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ABSTRACT. — We consider parametric models for finite systems of branching diffusions with
interactions and immigration of particles. Under conditions which link together the asymptotic
behaviour of the process of particle configurations with smoothness of the parametrisation, w
prove local asymptotic normality or local asymptotic mixed normality as the observation time
tends to infinity. The limit theorems which are used follow from dividing the trajectory of the
process of particle configurations into independent life-cycles between successive visits of th
void configurationt 2002 Editions scientifiques et médicales Elsevier SAS
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RESUME. — Ce travail traite des modeles paramétriques pour des systemes finis de diffusion
avec interaction, branchement et immigration. Sous des hypothéses qui combinent le comport
ment asymptotique du processus des configurations des particules et la régularité de la paran
trisation, on démontre la propriété LAN (normalité asymptotique locale) ou LAMN (normalité
mixte asymptotique locale) lorsque le temps d’observation tend vers l'infini. Les théorémes li-
mites utilisés sont obtenus en divisant la trajectoire du processus de configuration dans des cycl
de vie entre des visites successives de la configurationwig@02 Editions scientifiques et mé-
dicales Elsevier SAS

1. Introduction

This paper deals with statistical models for spatially branching particle systems. Sucl
particle systems are of interest in models related to questions from population biology
They have been widely developed from a probabilistic point of view, see for instance
Etheridge [6], Gorostiza and Wakolbinger [7] and Wakolbinger [30]. In this paper, we are
concerned with statistical models for branching particle systems and restrict our attentio
to processes with finite particle configurations where particles are movifRy.if5o
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particle configurations will be points = (x1,...,x") in (RY)!, I > 0. More precisely,
we consider Markovian systems of particles where the joint motidrpafticles

Xl’l
X'=1 :
X.I’I

called/-point motion, during its random lifetime is governed by a stochastic differential
eqguation

dX;'=b(X{, X)) dt +o (X}, X})dW],  1<i<l,

with independentn-dimensional Brownian motionsV?®, ..., W! and with Lipschitz
coefficientsh ando .

A particle located at position’ € R? at timet > 0 which belongs to a configuration
x=(x1, ..., x") of | particles branches with probability

k(x',x)h+0(h) ash—0

in the small time intervalz, r 4+ h]; « (., .) is a continuous nonnegative function called the
branching rate. When the particle “branches”, it dies and gives rise to a random numbe
of offspring, independently of the past, governed by the reproduction law

F(xi,x,dn),

a probability measure oi¥g. The newborn particles choose their positions in space
randomly, independently of the past and independently of the other newborn particles
Additionally, there is immigration of new particles at a configuration dependent rate
c(x). At each immigration time, exactly one particle immigrates, at a location which is
chosen randomly in space. The resulting process of particle configuratien®;)>o

is a cadlag process with values in the spacef all ordered finite configurations
x=(x1, ..., x") of arbitrary lengthl € Np, with x/ € R?.

We are interested in parametric statistical models for branching particle system:
where the underlying drift functioh, the branching rate, the reproduction law, the
distribution in space of the newborn patrticles, the immigration¢abed the distribution
in space of the immigrating particle depend on some unknowimensional parameter
9 and where the resulting procegs of particle configurations can be observed
continuously in time. Necessary and sufficient conditions for local absolute continuity
of laws for such processes on a canonical path space as well as an explicit version
the corresponding likelihood ratio process have been obtained in Locherbach [21]. It
the present paper, we give conditions for local asymptotic normality (LAN) or local
asymptotic mixed normality (LAMN). Once LAN or LAMN holds, it is possible to
characterise asymptotically efficient estimators for the unknown paramet&raind
to determine asymptotically optimal estimation procedures. For the general statistica
background, we refer the reader to Davies [3], Ibragimov and Khas’minskii [14], Le
Cam and Yang [19] and Strasser [27]. Sharp developments of the log-likelihoods car
also be useful in non-parametric situations in order to derive lower bounds for the
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rate of convergence of estimators — this has been used in Hopfner, Hoffmann an
Lécherbach [11] in a context of non-parametric estimation of the branching rate.

We state the basic notions and assumptions in Section 2 and recall the formulas fc
the likelihood ratio process. Section 3 gives the conditions needed to prove LAN or
LAMN. We suppose thap is recurrent in the sense of Harris underand write m?”
for its invariant measuren” for an associated Campbell measure. A crucial condition
is the logarithmic differentiability of — b%(.,.),«%(.,.) etc. at&é = in an L?(m?”)-
sense. Our main result is Theorem 3.7. It states the LAN or LAMN propert§y at
and the joint convergence of the score function martingales — corresponding to the
motion part, the branching part and the immigration part of the experiment — togethet
with their bracket processes to a limit procasdogether with its bracket procesg.
is either a Gaussian martingale with covariance being of diagonal type or a Gaussia
martingale after independent time change. The limit theorems which are used in the
null-recurrent case require a precise control of the tail of the life-cycle lengih of
under? (i.e. the time between successive visits to the void configuration) and follow by
dividing the trajectory ofp into independent life-cycles and from known convergence
results to stable processes. Section 4 — not in a statistical context but of interest in it
own right — is devoted to some considerations concerning the explosion properties c
branching diffusions. We consider the non-interactive case where particles are evolvin
independently. Here, the explosion probability is related to solutions of a backward
stochastic differential equation, and in cases where the backward SDE admits only on
solution, the branching diffusion cannot explode in finite time.

2. Basic assumptions

Write R := RY. We consider a stochastic procegs= (¢,),>o of finite particle
configurations with particles moving iR: ¢ has cadlag paths taking values in the space

s=Rr (2.1)

>0

of ordered configurations wheR? is the spacg¢A} containing the void configuration.
We suppose that satisfies the following assumptions.

Assumption2.1. — For alll > 0 we have drift and diffusion coefficients
b(,.):RxR' — R and o(.,.):Rx R — R»™

which are globally Lipschitz continuous. Théiparticle motions

Xl,[
X' = :
X‘l,l

are solutions of the stochastic differential equation
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dX' =b(X", XYdt +o (X, X)aw!, 1<i<l, (2.2)

during their random lifetime, with independeni-dimensional Brownian motions
Wi, ..., W!driving the motion of every particle, for arbitrafy> 0. Define

a(y,z):=0(y,2)0'(y,z), y€R, zeR,

and suppose thai(y, z) is invertible for ally, z.

Assumption2.2. — For alll > 0 there is a branching rate functian: R x R' —
R,, a jump kernelr from (R x R', B(R x R")) to (R, B(R)) and a kernelF from
(R x R', B(R x R")) to Ny, called the reproduction law, such th&(y, z, {0}) > O,
F(y,z,{1})) =0 for all y € R, z € R'. A particle in positionx’ € R at timet > 0
belonging to a configuration = (x*,...,x’) of | particles dies with position and
configuration dependent rate

K(xi,x).
At its death time it gives rise to a random number of offspring particles according to the
reproduction law
F(xi,x, dn),

again depending on position and configuration of coexisting particles. Every newborr
particle is then distributed randomly in space, independently of the other newborn
particles and independently of the past up to tima&ccording to the law

n(xi,x,dy) onR.

Assumption2.3. — For alll > 0 we are given an immigration rate functionR! —
R, and a kerneb from (R’, B(R')) to (R, B(R)). Assumec(A) > 0. Immigration of
new particles occurs at configuration dependent ¢atéat time ¢ there ard particles
in positionsx = (x,...,x"), then one new particle will immigrate i¢r, ¢ + 4] with
probability

c(x)h +0o(h) ash— 0.

The immigrating particle is distributed randomly in space, independently of the past,
according to

v(x,dy)
on R, depending on the configuratianof already existing particles.

Assumption2.4. — At branching or immigration times, the particles in the new
configuration are rearranged randomly such that every permutation of particles has th
same probability.

Notation 2.5. — For a functiorg defined onR x R’ write g'(z%, ...,7}) := g(z', 2)
for z = (z*,...,7") € R'. We callg symmetric ifg' (z"®,...,77®) = g™ (L, ..., 2))
holds for all permutations : {1, ...,1} — {1,...,1}.
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Assumption2.6. —
(@) All functionsR x R' 3 (y,z) = b(y,2), 0 (y,2), k(y, z) andec(z) are symmetric

and continuous iy, z) or z respectively. The kernel8(y, z,.), #(y,z,.) andv(z,.)
for y € R, z € R! are symmetric in(y, z) and continuous in(y, z) with respect to the
weak convergence of probability measures.

(b) We shall assume that for @l 0 the functions

I
Risx=(x' ... x') = c(x)+ Zk(xi,x),
i=1
N cfx) : and x K(xl’x) —,
c(x)+ > i1k (x', x) c(x) + > i1k (x!, x)
are continuous.

We give an example for possible models of the joint motion of particles which helps
to understand the previous assumption.

=
N
/

Example2.7. — We consider/-particle systems with mean field interaction as
investigated for example in Sznitman [28] and Méléard [23]: TAk&® x R — R,

6 :R x R — R Lipschitz and write

. 1.

LX) 72;19 Xt x!
Other examples and references concerning branching particle systems can be found
Locherbach [21, Chapter 5].

Since we wish to be able to distinguish between branching and immigration events
we suppose the following.

l

E&xx

=1

~||—\

Assumption2.8. — Either: . .

(@) Foralll >0, forallx =(x,....,x"Ye Rland all 1<i <l 7w (x, x, {x'}) =0
Or:

(b) Foralll > 0, forallx = (x%,...,x") e R and 1<i </ we haver (x', x, {x'})) =1
andv(x, {x'}) =0

From now on, all functions and kernéiso, k, c andx, F, v defined above oR x R!
or on R! for somel > 0 will be considered as functions and kernels Brx S or S
respectively. We defink(y, A) =o (v, A)=k(y,A) :=0,7(y, A, )=F(y,A,.):=0
the zero-measure fore R. Forx = (x1, ..., x') define

b(xt, x)
b(x) = : (2.3)
b(x', x)
and
a(xt, x) 0 _ 0
0 ax?,x) 0 0
a(x) = : . : . (2.4)

0 0 a(x!, x)
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Let D*(R,, S) be the Skorokhod space of all cadlag functions taking valugsaith
lifetime (due to possible explosion of the process) (cf. Dellacherie and Meyer [4, X1V,
23-24]). We writeQ2* for the subspace ab*(R ., S) consisting of all functiongy with
the following properties (i) and (ii) below.

(i) There is an increasing sequence of jump timgs=0 <7 <1 < --- with

t, < thy1 If 1, <00, t, 1 te, With ¢, the lifetime of vy, such that for alk > 0
the functiony,, ,..,; is continuous taking values in some fix@tfor somel > 0
depending om and ony.

(i) We havel(y(t,)) #1(y(t,41)) foralln > 0.

We write ¢ for the canonical process @&, A := o (¢, t > 0) andF := (F;),>o for the
filtration generated by; 7, :=N;., F9 with F9 := o (p,: r < T). Then as a special
case of the construction given in Locherbach [21], there is a unique probability measur:
QboweFmy on @ such thatp under Q2o«<Fmv js strongly Markov, satisfying the
model Assumptions 2.1-2.4 above, with= x € S (cf. Locherbach [21, Theorem 3.2]).
We write (T;,),, for the successive jump times @f 7o = 0, andT,, for the lifetime of

¢. In the following, we consider parametric statistical models for branching particle
systems where an unknown parametegoverns the drift functiorb”, the branching
rate functionk?, the immigration rate function’, the reproduction law=?, the jump
kernelr? and the immigration Iaw” Hered belongs to some parameter getwhere

© C R* is open such thath”, o, «?, ¢”, F?, n?,v?) satisfy 2.1-2.3, 2.6, 2.8 and such
that the following non-explosion assumptlon holds

O 9(To=00)=1 forally e, (2.5)

where we write
Qrp 1= QU o At (2.6)

for the law of the particle system undér Note that the diffusion coefficient will be
fixed for the rest of the paper: we observe the progesentinuously in time. We refer
the reader to Section 4 for some conditions ensuring that (2.5) holds.

As a consequence of (2.5), in the following we will work on the sp@ce= Q* N
{T~ = oo}, equipped with the canonicalfield .4 and canonical filtratiofi’ (we use the
same notation as before f@*). We introduce the following notation.

Notation 2.9. — The number of particles in a configuratior S is given byl (x) :=1
if x € R'. We will sometimes identify a configuration= (x%, ..., x") € R' with the
associated finite point measure 8n

l
My = ngf (2.7)
i=1

and writex(f) := [, f (M. (dy) = '8 f(x') for f: R — R measurable. In the same
spirit, we write forx € S and functionsg : R x § — R measurable

[(x)
x(g) :=x(g(,x)): Zg x',x), ifl(x)>0, A(g):=0. (2.8)
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Wy is an element of M7/, MP!), the space of all finite point measures of total miass
on (R, B(R)), equipped with the topology of weak convergence and the corresponding
Borel o -field. We write

oo
MP = mMP,
=0

with M”70 the space containing only the zero measure.
2.1. Likeihood ratio processes

We suppose that for alt’ and 9 € © either 2.8(a) or 2.8(b) holds and that the law
Q..s is locally absolute continuous with respectdg , relative toF — by Theorem 5.12
of Loécherbach [21], it suffices to suppose that the following conditions (i)—(v) are
fulfilled for all ¢ andv’ € ©.
() For all I > 0,x = (x,...,x") e Rt and 1< i <1 «?(x',x) = 0 implies
«? (x', x) =0 andc? (x) = 0 impliesc? (x) = 0.
(i) Foralll >0,x=(x%,...,x) e R, forall 1<i < the measure” (x', x,.) is
absolute continuous with respectsté (x', x, .) with density

. dz? (x,x, .)
X ,x,y) =———0).

19’/19( —
drn?(xi, x,.)

p

We shall writep? /? (x!, x, z) := [[.2) p°/? (x*, x, z*) for z € S where[°_, :=1.
(i) For all I > 0,x = (x%,...,x") € R' and 1< i < [ absolute continuity
F”(x',x,.) < F’(x', x,.) holds.
(iv) Foralll >0andx € R' v?'(x,.) < v’ (x,.) with density

, dv?(x,.)
B/ — ’
q" " (x,y): T

-

Precise necessary and sufficient conditions for local absolute continufty gfwith
respect toQ, , relative tolF are given in Theorem 5.12 of Locherbach [21]. Thanks to
Condition 2.8 we are able to distinguish between branching and immigration events an
to introduce the following notation.

Notation 2.10. —

(@) We write (T)), for the subsequence dff;,), consisting of all immigration
eventsT§ := 0. Analogously, we define a subsequeri&g), of (7,), corresponding
to branching events. We denote the position in space of the immigrating particle at time
T! by ¢!, the position in space of the branching (i.e. dying) particle at tifieby ¢
and the configuration (given by a finite point measureRyrof the offspring particles at
time 7.2 by ¢ 2. Note thatz? can be the zero measure in case of a real death event.

(b) We define point measures associated to branching and to immigration events
Write

w(dt,dx,dy,dp) = Z a(TnB’(anBJ{}P’gf)(dt,dx,dy,dp) (2.9

n}l,TnB<oo
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on(0,00) x S x R x M? and

p(de,dx,dy) = > 81y o (dt, dx, dy). (2.10)

n}l,T,,’<oo

w? has the(Q, 5, F)-compensator

[(pr—) 00
vB2(dt, dx, dy, dp) = dr( > k(@) (Z F (¢!, ¢, {n})

i=1 n=2

n
X/®7T§(‘le—"pf—»d“k)g(w,_,go;‘_,uwl _____ un))(dx,dy,dp)
o k=1

+ Fﬂ ((p;_v Dr—,s {0})8((/;;_’%_’0) (d-xa dyv dp)) > . (211)

u! possesses th@, », IF)-compensator

vl (d1, dx, dy) = (¢,_) dt / V(@ dY )6 (dx.dy).  (2.12)

R

Remark2.11. — Note that the definitions given above of branching times, branching
positions etc. can be made precise, see Locherbach [21], definition 5.10. We skip th
precise definition since the meaning is intuitively clear.

In the following, we will work with occupation time measurmas on (S, B(S)) andz;,
on(R x S, B(R x S)), defined forB € B(R) andC € B(S) via

m(C) = / le(p)ds,  m(BxC)i= / o:(B)le(p)ds.  (2.13)
0 0

We still have to introduce further notation before being able to define the likelihood
ratio process:
Consider the’\/lﬁ;g(Qx,ﬂ, F)-martingale given by

0, s <T,,

s — P1, — fbﬂ(wr) d}’, Tn g § < Tn+1,
Mn,ﬂ = T,

N

(2.14)

Ty

1
¢Tn+l_ - (an - f bﬂ ((p}’) drv N 2 Tn+1-
Ty

Write (/7)1 (x) := (@~ 10" — b"))(x', x) and[?"/? .= (I?'/?); ... ([”"/%))). Then
by Theorem 5.12 of Lécherbach [21], the likelihood ratio prode,l?s/é” of O, 9 t00,»
relative toF is given by A! /" :=log L)’ = 8 ,(Ai)”'/?(t), where log0) := —co
and where
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AD") =3 / Yr 1, O (g, )] TdME?

k=07
1 19/19 v /9
E/ r a(T”7") (gy) ds, (2.15)
0
and
t ’ /
8 /9 K’k B

0 SXxRxMP

+/ / [”‘C_i :|(y,x)(;,L — vBY(ds, dx, dy, dp). (2.16)

0 SXRxMP

t

, F? R
w3y w=[ | {Iogﬁ -t 1} (v x. U(p))) i ds. dx. dy. dp)

0 SxRxMP
t Fﬂ/
w5 - oo o - v @s. dx.dy.ap)
0 SXxRxMP

(2.17)

(A7 (1)

t

:/ / [Iogpﬁ//l9 — pﬁ//l9 + 1] (y, x, (pt ..., pl(”)))uB(ds, dx,dy,dp)
0 SXxRxMP

t
+/ / [pﬂ//l9 — 1 (y,x, (p, ..., p"P)) (uB —vB?)(ds, dx, dy, dp),

0 SxRxMP

(2.18)

wherel(p) =1 if p e MP' and where(p?, ..., p!») is an arbitrary arrangement of the
atoms ofp. For the terms corresponding to immigration events, we can write

! 9 o
(A5)” /7 (1) =/ / [Iogcc—ﬂ - Z—ﬁ + 1} )u! (ds, dx, dy)

0 SxR

t o
+ [— — 1} ) (" = v"7)(ds, dx, dy) (2.19)
[l
and

(AB)"7 (1) = / / logg”/? —q"""? + 1] (x, y)u! (ds, dx, dy) (2.20)
0 SxR
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'/ _ I LY
+//[q 1x, »)(n' —v"7)(ds, dx, dy).

0 SxR

3. Local asymptotic normality and local asymptotic mixed normality for
branching particle systems

In this section, we are going to prove the convergence of the experiment locally arounc
some fixed point? to a Gaussian shift experiment or to a mixed normal experiment
respectively when time of the observation tends to infinity. We start with regularity
conditions on the model.

3.1. Regularity conditions

We call error bound function any functiofi: E x R, — R,, E some measurable
space, such that(e, .) :R; — Ry is non-decreasing for eveeye E, lim o f(e,c) =0
forall e € E and such thay (., c): E — R, is measurable.

For some fixed poin# € ® we impose the following conditions.

Condition D1(#). — For alll > 0 there exists some measurable functl'?jh: R —
R/4*k such that for aly’ € ®

/ . T / .
TV =17 @ =) a7 =TV @' =) @) < f,x, 19" =) [ — 9|

for all x € R, (recalla(x) which has been defined in (2.4)), Wh@ﬂ%l is an error bound
function.
Define I'? (x) := IV (x) for x e SN R, 1 > 0,T?(A) := 0, fi(x,c) for x € §
analogously. Suppose that the following integrability conditions (i) and (ii) are fulfilled.
() [oLT)Tal1(g,)ds is locally integrable with respect t@, , for all x € S.
(i)) Jo fi(ps, 8(¥))ds is locally integrable with respect 19, , for all x € S, for some
constant (¢) > 0.

Condition D2%). — There exists some measurable functién R x S — R* satisfy-
ing the following conditions (i) and (ii) for alb’ € ©.

0)
Kz?’ 2
(FW) —1-@' =&, z)) < fr(yoz 0/ =) 10 =92
for an error bound functiorf? such that
/(ps (k” f2(., ., 8(19))) ds is locally integrable w.r.tQ, ;
0

forall x € S, for somes(¢#) > 0 (see 2.9 for the notation).
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(i)
/% (kK [R")TE](, ) ds
0

is locally integrable with respect 9, , for all x € S.

Condition D3®). — There exists some measurable functioh: R x S x Ng — RF
satisfying the following conditions (i) and (ii) for afl’ € ©.

(i)

2

FY .
S F Gz ) (g 02z ) = 1= @0 = ) F gz

n>0

<f 310 = o) =)
for an error bound functiorf? such that

/(ps (/cl’ff(., ., 8())) ds is locally integrable w.r.tQ, »
0

forall x € S, for somes(¥) > 0.
(ii)
/(ps (Kﬂ (Z F’(,., {n})[(Fﬂ)TFﬂ](., " n))) ds
0 n>0
is locally integrable with respect 9, , for all x € S.

Condition D4%). — There exists some measurable functight R x S x M? — R¥
satisfying the following conditions (i) and (ii) for afl’ € ©.
0)

ZF§<y,z,{n})/®n (v.2.dp") [p"" (v, 2 (PP P')) =11

n>0 an k=1

. 2
— @ =P 7, )] < (v, 7, [ =29 -9

(with definition ®Y_, 77 (v, z, dp*) := eo(dp), O being the zero measure), for an error
bound functionf; such that

/(ps (k” f5(., ., 8(9))) ds is locally integrable w.r.tQ, ;

forall x € S, for somes () > 0.

(ii)
/ ( (ZW ”{”})/®” o dp) [T }(.,.,p)>>ds

0 n=>0 i k=1
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is locally integrable with respect 9, , for all x € S.
In the same manner we impose for the immigration terms the following

Condition D?). — There is some measurable functigh: S — R¥ such that the
following conditions (i) and (ii) hold for al¥’ € ®.

(i)

c?

v 2
(C— —1- @ — z?)Tc”?) (xX) < f3(x, [0/ = o)) [0 — 02

forall x € S, for £2:S x R, — R, an error bound function such that

/d9 (95) £3 (95, 8(9)) ds is locally integrable w.rtQ, , for all x € §
0

for somes () > 0.
(ii)

/ ()T (@) (@) ds

0
is locally integrable w.r.tQ, » for all x € S.

Condition D&®). — There is some measurable functipgh: S x R — R* such that the
following conditions (i) and (ii) hold for alb}’ € ©.

(i)

9 /1 / . 2 1 / /
/(q’“—l—(ﬁ — TGPy (x, dy) < fE(x, [0 — 9[99
R

(with v? (x, dy) the immigration measure of Assumption 2.3) forak S, for £2: S x
R, — R an error bound function such that

/cl9 (<ps)f§(<ps, 8(9)) ds is locally integrable w.r.tQ, » forall x € §
0

for someé () > 0.

(ii)

/ / [G")TG%] (@5, YV (05, dY)C” (05) dis
0

R

is locally integrable w.r.tQ, » for all x € S.
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Under D1-D6, we can define score function martingales and information processes
We write (M 1)” for the locally square integrable martingale given by

t

M1 =Y / (7, OF ()] TdM™ . 120, (3.21)
nz07

with M™? asin (2.14)(M1)” possesses the angle bracket process

(MD)"), / (D) (ym, (), (3.22)

where
(ID)7 (x) := (T Tal”) (x). (3.23)
The second score function martingale is given as

(M2)? ::/ / &7 (y,x)(u? —vB?)(ds,dx,dy,dp), t>0. (3.24)

0 SXRxMP

Then (M2)? is in Mﬁ,’g(Qx,ﬂ,IF), the set of all locally square integrable purely
discontinuousg Q, », F)-martingales, with predictable quadratic covariation process

(M2)"), / (12" (v, 2)ni (dy. d2), (3.25)

RxS
where
(12" (y,2) = (K" &) (v, )K" (¥, 2).
In the same way,

t

M= [ [ F ey ) (e =) ds,dx.dy.dp), 120, (3:26)

0 SxRxMP

(M3)”), = /(13)”(y,z)nz(dy,dz) (3.27)
RxS
with
(I3’ (y,2) = (Z F?(y.z. (nD[F"(F)T] (. z, n))x”(y, 2), (3.28)

n>0
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and

<M4;’:=/ / p’(x.y, p)(u® —vP?)(ds.dx,dy.dp), =0,
0 SxRxMP

with predictable quadratic covariation process
(1a"), = [ a#’ oy
RxS
where

UD(y,z)

= (ZF”(y,z, {n})/®n”(y,z,dp") " (p")] (y,z,p)>l<”(y,z)-

n>0 i k=1

In the same way we define

t
W5) = [ [ & =) s dxdy). 130,
0 SxR

with predictable quadratic covariation

(M5)"), = / (15)” (), (dx)
S

with
(157 (x) := (¢”(¢")T) (x)c” (x)

and

t
(M6)? ::/ / g% (x, ' — v”ﬂ)(ds,dx,dy), t >0,
0 SxR

with predictable quadratic covariation
(M8)"), = [(16” xom (@)
S

with

(16)" (x) = ( [ weanla’ @, y))c%c).

R

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)



E. LOCHERBACH / Ann. I. H. Poincaré — PR 38 (2002) 59-90 73

We will also use the following overall information

4 6
I’(y,2):=ID" @)+ Y UD)' (v.2)+ Y UD)(@). (3.38)

i=2 i=5
3.2. Recurrence

We make the following assumption concerning the asymptotic behavioumuoftier
Qx,ﬂ-

Condition R#). —

(@) ¢ is recurrent undep, » in the sense of Harris, admitting the void configuration
A as recurrent point, with invariant measué normed to be a probability measure in
the case of positive recurrence.

(b) Write Ry :=inf{T,;: n > 0, p7, = A}, R, :=inf{T,, > R,_1: o, = A}. If m?(S) =
oo (null-recurrence), then either

l
Qvo(R2— Ry >1)~ % fort — oo (3.39)

for somex € (0, 1), [ slowly varying at infinity (cf., e.g., Bingham, Goldie, Teugels [1])
or

/Qw(Rz —Ri>0)dt ~I1(x) forx— oo, (3.40)
0

[ slowly varying at infinity.

Note that if our goal were only to derive a quadratic decomposition of the log-
likelihood ratio process, then it would be sufficient to presume quite weak conditions
concerning the asymptotic behaviour @f We would just presume the existence of
a sequencer, () of norming constants for the score function martingales such that
remainder terms of typaﬁ(z‘})fé" f (s, ¢ - u,(9))ds vanish in Q. y-probability as
n — oo, for error bound functionsf (compare also with Hopfner [10], assumptions
A1(9)-A3(?)). In the (here quite natural) situation where@inderQ,  is recurrent, this
is verified if we have weak convergence of additive functiongls= fé k(ps)ds of ¢
underQ, s, for measurablé which are integrable with respect to the invariant measure
m? (this is even more). Weak convergence of such additive functionals is immediate in
the positive recurrent case — however in the null-recurrent case it holds place only unde
the restrictive assumptions stated above under b) on the tails of the life cycle lengths:

Remark3.1. —

(1) Condition R¢) is necessary (and sufficient) for weak convergence of rescaled
additive functionals ofp in the following sense: In casa”(S) = oo, suppose there
exists a setd € B(S) meeting O< m”(A) < oo and a sequence () | 0 asn — oo as
well as a limit proces®’ having continuous non-decreasing paths wigh=0, V; 1 oo
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ast — oo (V is a time change process) such thatfes oo

<r3(0)/1A(<ps)ds> L m’A)-V (3.41)
0

t>0

(weak convergence iD(R,,R) under Q, s for somex € S). Then there is some
a € (0,1] and some regularly varying sequengse,(¢)), € RV_,,»> such that (3.41)
even holds withV = W* andr, (%) = u,(¢#). W for 0 < a < 1 is the Mittag—Leffler
process of index, i.e. W¥ is the process inverse to the stable increasing prasessth
index« € (0, 1). Moreover W' = id. Recall that(u, (1)), € RV_,/> means that there
is some functionZ which is regularly varying at infinity with index-«/2 such that
u, = L(n). In this case, (3.39) or (3.40) respectively necessarily hole.”IfS) < oo,
thenu, (¢) = 1/,/n up to multiplication by a constant.

(2) Up to multiplication by a constant, the invariant measufeis given by

R>
m’(C)i=c-Eyy ( / 1c(<ps>ds>

R

for C € B(S).

Proof of Remark 3.1(1)- The proof of the necessary part is a generalisation of the
classical Darling—Kac theorem (see Darling and Kac [2] and Bingham, Goldie and
Teugels [1], Theorem 8.11.3) which has been obtained by Touati [29], Theorem 10 an
Lemma 5. This generalisation relies heavily on the fact that special funcjiongh
[s f(x)m”(dx) € (0, 00) exist for the Harris process. We refer the reader to Hopfner
and Locherbach [13], Chapter 5 for the details. For the “sufficient” part, we refer to
Resnick and Greenwood [26], Touati [29], Hopfner [9] and to Chapter 4 of Hépfner and
Lécherbach [13] which gives a nice summary of the whole argument.

The following martingale convergence theorem for null-recurrent cases is crucial for
the sequel and has been obtained by Touati [29].

THEOREM 3.2 (Touati [29]). —Suppose thg3.39)or (3.40)hold and writex,, (¥) :=
(M1 — @)Q.5(R — Ry > n))Y? in case 0f(3.39) and u, (?) := (3 [ Qx9(R2 —
Ry > t)dt)Y? in case of(3.40) Consider a locally square integrable martingale

M € MZ . whose angle bracketM) is a m”-integrable additive functional op, i.e.

Ex »((M)g,) < oco. Then we have for the rescaled sequence

1
M" = <7Mn)
Vi, @) >0
in case 0f(3.39)

M5 JYV2B oW asn— oo,

and in case 0(3.40)

M"5 JY2B  asn — oo
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(weak convergence i®(R,,R)). Here B is a standard Brownian motioi* is a
Mittag—Leffler process independent®fand J = Ex s ((M)g,).

Proof. —The basic idea of this theorem is to split the trajectorygointo i.i.d.
sequences of life-cycles and to use results concerning convergence to stable process
See also Resnick and Greenwood [26], in particular for the necessary independence
BandW*. O

3.2.1. When does R(#) hold?

Example3.3. -

(1) Suppose that the family of space and configuration dependent reproduction law
F?(.,.,dn) admits some fixed space and configuration independent subcritical law

F’(dn) suchthat > kF’({k}) <1
k#1

as upper bound in the sense of convolution of probability measures: for gevery,

z € S there is someF™? (y, z,dn) such thatF?(y,z,.) = F’(y,z,.) = F”(.). Suppose
that«” is bounded away from zero (which guarantees that there is always a minimal
amount of “branching”) and that the immigration rateis bounded. Write

N 9
o(t) :=inf{s20: Pulk )du>t}.
/ Hpu)

Then the time-changed proces® ¢ can be constructed in a coupled way with another
branching diffusions where ing particles branch at rate 1, reproduce according'to

with an input of immigrating particles at constant rate, such ¢hab(r) is a subprocess

(in the sense of subpopulations) @) for all z. Sinceg is positive recurrent, with
recurrent pointA (see for instance Zubkov [31] and Pakes [24]), the same necessarily
holds forg o ¢, hence for itself.

(2) Suppose that the reproduction |&# is constant in space and configuration, crit-
ical, admitting second momen‘E,@szl’({k}) = 2B. Suppose further that branching
and immigration occur at constant raies= a” € (0, 00), ¢’ = b” € (0, oo) such that
bY < a” - B. Then Zubkov [31], Theorem 2 shows thatR, — R1 | Q. ) belongs to the

domain of attraction of a positive stable law with index= 1 — %

Example3.4. — We present an example for null-recurrent situations satisfying
condition R{?) with a certain space dependency. Suppose fatc’ andc” depend
only on the sizé of a configuration and are independent of the sp&éebeing binary.
Take some x a < % fixed and some parametric famify® (k): £ € ®, k > 1} such that
% < k% (k) < 1. Suppose that there is some fixed threstiglduch that for alk > kg

(k) =k +a — ki® (k)
and

F(k, {0)) = F&(k,{2}) =1— F*(k,{O}).

2k (k)
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Note thatc® (k) > 0 for all k > ko and that forl, = [(¢,) the number of particles at tinre

k
O cllin=k+1]1=k) = (§+a> o) ash— 0

and
k
Qx,g(lf+h=k—1|l,=k)=§ ~h+o0o(h) ash— 0,

k > ko. Hence under every, (/;),>o restricted to{/, > ko} can be considered as classical
critical branching process with immigrations at constant satd branching at rate 1
for every particle. Define for everya birth rated; and a death rate; by

A= kS () FE(k, {2) 4+ 5 k), s = ki (k) FE (k, {O})

and write

R
mk = 575
Mg Ky
By Karlin and McGregor [18] we know that only the asymptotic behavibus oo of
A; and . determines the asymptotic behaviour/ofBut asymptoticallym; behaves
like
B Ao Ag_1

M1 M
with A; = 1k + o and u, = 3k, which is the invariant measure for a classical birth and
death process. As a consequence we know@hat(R, — Ry > t) ~ C/t*~2* for some
constantC, independently of.

3.3. LANand LAMN at #

We now dispose of all the tools allowing to prove local asymptotic normality or local
asymptotic mixed normality of the model. Wril# := (F,,;),>0. For? € © such that
R(#) holds, let

(M) (1) == u, () (Mi)’, >0, 1<i<B6, (3.42)

tn?

be the rescaled score function martingales where

—1/n if m?(S)=1,
~T Q=)0 p(Ra—Ry>n)Y? if Q. y(Rz—R1>") €
Uun () RV 4, O0<a <1, (3.43)

~E [0 s(Ra— Ri>0dDY?  if L(Rz—Ri| Q)
is relatively stable,

with RV, the set of all regularly varying functions at infinity, with index
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DEFINITION 3.5.— We define a Campbell measu@ on (R x S, B(R x S))
associated to the invariant measuré via

m’ (B x C) := /x(B)lC(x)m”(dx)
S

for B € B(R), C € B(S).

Remark3.6. — Note that in cases whei€,o, 7, F?, 77 are purely position
dependent and wheré (x)v” (x, dy) = u” (dy) independent of e S, with notation

k
F'r’(y, A):=)_ F’(y, {k})Z/nﬁ(y,du’)lA (u'),
1k

k0 I=

y € R, A € B(R), we have a representation

0]

m’ (- x §) = pu’ (Z(U”K”Fﬁnl’)"> U’

n=0

in cases wheré” (R x S) < oo, with notation
® 1
Uﬁ(y, A) = Ey (/ dt 1A(X[)e_ fo K"(Xr)dr> ’
0

y € R, A € B(R), for a diffusion
dX, =b"(X,)dt +o(X,)dW,,

(UPk?)(x,dy) := U?(x,dy)x” (y) (see HOpfner and Lécherbach [12]). This follows
from conditioning on first branching events during one life cyclegofThe same
argument shows that in purely position dependent situations, in null-recurrent cases
m”(A x S) = oo for all A € B(R), hence the projection of:” onto R does no longer
make sense in this case (compare to Hopfner and Locherbach [12], Remark 2.4).

We impose the following integrability conditions.

Condition 1(#). —

@) f1(-,8()) € LY(m?), fi(-,8()) € L (m?) for i =2,3,4 and fi(-,8(?)) €
LY(c’m?) for i = 5,6, where «?’m”(dy,dz) = «”(y,z)m”(dy,dz), c’m?(dx) =
c? (x)m? (dx).

(b) Integrability of the information processes.

Assume that(7i)” e L*(m”) component-wise foi = 1,5,6 and (1i)” € L'(m?)
component-wise for = 2, 3, 4.

(c) Define

(Ji)? = /(Ii)ﬂ(x)m”(dx), i=15,6, (3.44)
S
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i) = / (1) (v, 2y’ (dy, dz), i=23,4, (3.45)
RxS
(‘11)19 0 0 0 0 0
0 (J2)ﬂ 0 0 0 0
| oo 0 U3’ 0 0 0
A=AW)= 0 0 0 (J4)19 0 0 s (3.46)
0 0 0 0 (‘15)19 0
0 0 0 0 0 (JG)ﬂ
6
J=10)=Y (i = [ 1°G.2@" @y.d2) (3.47)
i=1 RXS

with 7? as in (3.38), and assume thats invertible.

Fix some directiork € R* and some poing € ® with R(s). Write 9, := 0 4 u,,(9)h
for a sequence, (¢+) of norming constants as in (3.43). We consider the sequence of
filtered local models a#

(Qu, A, F" AQx gqunon: h € Op}), (3.48)

whereQ, := {y € Q: Yo =x}, Oy, :={h € R*: © +u,(¥)h € ®}, and prove LAN and
LAMN respectively for the filtered local model (3.48). Denote bY/s (1) := L}%/” the
likelihood ratio process oD, ,, to O, , relative toF”" and (Ai)!/ (1) := (Ai)"/? (tn)
fori=1,...,6, AlD(t) ;= A7 (tn).

THEOREM 3.7.— Consider some point € © fixed such thaD1(#)-D6(%), R(¢)
and I(¥) hold, some directiom: € R* fixed and norming constants, (%) as above
in (3.43)

(a) The log-likelihood ratio process o, , to Q. relative to F" admits the
decomposition

1
(ADYY = RT(Miy™" — éhT<(Mi)’“’>h +Rem,, 1<i<6,

and
_ 1 -
Ay =M = SHT(M™")h + Rem .

where M"Y := Y% (Mi)>?, with a process of remainder terms such that
SUR ¢, IRem ., (s)| — 01in Q, »-probability asn — oo for all # > 0.

(b) Let M™? .= (MD)"?,...,(M6)"")T be the array of rescaled score function
martingales. Then we have weak convergence

(M™?,(M™?)) — (Y, (Y)) asn 1 oo,
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(weak convergence iP (R, R% x R%x>®) underQ, ) and
(M™? (M™")) — (Y,(Y)) asn* oo,

(weak convergence iR (R, , R¥ x R¥*K) underQ, ») whereY =Y (®) = (¥1,...,Y")
is a continuoustk-dimensional limit process which is specified (3149) and (3.50)
below. Y is given byY := Z?Zl Yi. Let B be a continuousk-dimensional Gaussian
martingale on some arbitrary probability space with covariance matyix= A(¢) as
in (3.46)above. Then

Y=B, (Y)=A ifm”(S)=1orif (3.40)holds (3.49)

Y=BoW® (Y)=A-W* ifQ.y(Ra—Ri>)eRV,, O<a<1l (3.50)
with B independent of the Mittag—Leffler procé&$ of indexa.

Proof. —(1) The proof of the decomposition of the log-likelihood ratio processes
imitates a well-known scheme, see for instance the proof of Theorem 1 in Luschgy [22].
We just give the basic ideas, for the decomposition( &2)"/) — the other terms are
treated analogously.

In a first step, we consider the martingale g — 1] * (1® — v®?) of (A2)!/}.
Define

tn

O
Y ::/ / {K —1— 0, — )K" (v, x) (1B —vB7)(ds, dx, dy, dp)

Kl?
0 SXxRxMP

Kﬂ”
= Lﬁ - 1} w (P =B —hT(M2)"(1).

Then by assumption D2{, Y" belongs toM2.(Q,.»,F"). Lenglart's domination
theorem (cf. Jacod and Shiryaev [16, 1.3.30]) yields

0.5 (sup|Y"(s)| > €) < g + 0.n (Y™, =) (3.51)

s<t

for all + > 0, for all ¢ > 0 andn > 0. Using the form of the compensatof-? of u?
underQ, » asin (2.11) and condition D2{ we achieve

tn

(¥, < lhlzun(ﬂ)Z/% (k" F2C. o 190 — 9D) ds. (3.52)
0

Thanks to the assumptions gff and due to condition RX), this last term tends to
0 in probability asn — oo. Using Lenglart's inequality, this leads to the required
convergence

sup|Y"(s)| = 0 in Q, y-probability asn — oo.
s<t
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In a second step it remains to consider terms

tn
Un

U 1
R"(t) := |ogK_ _ +1+ —(u”(ﬁ)hT/'cﬁ)z (v, x)uB(ds,dx,dy,dp).
0 SxRxMP KoK 2

These terms are treated exactly as in Luschgy [22], proof of Theorem 1, using Lenglart
inequality a couple of times.

The other terms corresponding te= 3,4, 5,6 are handled analogously. Thus the
decomposition of Ai)*/? for i =2, ..., 6 follows with [(Mi)"?] instead of((Mi)™?).

n, o

We show that foi =2, ...,6,

suph ([((Mi)""] — {(Mi)"?))(s)h — 0 in Q, 5-probability (3.53)

st

which is seen as follows. For arbitragy> 0, fori = 2, we have

RT([(M2)"7] — (M2)™"))(s)h

sn
.9 2
:“n(ﬁ)z/ / (hTKﬂ) 1{|Mn(19)th0|>5}dH’B

0 SxRxMP

sn

.9 2
- un(ﬂ)z/ / (hTKﬂ) l{\un(19)th%”|>8} dVB’ﬂ + Rn,l?,h,s(s)a
0 SXxRxMP

whereRr, ... € M2.(Q. .9, F") is given by

sn

o2 !
Ry 9,n,6(5) =/ / (0 NRTE") Ly om0 1 <oy d (B — VB,
0 SXxRxMP

By assumption i)

tn

L9 2
un(ﬁ)z/ / (hTKﬂ) 1{|Mn(17)th?19\>8} dl)B’l9

0 SxRxMP

and as a consequence also

tn
. 2
u”(ﬂ)z/ / (h"?) L, oyt ey A1t
0 SXRxMP

tend to 0 inQ, ,-probability asn — co. Moreover,

tn

(Roond® <e? [ [ (un@nTe?)av®?
0 SXRxMP
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and
tn tn
(uy )RR 2dv®? = 1T (un(z?)z/(ps ((12)) ds> h
0 SxRxMP 0

which in case ofn” (S) = oo tends to [, ((12)” (y, z)m” (dy,dz)] - W¥ and in case
m?(S) =110, s(I2)"(y,z)m" (dy,dz)] - t. Hence(R, 5 ) (¢) is bounded inQ, ;-
probability, and since may be chosen arbitrarily small, this leads to (3.53).

The decomposition ofA1)"’{ is shown analogously.

(2) It remains to prove the joint weak convergence of the rescaled score functior
martingales together with their angle bracket processes. $Mdg’ is a continuous

martingale andM2)” —(M6)” are purely discontinuous martingales,

(M) (Mj)"")") =0

forall 1</,m<kandforallj=2...,66.(Mi"" and(Mj)"” fori=2,3,4 and
j =5, 6 do not have any common jumps. Hence,
(M), ((Mj)"")"] =0

forall 1<, m <k, foralli =2,3,4 andj =5, 6, and therefore also

(MY ((Mj)"")"y =0

forall 1<I,m <k, foralli=234 andj=5,6. Furthermore, foi =2, 3,4 and
j:2?3?4? i#j!

(MY (M), = u, (9)? / UIij)" (v, D)0 (dy, dz),

RxS

(see (2.13) for the notation) and foe= 5,6, j =5, 6 with j #1,

((MD)"™? (M), = u, (9)? / (156)” (x)m (dx),
S

where

(129" 0.2 i= (S P Oz ) [F 0.2 @) 0] Je 02, @.54)

n>0
(124" (y,2) := (Z FY(y,z, {n})
n>0

X [/@”ﬂ(y,z,dp")ﬁl’(y,z,p)l (/%”)T(y,z))fcl’(y,z), (3.55)

an k=1
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(I3 (y,2) = (Z F’(y,z,{n}) (3.56)
n>0
X [/@”ﬂ(y,z,dpk)ﬁ’(y,z,p) (Fﬂ)T(y,z,n))Kﬂ(y,z)
RN k=1
and
(156)” (x) := (/ v (x, dy)g? (x, y)) (c'ﬂ)T(x)cﬂ(x). (3.57)
R

Due to our differentiability assumptions Dij, all these terms (3.54) to (3.57) vanish.
Consider for exampl¢/23)” and let¢, — ¢ such that, — 9 = §,e, 8, | 0, for some
arbitrarye € R* with |e| = 1. Then we get foé € R¥ arbitrary,

FSn
Fﬂ

.1 .
129" 06 = - (S F oz ) 8Tz = gz ) 1
m \n>0
x (k") (v 20" (v, 202
forall y € R andz € S. By Jensen’s inequality and assumption DB(
&

. F
5 Oz ) BT F7 (3. zm) -

Oz ) +1]
n>0 F9

an . 2 1/2
< (ZFI?()”Z,{”}){F& (y9za{n})_l_aneTFﬁ(y9Z=n):| )
n>0

< \/ fg’(y»zaan) '811-

Here \/ f3(y,z,8,) — 0 asn — oo. Hence we have'(123)” (y,z)é = 0 for all e,
¢ € R¥ which meang723)? (v, z) = 0. The arguments for the other covariation terms
are analogous.

Then the joint weak convergence of the rescaled score function martingales togethe
with their angle brackets follows from Theorem 3.2 above of Touati: Note that by
conditions 1¢) and R(), all martingaleg Mi)™?” satisfy a Lindeberg condition

1
U ()

tn
/ / (2L e vy v (ds, dx) — O in probability
0

asn — oo, for all r ands > 0, wherev” (ds, dx) denotes the compensator of jumps of
(Mi)?. Then by Jacod and Shiryaev [16], VI1.3.26, IX.1.19 and VI.6.1, convergence of
(Mi)™? to the limit process’’ implies convergence of the paigMi)™?, (Mi)™”)) to
(Y?, (Y")) and thus the assertion.

(3) The decomposition of\)’; follows from the decomposition of theai)!/; for
1<i <6since(M™?) =32 (Mi)"?), as((Mi)™?, (Mj)~?) = 0 for i # j which
was shown above. This completes the proof of the theorem.
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Example 3.8. — We continue our Example 3.4. Suppose for simplicity, that the fixed
thresholdky of 3.4. equals 0. We present a location-scale model for the fafly.
Choose some fixed functiory: R, — [%, 1] which is continuously derivable, such that
ko has compact suppor, being the derivative okq. We define foré = (¢1,£?)

(0, 00) x (0, 00)

i (k) := ko (€L + kE?).

Then the integrability assumptiondlf is clearly satisfied, and Theorem 3.7 is applicable
since by 3.4 R{) also holds. Roughly speaking, null-recurrent situations are treatable
in cases where the dependency on the parameter is restricted to small sets such tt
the integrability condition k) holds and such that we dispose nevertheless of the limit
theorems which we need.

Remark3.9. — (1) In case of ergodicity (see for instance 3.3(1)), conditidhi not
restrictive since in this case?’ is finite.

(2) In situations as in 3.3(2), conditiond) will neverbe fulfilled, since in this case all
error-bound terms and all information terms depend only on the positions of particles,
not on the whole configuration. As a consequence, the measure which is involved ir
condition 1) is the measure:” (- x S) which — as pointed out in 3.5 — is identically
equal to infinity. Hence it does not make sense in this situation to try to obtain locally
guadratic approximations of likelihoods with renormalisation factors coming from a life-
cycle decomposition ap.

Remark3.10. — Suppose we have LAN)( or LAMN(?). As a well-known conse-
quence of LAN) or LAMN(#), we are able to characterise efficiency of estimators for
the unknown parametet. Consider estimatorés,),>1 Which are regular in the sense
of Hajek (see Hajek [8]), i.e. satisfying

w

Vi L(ua @) (g0 — @ + un () | Qu.psuyoon) —: F

where F is independent of. (These estimators are approximately equivariant in small
neighbourhoods aof .)

Hajek [8] shows that under LANY) necessarilyF = N(0,J71) % Q for some
probability measure?, with J as in (3.47). Under LAMN¢), Jeganathan [17] proves
for sub-convex loss functioris.) that

/l(z)F(dz) //P 1(dl)N _1)(dv)l(v)

where P ("1 js the distribution of(Y)1, with ¥ as in Theorem 3.7. This j_ustifies calling
an estimatorg, regular andefficient at¢, if F = £L(Z | Py) whereZ = (Y)IlYl is the
maximum likelihood estimator in the limit model.
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4. Someremarkson explosion for branching diffusions
4.1. Thecasewithout interactions

In a first step, we consider branching diffusions without interactions and immigra-
tions: In casel = 1, suppose that all particles move and evolve independently, that the
immigration ratec fulfils ¢(.) = 0 (no immigrations) and that Assumption 2.8(b) holds.
In the sequelx will always denote a point ifR. Consider a filtered probability space
(2, (G),, F, P,) satisfying the usual conditions and &, (G;),)-Brownian motionw,
one-dimensional. LetG,); be the filtration generated By and consider the diffusion
process

t t
X,=x+/b(xs>ds+/a(xs)dws
0 0

of (2.2) driving one-particle motions of the branching diffusion process. Then, condi-
tioning on the first branching event in the particle process, with

u(t, x) = QU7 OTN(T < 1),

we arrive at the expansion
t ¢
u(t,x) = / E, (e_fo K(X”)d“K(XS)g(XS, u(t —s, XS))) ds, (4.58)
0

where

glx,s):=1=> F(x, {kpL—s5* for|s|<L
k=0
In the following, we use techniques from the theory of backward stochastic differential
equations (see for example El Karoui, Peng and Quenez [5] or Pardoux and Peng [25
in order to be able to handle the Feynman—Kac type formula (4.58). We fix §ome
and put

Y, :=u(T —1,X,) forO<sr«<T,
€ \= e_foK(Xu)du» A =rk(X)g(X:, Yy).
Then the Markov property gives

T
)_][ = elY[:/Ex(eSAS |g[)ds'
t

Let B, := ¢,A,. In a first step, suppose that.) is bounded. Therg := fOT B, ds €
L?(P,,Gr), hence by the representation theorefm= E, (£) + fOT Z,dW;. Taking
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V,:=& — [, Byds, we have

T T t
/Bsds=V,=Ex(§)+/stWs—/Bsds
t 0 0

and
T T
ozwza@njimm—/&w
0 0

Thus we get folt;, = E.(V; | G,)
T T
ﬁzEA%WQ—Wz—/AdM+/fM&
t t

SinceY, = (¢,)"1Y, andd(e,) 1 =k (X,)(e;) L d1,

T T
0=n=n+/&am*+/@rwﬁ
t t

T T
:Y,+/st(xs)ds —/Asds+Ml,
t t

whereM is a martingale. Taking conditional expectations, we thus have

T

Y, =E, ({/K(Xs)(g(xs= Yy) — Ys) dS} | gt) . (459)

t

If «(.) is unbounded, tak& such thatfx| < R/2, write 7z :=inf{¢: |X;| > R} and use
a representation theorem fof := fOT By r,ds € L?(Py, Gr). Then following the same
arguments as above, one arrives at a backward representatidf fer (e,MR)‘l YR,

with YR := [T E,(Bsrr,ds | G), andR — oo gives the assertion (4.59).

THEOREM 4.1. — Suppose that

o [k(x)| <C@A+ |x|P) for p <2

o |g(x,u)—gx,u)| < Llu—u|forall x e R.

o [[blloc <00, [lo]loc < 00.
We consider only solutions of (4.59)with E,. (| Y, |?) < oo for all stopping times < 7.
Then we have unicity fqd.59)in casep < 2. In casep = 2, unicity holds if additionally

T < (VBCL + Do)t

Proof. —
(1) In afirst step we show that any soluti@nof (4.59) satisfies

E,(IYrrre1?) <3, (4.60)
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if R is sufficiently large.
Write for shortf (s, x, u) := k(x)(g(x, u) — u). Then (4.59) implies

T ATR

[ 1. x v ds| g)

INTR

YtArR = E)c <YTA‘[R +

Thus with A := {|Xo| < R/2},

T
1A|YtArR| < E; <{1A|YTMR| + / | f(s A TR, XsArRa YSAIR)|1A ds} | ger>- (4-61)
/

Now
|f (5 A TRy Xgnegs Yonee)11a S C (14 RP)(L+ [Yinrel1a)
sinceg(., .) is bounded by 1. MoreovefYr ;114 = (|Y7z,114) (L4 - Lizp<1y). HENCE

1/2 1/2
Ex(lYTArR| lA | gt/\rR) < E)c (|YT/\1'R |21A | gt/\rR) / E)c (1Al{rR<T} | gtA‘[R) /

and thus forr sufficiently large

Ex (Ex(|YT/\TR|1A | gl/\TR) ) 2)Y2

S E (|Yrpepl?) 7 Pe(tg < T)Y?
<V26 TR (14 E (Y70 2))

since/x <1+ x. ToobtainP,(tx < T) < 26 2CTR? , hote that for evenRk such that
R/2>||b||sT + x the following holds:

t
Pi(tg <T) = Py (suplX;| > R) < P, <SUPI o (Xy)dWs| > g)

1<T S

Write M, := fé o (X,)dWy, then(M), < |||, - t, hence by an exponential inequality

P(su |M|>R><2ex< R® )
P Z 5 ) SO Taro 2

and thus the assertion withy, := 1/(8T ||o ||2.).
As a consequence of the previous considerations, coming back to Eq. (4.61), we arriv
at

2

T
Ey(|Yinee ) S V26 TR (14 E, (|Y700,2)) + C2(1+ RP) / 14 E (|Ysnee)?)) ds

and hence by Gronwall's inequality, With(r) := E, (| Yz |2,

£ < ([V2e TR (14 f(T))] + 1) @R, (4.62)
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Now fort — T we obtain
F(T) V2R 4 2678 (T 4 1.
If R is sufficiently Iarge,«/ie‘CTR2 < 1/2, and hence
E(IYra?) <3,

which is (4.60). ) )
(2) Now let (Y,);<r and (Y,);<r be two solutions of (4.59A, :=Y, — Y; and
Afs:=f(s, X5, Y5) — f(s, Xy, ¥y). Then

TATR

/ Afonceds | g)

INTR

AtArR = Ex (ATAIR +

Since|Afipey| <K C(L+ R?) - (L +1) - |Agnrgl, We have withA := {| Xo| < R/2}

T
Ll Asnee] < Ex (LalArnegl | Ginee) + C(L + 1) (1+ R?) / Ev(L14Aspegl | Goney ) ds
t

Thus Gronwall’s inequality yields
Ec(|Aipeg]) < Ex(|Agpggl) - @GHFOT0 (4.63)

with « := C(L + 1). Note thatAr,., =0 if tx > T. As a consequence,

= 1/2
Ec(1A7ng ) = Ex (1A 7 reg | L <ty) < Ex (1Vrnrg |2+ [Prarg[2) 72 Pe(tr < THY?

<626 K
by (4.60) and (1). This yields

Ex(lAtAr |) < cr - e—CTR2+C(L+l)(T—t)Rp
R

for some constant; depending off. If p < 2, thene=CrR*+CL+DIT-DR” claarly tends
to 0 asR — oo. If p = 2, then eCrR*+CL+DT-DR? tands to 0 ifCy — C(L + 1) x
(T —t)>0forallt <T whichis true ifT < 1/(/8C(L 4+ 1)||o|l)- This finishes the
proof. O

COROLLARY 4.2. — Consider a branching diffusion without interactions of particles,
with immigrations at bounded rate fulfilling Assumptior2.8(b)and all conditions of
Theoremt.1 Then the branching diffusion does not expto@é«<F7 (T < 00) =
for all initial configurationsx € S.

Proof. —(1) Consider first a branching diffusion witlf.) = 0. Then by Theorem 4.1,
for T sufficiently small, for allx € S "R, Qb o< O T (T < T)=u(T,x) =0 (note
thatY, =0, 0<t < T, is always a solution of (4.59)). Using the Markov property, we
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thus arrive atQb-o<0Fmv(T < t) =0 for all ¢, hence the assertion for everye R.
Now for x = (x%, ..., x') € S, by the independence assumptions,

Qb.U,K,O,F,n,V(TOO < OO) 1— H Qb o,k,0,F,m, v — OO) —

X

(2) A branching diffusione with bounded immigration rate < |c|l can be
constructed in a coupled way with a branching diffusgowith immigrations at constant
rate||c|l» such that is a subprocess @. It is clear, thatp cannot explode in finite time
by (1), hence the same holds for O

Remark4.3. — The relation of explosion problems for branching processes and
non-linear partial differential equations is well-known, see for instance lkeda and
Watanabe [15] for treatment of explosion problems for branching Brownian motion. In a
sense, our Theorem 4.1 is not really far from explosion problems for branching Browniar
motion since drift and diffusion coefficients are supposed to be bounded. However, we
give the proof of Theorem 4.1 in detail since the theory of partial differential equation is
not involved at all — the arguments we are using are purely probabilistic ones.

4.2. Thecasewith interactions

In situations with interactions, methods as in Section 4.1 (conditioning on first
branching events etc.) are no more helpful, and the only methods we can use are couplir
methods. We recall a result of Lécherbach [21], Proposition 5.13.

PROPOSITION 4.4. —Suppose thad < a < «(.,.) < b < 00, thatc(.) < d < oo for
some constants, b, d, and that the family of reproduction laws(x’, x, .) admits as
upper bound(in the sense of convolution of probability measiiresme lawF with
finite mean offspring number

F is a probability measure oMo \ {1}, )k F({k}) < oo,
k#1

and F(x',x,.) « G(x',x,.) = F() for all (x',x) € R x S for some kernelG from
(R x S,B(R x S)) to Np. ThenQ’;*"’K’C’F*”’”(TOO <o) =
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