) (V5X))]. (6.31)

Further, sinceDy is a derivative(Dy P*)(X) = 4/s(Dx P)*(X). Thus, (6.31) reads

MG = i (D3 0])me (D5 2)]. (632

Now, by definition ofX.dy,

1
0,000 = (=L + 5 Xy ) 0, (V5X). (6.33)

But, sinceL is a second order operator, for any [0, 1], L(P*) = s(L(P))*, we find
(LyP)* =s~1L1(P*). Thus, we deduce from (6.33) that

s -1 1 s
0, Q,(X)=s —L1+§X.8X (Q;)(X)
so that, for any > 0,
03(X) = I CLHEXI0 () (X)), (6.34)
Remark that we can compute the commutatoK dfy andDy since
Dx o X.dx P =lim e 7Dy (P*+" — P)

= lim &7 ((1+ £)(Dx )" — Dy P)
E—>
= (Xax ODX + Dx)P
Thus,

1 -1 1
Dy o (—L1+§X.ax> = (—L1+ §X8X+EI) oDy (6.35)
with
T 1 * *
E1=5Dx 0 (5 ®1+1@ 1)) [ dp(x)m, @ m.Dx.
Now, as an operator oAz (X, D), we observed in Lemma (6.22) (1) that

E=—-2ul®IL+ X.0x =—2L,+ X.0y. (6.36)

Plugging (6.34), (6.35) and (6.36) in (6.32) yields, with the observation #hat
commutes withz,

1 1 s = 1 s =
Als, 1) = -pi[e2 9 S (Dy 0)e2 9 D, (Dx 0)]. (6.37)
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Hence, we find that, since+ E is symmetric definite positive,

1
C(Q):/ A(s, 7)dp(1)ds
0
1
= / [ ileden 55 (D, )45, (D3 0)] dp(r)

- / / [0+ (1. (Dy 0))m (Dx )] dp(7) du

Z/Vf{(mr(DxQ)(I + 8 (m(Dx Q))) dp(2)

which is by definitionC(Q). Here, one can check that the last line agrees with our
definition of (1 + E)~1 = >_n>o(—8)" by expending the exponential i@ (yielding
only a finite sum) and integrating the polynomial functionzin
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