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ABSTRACT. – We consider parametric models for finite systems of branching diffusions with
interactions and immigration of particles. Under conditions which link together the asymptotic
behaviour of the process of particle configurations with smoothness of the parametrisation, we
prove local asymptotic normality or local asymptotic mixed normality as the observation time
tends to infinity. The limit theorems which are used follow from dividing the trajectory of the
process of particle configurations into independent life-cycles between successive visits of the
void configuration. 2002 Éditions scientifiques et médicales Elsevier SAS
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RÉSUMÉ. – Ce travail traite des modèles paramétriques pour des systèmes finis de diffusions
avec interaction, branchement et immigration. Sous des hypothèses qui combinent le comporte-
ment asymptotique du processus des configurations des particules et la régularité de la paramé-
trisation, on démontre la propriété LAN (normalité asymptotique locale) ou LAMN (normalité
mixte asymptotique locale) lorsque le temps d’observation tend vers l’infini. Les théorèmes li-
mites utilisés sont obtenus en divisant la trajectoire du processus de configuration dans des cycles
de vie entre des visites successives de la configuration vide. 2002 Éditions scientifiques et mé-
dicales Elsevier SAS

1. Introduction

This paper deals with statistical models for spatially branching particle systems. Such
particle systems are of interest in models related to questions from population biology.
They have been widely developed from a probabilistic point of view, see for instance
Etheridge [6], Gorostiza and Wakolbinger [7] and Wakolbinger [30]. In this paper, we are
concerned with statistical models for branching particle systems and restrict our attention
to processes with finite particle configurations where particles are moving inR

d. So
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particle configurations will be pointsx = (x1, . . . , xl) in (Rd)l, l � 0. More precisely,
we consider Markovian systems of particles where the joint motion ofl particles

Xl =
X1,l

...

Xl,l

 ,

calledl-point motion, during its random lifetime is governed by a stochastic differential
equation

dXi,l
t = b

(
Xi,l

t ,Xl
t

)
dt + σ

(
Xi,l

t ,Xl
t

)
dWi

t , 1 � i � l,

with independentm-dimensional Brownian motionsW 1, . . . ,W l and with Lipschitz
coefficientsb andσ .

A particle located at positionxi ∈ R
d at timet > 0 which belongs to a configuration

x = (x1, . . . , xl) of l particles branches with probability

κ
(
xi, x

)
h+ o(h) ash→ 0

in the small time interval(t, t+h]; κ(., .) is a continuous nonnegative function called the
branching rate. When the particle “branches”, it dies and gives rise to a random number
of offspring, independently of the past, governed by the reproduction law

F
(
xi , x, dn

)
,

a probability measure onN0. The newborn particles choose their positions in space
randomly, independently of the past and independently of the other newborn particles.
Additionally, there is immigration of new particles at a configuration dependent rate
c(x). At each immigration time, exactly one particle immigrates, at a location which is
chosen randomly in space. The resulting process of particle configurationsϕ = (ϕt)t�0

is a càdlàg process with values in the spaceS of all ordered finite configurations
x = (x1, . . . , xl) of arbitrary lengthl ∈ N0, with xj ∈ R

d .
We are interested in parametric statistical models for branching particle systems

where the underlying drift functionb, the branching rateκ , the reproduction lawF , the
distribution in space of the newborn particles, the immigration ratec and the distribution
in space of the immigrating particle depend on some unknownk-dimensional parameter
ϑ and where the resulting processϕ of particle configurations can be observed
continuously in time. Necessary and sufficient conditions for local absolute continuity
of laws for such processes on a canonical path space as well as an explicit version of
the corresponding likelihood ratio process have been obtained in Löcherbach [21]. In
the present paper, we give conditions for local asymptotic normality (LAN) or local
asymptotic mixed normality (LAMN). Once LAN or LAMN holds, it is possible to
characterise asymptotically efficient estimators for the unknown parameter inϑ and
to determine asymptotically optimal estimation procedures. For the general statistical
background, we refer the reader to Davies [3], Ibragimov and Khas’minskii [14], Le
Cam and Yang [19] and Strasser [27]. Sharp developments of the log-likelihoods can
also be useful in non-parametric situations in order to derive lower bounds for the
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rate of convergence of estimators – this has been used in Höpfner, Hoffmann and
Löcherbach [11] in a context of non-parametric estimation of the branching rate.

We state the basic notions and assumptions in Section 2 and recall the formulas for
the likelihood ratio process. Section 3 gives the conditions needed to prove LAN or
LAMN. We suppose thatϕ is recurrent in the sense of Harris underϑ and writemϑ

for its invariant measure,̄mϑ for an associated Campbell measure. A crucial condition
is the logarithmic differentiability ofξ �→ bξ (., .), κξ (., .) etc. atξ = ϑ in anL2(m̄ϑ)-
sense. Our main result is Theorem 3.7. It states the LAN or LAMN property atϑ

and the joint convergence of the score function martingales – corresponding to the
motion part, the branching part and the immigration part of the experiment – together
with their bracket processes to a limit processY together with its bracket process.Y
is either a Gaussian martingale with covariance being of diagonal type or a Gaussian
martingale after independent time change. The limit theorems which are used in the
null-recurrent case require a precise control of the tail of the life-cycle length ofϕ

underϑ (i.e. the time between successive visits to the void configuration) and follow by
dividing the trajectory ofϕ into independent life-cycles and from known convergence
results to stable processes. Section 4 – not in a statistical context but of interest in its
own right – is devoted to some considerations concerning the explosion properties of
branching diffusions. We consider the non-interactive case where particles are evolving
independently. Here, the explosion probability is related to solutions of a backward
stochastic differential equation, and in cases where the backward SDE admits only one
solution, the branching diffusion cannot explode in finite time.

2. Basic assumptions

Write R := R
d . We consider a stochastic processϕ = (ϕt)t�0 of finite particle

configurations with particles moving inR: ϕ has càdlàg paths taking values in the space

S = ⋃
l�0

Rl (2.1)

of ordered configurations whereR0 is the space{�} containing the void configuration.
We suppose thatϕ satisfies the following assumptions.

Assumption2.1. – For alll > 0 we have drift and diffusion coefficients

b(., .) :R ×Rl →R and σ (., .) :R×Rl → R
d×m

which are globally Lipschitz continuous. Thenl-particle motions

Xl =
X1,l

...

Xl,l


are solutions of the stochastic differential equation
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dXi,l
t = b

(
Xi,l

t ,Xl
t

)
dt + σ

(
Xi,l

t ,Xl
t

)
dWi

t , 1 � i � l, (2.2)

during their random lifetime, with independentm-dimensional Brownian motions
W 1, . . . ,W l driving the motion of every particle, for arbitraryl > 0. Define

a(y, z) := σ (y, z)σ T(y, z), y ∈R, z ∈Rl,

and suppose thata(y, z) is invertible for ally, z.

Assumption2.2. – For all l > 0 there is a branching rate functionκ :R × Rl →
R+, a jump kernelπ from (R × Rl,B(R × Rl)) to (R,B(R)) and a kernelF from
(R × Rl,B(R × Rl)) to N0, called the reproduction law, such thatF(y, z, {0}) > 0,
F(y, z, {1}) = 0 for all y ∈ R, z ∈ Rl. A particle in positionxi ∈ R at time t > 0
belonging to a configurationx = (x1, . . . , xl) of l particles dies with position and
configuration dependent rate

κ
(
xi, x

)
.

At its death time it gives rise to a random number of offspring particles according to the
reproduction law

F
(
xi , x, dn

)
,

again depending on position and configuration of coexisting particles. Every newborn
particle is then distributed randomly in space, independently of the other newborn
particles and independently of the past up to timet , according to the law

π
(
xi, x, dy

)
onR.

Assumption2.3. – For alll � 0 we are given an immigration rate functionc :Rl →
R+ and a kernelν from (Rl,B(Rl)) to (R,B(R)). Assumec(�) > 0. Immigration of
new particles occurs at configuration dependent ratec: If at time t there arel particles
in positionsx = (x1, . . . , xl), then one new particle will immigrate in(t, t + h] with
probability

c(x)h+ o(h) ash→ 0.

The immigrating particle is distributed randomly in space, independently of the past,
according to

ν(x, dy)

onR, depending on the configurationx of already existing particles.

Assumption2.4. – At branching or immigration times, the particles in the new
configuration are rearranged randomly such that every permutation of particles has the
same probability.

Notation 2.5. – For a functiong defined onR × Rl write gi(z1, . . . , zl) := g(zi, z)

for z = (z1, . . . , zl) ∈ Rl. We callg symmetric ifgi(zπ(1), . . . , zπ(l)) = gπ(i)(z1, . . . , zl)

holds for all permutationsπ : {1, . . . , l} → {1, . . . , l}.
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Assumption2.6. –
(a) All functionsR × Rl � (y, z) �→ b(y, z), σ (y, z), κ(y, z) andc(z) are symmetric

and continuous in(y, z) or z respectively. The kernelsF(y, z, .), π(y, z, .) andν(z, .)
for y ∈ R, z ∈ Rl are symmetric in(y, z) and continuous in(y, z) with respect to the
weak convergence of probability measures.

(b) We shall assume that for alll>0 the functions

Rl � x = (x1, . . . , xl
) �→ c(x)+

l∑
i=1

κ
(
xi , x

)
,

x �→ c(x)

c(x)+∑l
i=1 κ(x

i, x)
and x �→ κ(xi, x)

c(x)+∑l
i=1 κ(x

i, x)
, 1� i � l,

are continuous.

We give an example for possible models of the joint motion of particles which helps
to understand the previous assumption.

Example2.7. – We considerl-particle systems with mean field interaction as
investigated for example in Sznitman [28] and Méléard [23]: Takeb̃ :R × R → R,
σ̃ :R ×R → R

d×m Lipschitz and write

b
(
xi, x

) := 1

l

l∑
l=1

b̃
(
xi, xj

)
, σ

(
xi, x

) := 1

l

l∑
l=1

σ̃
(
xi , xj

)
.

Other examples and references concerning branching particle systems can be found in
Löcherbach [21, Chapter 5].

Since we wish to be able to distinguish between branching and immigration events,
we suppose the following.

Assumption2.8. – Either:
(a) For alll > 0, for all x = (x1, . . . , xl) ∈Rl and all 1� i � l π(xi, x, {xi})= 0.

Or:
(b) For alll > 0, for allx = (x1, . . . , xl) ∈Rl and 1� i � l we haveπ(xi, x, {xi})= 1

andν(x, {xi})= 0.

From now on, all functions and kernelsb,σ, κ, c andπ,F, ν defined above onR×Rl

or on Rl for somel � 0 will be considered as functions and kernels onR × S or S
respectively. We defineb(y,�)= σ (y,�)= κ(y,�) := 0,π(y,�, .)= F(y,�, .) := 0
the zero-measure fory ∈R. Forx = (x1, . . . , xl) define

b(x) :=
b(x1, x)

...

b(xl, x)

 (2.3)

and

a(x) :=


a(x1, x) 0 · · · 0

0 a(x2, x) 0 0
... · · · . . .

...

0 · · · 0 a(xl, x)

 . (2.4)
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LetD∗(R+, S) be the Skorokhod space of all càdlàg functions taking values inS with
lifetime (due to possible explosion of the process) (cf. Dellacherie and Meyer [4, XIV,
23–24]). We write&∗ for the subspace ofD∗(R+, S) consisting of all functionsψ with
the following properties (i) and (ii) below.

(i) There is an increasing sequence of jump timest0 = 0 < t1 � t2 � · · · with
tn < tn+1 if tn < ∞, tn ↑ t∞, with t∞ the lifetime ofψ , such that for alln � 0
the functionψ|[tn,tn+1[ is continuous taking values in some fixedRl for somel � 0
depending onn and onψ .

(ii) We havel(ψ(tn)) �= l(ψ(tn+1)) for all n� 0.
We writeϕ for the canonical process on&∗, A := σ (ϕt, t � 0) andF := (Ft )t�0 for the
filtration generated byϕ; Ft := ⋂

T>t F 0
T with F 0

T := σ (ϕr : r � T ). Then as a special
case of the construction given in Löcherbach [21], there is a unique probability measure
Qb,σ,κ,c,F,π,ν

x on &∗ such thatϕ underQb,σ,κ,c,F,π,ν
x is strongly Markov, satisfying the

model Assumptions 2.1–2.4 above, withϕ0 = x ∈ S (cf. Löcherbach [21, Theorem 3.2]).
We write (Tn)n for the successive jump times ofϕ, T0 = 0, andT∞ for the lifetime of
ϕ. In the following, we consider parametric statistical models for branching particle
systems where an unknown parameterϑ governs the drift functionbϑ , the branching
rate functionκϑ , the immigration rate functioncϑ , the reproduction lawFϑ , the jump
kernelπϑ and the immigration lawνϑ . Hereϑ belongs to some parameter set,, where
, ⊂ R

k is open such that(bϑ, σ, κϑ, cϑ,F ϑ,πϑ, νϑ) satisfy 2.1–2.3, 2.6, 2.8 and such
that the following non-explosion assumption holds

Qx,ϑ(T∞ = ∞)= 1 for all ϑ ∈ ,, (2.5)

where we write

Qx,ϑ :=Qbϑ,σ,κϑ ,cϑ ,Fϑ,πϑ ,νϑ

x (2.6)

for the law of the particle system underϑ . Note that the diffusion coefficient will be
fixed for the rest of the paper: we observe the processϕ continuously in time. We refer
the reader to Section 4 for some conditions ensuring that (2.5) holds.

As a consequence of (2.5), in the following we will work on the space& := &∗ ∩
{T∞ = ∞}, equipped with the canonicalσ -fieldA and canonical filtrationF (we use the
same notation as before for&∗). We introduce the following notation.

Notation 2.9. – The number of particles in a configurationx ∈ S is given byl(x) := l

if x ∈ Rl. We will sometimes identify a configurationx = (x1, . . . , xl) ∈ Rl with the
associated finite point measure onR

µx :=
l∑

i=1

εxi (2.7)

and writex(f ) := ∫R f (y)µx(dy) =∑l(x)
i=1f (x

i) for f :R → R measurable. In the same
spirit, we write forx ∈ S and functionsg :R × S → R measurable

x(g) := x
(
g(., x)

) := l(x)∑
i=1

g
(
xi, x

)
, if l(x) > 0, �(g) := 0. (2.8)
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µx is an element of(Mp,l,Mp,l), the space of all finite point measures of total massl

on (R,B(R)), equipped with the topology of weak convergence and the corresponding
Borelσ -field. We write

Mp :=
∞⋃
l=0

Mp,l,

with Mp,0 the space containing only the zero measure.

2.1. Likelihood ratio processes

We suppose that for allϑ ′ andϑ ∈ , either 2.8(a) or 2.8(b) holds and that the law
Qx,ϑ ′ is locally absolute continuous with respect toQx,ϑ relative toF – by Theorem 5.12
of Löcherbach [21], it suffices to suppose that the following conditions (i)–(v) are
fulfilled for all ϑ andϑ ′ ∈,.

(i) For all l > 0, x = (x1, . . . , xl) ∈ Rl and 1� i � l κϑ(xi , x) = 0 implies
κϑ ′

(xi, x) = 0 andcϑ(x)= 0 impliescϑ
′
(x) = 0.

(ii) For all l > 0, x = (x1, . . . , xl) ∈ Rl, for all 1� i � l the measureπϑ ′
(xi, x, .) is

absolute continuous with respect toπϑ(xi, x, .) with density

pϑ ′/ϑ(xi , x, y)= dπϑ ′
(xi, x, . )

dπϑ(xi , x, . )
(y).

We shall writepϑ ′/ϑ(xi , x, z) :=∏l(z)
k=1p

ϑ ′/ϑ(xi, x, zk) for z ∈ S where
∏0

k=1 := 1.
(iii) For all l > 0, x = (x1, . . . , xl) ∈ Rl and 1 � i � l absolute continuity

Fϑ ′
(xi, x, .) � Fϑ(xi, x, .) holds.

(iv) For all l � 0 andx ∈Rl νϑ
′
(x, .)� νϑ(x, .) with density

qϑ ′/ϑ(x, y) := d νϑ
′
(x, . )

d νϑ(x, . )
(y).

Precise necessary and sufficient conditions for local absolute continuity ofQx,ϑ ′ with
respect toQx,ϑ relative toF are given in Theorem 5.12 of Löcherbach [21]. Thanks to
Condition 2.8 we are able to distinguish between branching and immigration events and
to introduce the following notation.

Notation 2.10. –
(a) We write (T I

n )n for the subsequence of(Tn)n consisting of all immigration
events, T I

0 := 0. Analogously, we define a subsequence(T B
n )n of (Tn)n corresponding

to branching events. We denote the position in space of the immigrating particle at time
T I
n by ζ I

n , the position in space of the branching (i.e. dying) particle at timeT B
n by ζD

n

and the configuration (given by a finite point measure onR) of the offspring particles at
timeT B

n by ζB
n . Note thatζB

n can be the zero measure in case of a real death event.
(b) We define point measures associated to branching and to immigration events.

Write

µB(dt, dx, dy, dp) = ∑
n�1,T B

n <∞
ε(T B

n ,ϕ
T Bn −,ζ

D
n ,ζBn )(dt, dx, dy, dp) (2.9)
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on (0,∞)× S ×R ×Mp and

µI (dt, dx, dy) = ∑
n�1,T I

n <∞
ε(T I

n ,ϕT In −,ζ
I
n )
(dt, dx, dy). (2.10)

µB has the(Qx,ϑ ,F)-compensator

νB,ϑ(dt, dx, dy, dp)= dt

(
l(ϕt−)∑
i=1

κϑ
(
ϕi
t−, ϕt−

)( ∞∑
n=2

Fϑ
(
ϕi
t−, ϕt−, {n})

×
∫
Rn

n⊗
k=1

πϑ
(
ϕi
t−, ϕt−, duk

)
ε(ϕt−,ϕit−,µ(u1,...,un))

(dx, dy, dp)

+ Fϑ
(
ϕi
t−, ϕt−, {0})ε(ϕit−,ϕt−,0)(dx, dy, dp)

))
. (2.11)

µI possesses the(Qx,ϑ,F)-compensator

νI,ϑ (dt, dx, dy) = cϑ(ϕt−) dt
∫
R

νϑ(ϕt−, dy′)ε(ϕt−,y ′)(dx, dy). (2.12)

Remark2.11. – Note that the definitions given above of branching times, branching
positions etc. can be made precise, see Löcherbach [21], definition 5.10. We skip the
precise definition since the meaning is intuitively clear.

In the following, we will work with occupation time measuresmt on (S,B(S)) andηt
on (R × S,B(R × S)), defined forB ∈ B(R) andC ∈ B(S) via

mt(C) :=
t∫

0

1C(ϕs) ds, ηt (B ×C) :=
t∫

0

ϕs(B)1C(ϕs) ds. (2.13)

We still have to introduce further notation before being able to define the likelihood
ratio process:

Consider theM2,c
loc(Qx,ϑ,F)-martingale given by

Mn,ϑ
s :=



0, s < Tn,

ϕs − ϕTn −
s∫

Tn

bϑ(ϕr) dr, Tn � s < Tn+1,

ϕTn+1− − ϕTn −
Tn+1∫
Tn

bϑ (ϕr) dr, s � Tn+1.

(2.14)

Write (;ϑ ′/ϑ)
i

l (x) := (a−1(bϑ
′ − bϑ))(xi, x) and;ϑ ′/ϑ := ((;ϑ ′/ϑ)

1
l , . . . , (;

ϑ ′/ϑ)
l

l). Then

by Theorem 5.12 of Löcherbach [21], the likelihood ratio processL
ϑ ′/ϑ
t of Qx,ϑ ′ toQx,ϑ

relative toF is given by<ϑ ′/ϑ
t := logLϑ ′/ϑ

t =∑6
i=1(<i)ϑ

′/ϑ(t), where log(0) := −∞
and where
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(<1)ϑ
′/ϑ(t)=∑

k�0

t∫
0

[
1❑Tk,Tk+1❑(s);

ϑ ′/ϑ(ϕs−)
]T
dMk,ϑ

s

− 1

2

t∫
0

(
;ϑ ′/ϑ)Ta(;ϑ ′/ϑ) (ϕs) ds, (2.15)

and

(<2)ϑ
′/ϑ(t)=

t∫
0

∫
S×R×Mp

[
log

κϑ ′

κϑ
− κϑ ′

κϑ
+ 1

]
(y, x)µB(ds, dx, dy, dp)

+
t∫

0

∫
S×R×Mp

[
κϑ ′

κϑ
− 1
]
(y, x)

(
µB − νB,ϑ

)
(ds, dx, dy, dp), (2.16)

(<3)ϑ
′/ϑ(t)=

t∫
0

∫
S×R×Mp

[
log

Fϑ ′

Fϑ
− Fϑ ′

Fϑ
+ 1
](
y, x, {l(p)})µB(ds, dx, dy, dp)

+
t∫

0

∫
S×R×Mp

[
Fϑ ′

Fϑ
− 1

](
y, x, {l(p)})(µB − νB,ϑ

)
(ds, dx, dy, dp),

(2.17)

(<4)ϑ
′/ϑ(t)

=
t∫

0

∫
S×R×Mp

[
logpϑ ′/ϑ − pϑ ′/ϑ + 1

](
y, x, (p1, . . . , pl(p))

)
µB(ds, dx, dy, dp)

+
t∫

0

∫
S×R×Mp

[
pϑ ′/ϑ − 1

](
y, x, (p1, . . . , pl(p))

)(
µB − νB,ϑ

)
(ds, dx, dy, dp),

(2.18)

wherel(p)= l if p ∈ Mp,l and where(p1, . . . , pl(p)) is an arbitrary arrangement of the
atoms ofp. For the terms corresponding to immigration events, we can write

(<5)ϑ
′/ϑ(t)=

t∫
0

∫
S×R

[
log

cϑ
′

cϑ
− cϑ

′

cϑ
+ 1
]
(x)µI (ds, dx, dy)

+
t∫

0

∫
S×R

[
cϑ

′

cϑ
− 1

]
(x)
(
µI − νI,ϑ

)
(ds, dx, dy) (2.19)

and

(<6)ϑ
′/ϑ(t)=

t∫
0

∫
S×R

[
logqϑ ′/ϑ − qϑ ′/ϑ + 1

]
(x, y)µI (ds, dx, dy) (2.20)
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+
t∫

0

∫
S×R

[
qϑ ′/ϑ − 1

]
(x, y)

(
µI − νI,ϑ

)
(ds, dx, dy).

3. Local asymptotic normality and local asymptotic mixed normality for
branching particle systems

In this section, we are going to prove the convergence of the experiment locally around
some fixed pointϑ to a Gaussian shift experiment or to a mixed normal experiment
respectively when time of the observation tends to infinity. We start with regularity
conditions on the model.

3.1. Regularity conditions

We call error bound function any functionf :E × R+ → R+, E some measurable
space, such thatf (e, .) :R+ → R+ is non-decreasing for everye ∈E, limc↓0f (e, c)= 0
for all e ∈E and such thatf (., c) :E → R+ is measurable.

For some fixed pointϑ ∈, we impose the following conditions.

Condition D1(ϑ). – For all l > 0 there exists some measurable function;̇ϑ
l :Rl →

R
ld×k such that for allϑ ′ ∈,(

;ϑ ′/ϑ − ;̇ϑ
l (ϑ

′ − ϑ)
)T
a
(
;ϑ ′/ϑ − ;̇ϑ

l (ϑ
′ − ϑ)

)
(x) � f 1

ϑ,l(x, |ϑ ′ − ϑ |) |ϑ ′ − ϑ |2

for all x ∈Rl, (recalla(x) which has been defined in (2.4)), wheref 1
ϑ,l is an error bound

function.
Define ;̇ϑ(x) := ;̇ϑ

l (x) for x ∈ S ∩ Rl, l > 0, ;̇ϑ(�) := 0, f 1
ϑ (x, c) for x ∈ S

analogously. Suppose that the following integrability conditions (i) and (ii) are fulfilled.
(i)
∫ ·

0[(;̇ϑ)Ta;̇ϑ ](ϕs) ds is locally integrable with respect toQx,ϑ for all x ∈ S.
(ii)

∫ ·
0 f

1
ϑ (ϕs, δ(ϑ)) ds is locally integrable with respect toQx,ϑ for all x ∈ S, for some

constantδ(ϑ) > 0.

Condition D2(ϑ). – There exists some measurable functionκ̇ϑ :R × S → R
k satisfy-

ing the following conditions (i) and (ii) for allϑ ′ ∈,.
(i)

(
κϑ ′

κϑ
(y, z)− 1− (ϑ ′ − ϑ)Tκ̇ϑ (y, z)

)2

� f 2
ϑ

(
y, z, |ϑ ′ − ϑ |) |ϑ ′ − ϑ |2

for an error bound functionf 2
ϑ such that

·∫
0

ϕs

(
κϑf 2

ϑ (., ., δ(ϑ))
)
ds is locally integrable w.r.t.Qx,ϑ

for all x ∈ S, for someδ(ϑ) > 0 (see 2.9 for the notation).
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(ii)
·∫

0

ϕs

(
κϑ
[
(κ̇ϑ)Tκ̇ϑ

]
(., .)

)
ds

is locally integrable with respect toQx,ϑ for all x ∈ S.

Condition D3(ϑ). – There exists some measurable functionḞ ϑ :R × S × N0 → R
k

satisfying the following conditions (i) and (ii) for allϑ ′ ∈,.
(i) ∑

n�0

Fϑ(y, z, {n})
(
Fϑ ′

Fϑ
(y, z, {n})− 1− (ϑ ′ − ϑ)TḞ ϑ(y, z, n)

)2

� f 3
ϑ

(
y, z, |ϑ ′ − ϑ |)|ϑ ′ − ϑ |2

for an error bound functionf 3
ϑ such that

·∫
0

ϕs

(
κϑf 3

ϑ (., ., δ(ϑ))
)
ds is locally integrable w.r.t.Qx,ϑ

for all x ∈ S, for someδ(ϑ) > 0.
(ii)

·∫
0

ϕs

(
κϑ

(∑
n�0

Fϑ(., ., {n})[(Ḟ ϑ
)T
Ḟ ϑ
]
(., ., n)

))
ds

is locally integrable with respect toQx,ϑ for all x ∈ S.

Condition D4(ϑ). – There exists some measurable functionṗϑ :R × S × Mp → R
k

satisfying the following conditions (i) and (ii) for allϑ ′ ∈,.
(i) ∑

n�0

Fϑ(y, z, {n})
∫
Rn

n⊗
k=1

πϑ
(
y, z, dpk

)[
pϑ ′/ϑ(y, z, (p1, . . . , pl(p)

))− 1

− (ϑ ′ − ϑ)Tṗϑ(y, z,p)
]2 � f 4

ϑ

(
y, z, |ϑ ′ − ϑ |)|ϑ ′ − ϑ |2

(with definition
⊗0

k=1π
ϑ(y, z, dpk) := ε0(dp),0 being the zero measure), for an error

bound functionf 4
ϑ such that

·∫
0

ϕs

(
κϑf 4

ϑ (., ., δ(ϑ))
)
ds is locally integrable w.r.t.Qx,ϑ

for all x ∈ S, for someδ(ϑ) > 0.
(ii)

·∫
0

ϕs

(
κϑ

(∑
n�0

Fϑ(., ., {n})
∫
Rn

n⊗
k=1

πϑ
(
., ., dpk

)[
(ṗϑ)Tṗϑ

]
(., ., p)

))
ds
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is locally integrable with respect toQx,ϑ for all x ∈ S.

In the same manner we impose for the immigration terms the following

Condition D5(ϑ). – There is some measurable functionċϑ :S → R
k such that the

following conditions (i) and (ii) hold for allϑ ′ ∈,.
(i) (

cϑ
′

cϑ
− 1− (ϑ ′ − ϑ)Tċϑ

)2

(x) � f 5
ϑ

(
x, |ϑ ′ − ϑ |)|ϑ ′ − ϑ |2

for all x ∈ S, for f 5
ϑ :S × R+ → R+ an error bound function such that

·∫
0

cϑ(ϕs)f
5
ϑ

(
ϕs, δ(ϑ)

)
ds is locally integrable w.r.t.Qx,ϑ for all x ∈ S

for someδ(ϑ) > 0.
(ii)

·∫
0

[
(ċϑ)Tċϑ

]
(ϕs)c

ϑ(ϕs) ds

is locally integrable w.r.t.Qx,ϑ for all x ∈ S.

Condition D6(ϑ). – There is some measurable functionq̇ϑ :S×R → R
k such that the

following conditions (i) and (ii) hold for allϑ ′ ∈,.
(i) ∫

R

(
qϑ ′/ϑ − 1− (ϑ ′ − ϑ)Tq̇ϑ

)2
(x, y)νϑ(x, dy) � f 6

ϑ (x, |ϑ ′ − ϑ |)|ϑ ′ − ϑ |2

(with νϑ(x, dy) the immigration measure of Assumption 2.3) for allx ∈ S, for f 6
ϑ :S ×

R+ → R+ an error bound function such that

·∫
0

cϑ(ϕs)f
6
ϑ

(
ϕs, δ(ϑ)

)
ds is locally integrable w.r.t.Qx,ϑ for all x ∈ S

for someδ(ϑ) > 0.
(ii)

·∫
0

∫
R

[
(q̇ϑ)Tq̇ϑ

]
(ϕs, y)ν

ϑ(ϕs, dy)c
ϑ (ϕs) ds

is locally integrable w.r.t.Qx,ϑ for all x ∈ S.
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Under D1–D6, we can define score function martingales and information processes:
We write(M1)ϑ for the locally square integrable martingale given by

(M1)ϑt :=∑
n�0

t∫
0

[
1❑Tn,Tn+1❑(s);̇

ϑ (ϕs−)
]T
dMn,ϑ

s , t � 0, (3.21)

with Mn,ϑ as in (2.14).(M1)ϑ possesses the angle bracket process

〈
(M1)ϑ

〉
t
=
∫
S

(I1)ϑ(x)mt (dx), (3.22)

where

(I1)ϑ(x) := ((;̇ϑ)Ta;̇ϑ
)
(x). (3.23)

The second score function martingale is given as

(M2)ϑt :=
t∫

0

∫
S×R×Mp

κ̇ϑ(y, x)
(
µB − νB,ϑ

)
(ds, dx, dy, dp), t � 0. (3.24)

Then (M2)ϑ is in M2,d
loc (Qx,ϑ,F), the set of all locally square integrable purely

discontinuous(Qx,ϑ ,F)-martingales, with predictable quadratic covariation process

〈
(M2)ϑ

〉
t
=
∫

R×S

(I2)ϑ(y, z)ηt(dy, dz), (3.25)

where

(I2)ϑ(y, z) := (κ̇ϑ (κ̇ϑ)T)(y, z)κϑ(y, z).

In the same way,

(M3)ϑt :=
t∫

0

∫
S×R×Mp

Ḟ ϑ
(
x, y, l(p)

)(
µB − νB,ϑ

)
(ds, dx, dy, dp), t � 0, (3.26)

〈
(M3)ϑ

〉
t
=
∫

R×S

(I3)ϑ(y, z)ηt(dy, dz) (3.27)

with

(I3)ϑ(y, z) :=
(∑

n�0

Fϑ(y, z, {n})[Ḟ ϑ(Ḟ ϑ )T](y, z, n))κϑ(y, z), (3.28)
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and

(M4)ϑt :=
t∫

0

∫
S×R×Mp

ṗϑ(x, y,p)
(
µB − νB,ϑ

)
(ds, dx, dy, dp), t � 0, (3.29)

with predictable quadratic covariation process

〈
(M4)ϑ

〉
t
=
∫

R×S

(I4)ϑ(y, z)ηt(dy, dz) (3.30)

where

(I4)ϑ(y, z)

:=
(∑

n�0

Fϑ(y, z, {n})
∫
Rn

n⊗
k=1

πϑ(y, z, dpk)
[
ṗϑ(ṗϑ)T](y, z,p))κϑ(y, z). (3.31)

In the same way we define

(M5)ϑt :=
t∫

0

∫
S×R

ċϑ(x)
(
µI − νI,ϑ

)
(ds, dx, dy), t � 0, (3.32)

with predictable quadratic covariation

〈
(M5)ϑ

〉
t
=
∫
S

(I5)ϑ(x)mt (dx) (3.33)

with

(I5)ϑ(x) := (ċϑ (ċϑ)T)(x)cϑ (x) (3.34)

and

(M6)ϑt :=
t∫

0

∫
S×R

q̇ϑ (x, y)
(
µI − νI,ϑ

)
(ds, dx, dy), t � 0, (3.35)

with predictable quadratic covariation

〈
(M6)ϑ

〉
t
=
∫
S

(I6)ϑ(x)mt (dx) (3.36)

with

(I6)ϑ(x) :=
(∫
R

νϑ(x, dy)
[
q̇ϑ (q̇ϑ )T](x, y))cϑ(x). (3.37)
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We will also use the following overall information

I ϑ(y, z) := (I1)ϑ(z)+
4∑

i=2

(I i)ϑ(y, z)+
6∑

i=5

(I i)ϑ(z). (3.38)

3.2. Recurrence

We make the following assumption concerning the asymptotic behaviour ofϕ under
Qx,ϑ .

Condition R(ϑ). –
(a) ϕ is recurrent underQx,ϑ in the sense of Harris, admitting the void configuration

� as recurrent point, with invariant measuremϑ normed to be a probability measure in
the case of positive recurrence.

(b) WriteR1 := inf{Tn: n > 0, ϕTn =�},Rn := inf{Tn > Rn−1: ϕTn =�}. If mϑ(S)=
∞ (null-recurrence), then either

Qx,ϑ(R2 −R1 > t) ∼ l(t)

tα
for t → ∞ (3.39)

for someα ∈ (0,1), l slowly varying at infinity (cf., e.g., Bingham, Goldie, Teugels [1])
or

x∫
0

Qx,ϑ(R2 −R1 > t) dt ∼ l(x) for x → ∞, (3.40)

l slowly varying at infinity.

Note that if our goal were only to derive a quadratic decomposition of the log-
likelihood ratio process, then it would be sufficient to presume quite weak conditions
concerning the asymptotic behaviour ofϕ: We would just presume the existence of
a sequenceun(ϑ) of norming constants for the score function martingales such that
remainder terms of typeu2

n(ϑ)
∫ tn

0 f (ϕs, c · un(ϑ)) ds vanish inQx,ϑ -probability as
n → ∞, for error bound functionsf (compare also with Höpfner [10], assumptions
A1(ϑ )–A3(ϑ )). In the (here quite natural) situation whereϕ underQx,ϑ is recurrent, this
is verified if we have weak convergence of additive functionalsAt := ∫ t

0 k(ϕs) ds of ϕ
underQx,ϑ , for measurablek which are integrable with respect to the invariant measure
mϑ (this is even more). Weak convergence of such additive functionals is immediate in
the positive recurrent case – however in the null-recurrent case it holds place only under
the restrictive assumptions stated above under b) on the tails of the life cycle lengths:

Remark3.1. –
(1) Condition R(ϑ ) is necessary (and sufficient) for weak convergence of rescaled

additive functionals ofϕ in the following sense: In casemϑ(S) = ∞, suppose there
exists a setA ∈ B(S) meeting 0<mϑ(A) < ∞ and a sequencern(ϑ) ↓ 0 asn → ∞ as
well as a limit processV having continuous non-decreasing paths withV0 = 0, Vt ↑ ∞
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ast → ∞ (V is a time change process) such that forn→ ∞(
r2
n(ϑ)

tn∫
0

1A(ϕs) ds

)
t�0

L→mϑ(A) · V (3.41)

(weak convergence inD(R+,R) underQx,ϑ for somex ∈ S). Then there is some
α ∈ (0,1] and some regularly varying sequence(un(ϑ))n ∈ RV−α/2 such that (3.41)
even holds withV = Wα andrn(ϑ) = un(ϑ). Wα for 0< α < 1 is the Mittag–Leffler
process of indexα, i.e.Wα is the process inverse to the stable increasing processSα with
indexα ∈ (0,1). Moreover,W 1 ≡ id. Recall that(un(ϑ))n ∈ RV−α/2 means that there
is some functionL which is regularly varying at infinity with index−α/2 such that
un = L(n). In this case, (3.39) or (3.40) respectively necessarily hold. Ifmϑ(S) < ∞,
thenun(ϑ)= 1/

√
n up to multiplication by a constant.

(2) Up to multiplication by a constant, the invariant measuremϑ is given by

mϑ(C) := c ·Ex,ϑ

( R2∫
R1

1C(ϕs) ds

)

for C ∈ B(S).
Proof of Remark 3.1(1). – The proof of the necessary part is a generalisation of the

classical Darling–Kac theorem (see Darling and Kac [2] and Bingham, Goldie and
Teugels [1], Theorem 8.11.3) which has been obtained by Touati [29], Theorem 10 and
Lemma 5. This generalisation relies heavily on the fact that special functionsf with∫
S f (x)m

ϑ(dx) ∈ (0,∞) exist for the Harris processϕ. We refer the reader to Höpfner
and Löcherbach [13], Chapter 5 for the details. For the “sufficient” part, we refer to
Resnick and Greenwood [26], Touati [29], Höpfner [9] and to Chapter 4 of Höpfner and
Löcherbach [13] which gives a nice summary of the whole argument.✷

The following martingale convergence theorem for null-recurrent cases is crucial for
the sequel and has been obtained by Touati [29].

THEOREM 3.2 (Touati [29]). –Suppose that(3.39)or (3.40)hold and writeun(ϑ) :=
(;(1 − α)Qx,ϑ(R2 − R1 > n))1/2 in case of(3.39) and un(ϑ) := ( 1

n

∫ n
0 Qx,ϑ(R2 −

R1 > t) dt)1/2 in case of (3.40). Consider a locally square integrable martingale
M ∈ M2

loc whose angle bracket〈M〉 is a mϑ -integrable additive functional ofϕ, i.e.
E�,ϑ(〈M〉R1) <∞. Then we have for the rescaled sequence

Mn :=
(

1√
un(ϑ)

Mtn

)
t�0

in case of(3.39)

Mn L→ J 1/2B ◦Wα asn→ ∞,

and in case of(3.40)

Mn L→ J 1/2B asn→ ∞
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(weak convergence inD(R+,R)). Here,B is a standard Brownian motion,Wα is a
Mittag–Leffler process independent ofB andJ =E�,ϑ(〈M〉R1).

Proof. –The basic idea of this theorem is to split the trajectory ofϕ into i.i.d.
sequences of life-cycles and to use results concerning convergence to stable processes.
See also Resnick and Greenwood [26], in particular for the necessary independence of
B andWα . ✷
3.2.1. When does R(ϑ ) hold?

Example3.3. –
(1) Suppose that the family of space and configuration dependent reproduction laws

Fϑ(., ., dn) admits some fixed space and configuration independent subcritical law

F̄ ϑ(dn) such that
∑
k �=1

kF̄ ϑ({k}) < 1

as upper bound in the sense of convolution of probability measures: for everyy ∈ R,
z ∈ S there is someF̂ ϑ(y, z, dn) such thatFϑ(y, z, .) ∗ F̂ ϑ(y, z, .) = F̄ ϑ(.). Suppose
that κϑ is bounded away from zero (which guarantees that there is always a minimal
amount of “branching”) and that the immigration ratecϑ is bounded. Write

D(t) := inf

{
s � 0:

s∫
0

ϕu(κ
ϑ)

l(ϕu)
du > t

}
.

Then the time-changed processϕ ◦ D can be constructed in a coupled way with another
branching diffusionϕ̄ where inϕ̄ particles branch at rate 1, reproduce according toF̄ ϑ ,
with an input of immigrating particles at constant rate, such thatϕ ◦ D(t) is a subprocess
(in the sense of subpopulations) ofϕ̄(t) for all t . Since ϕ̄ is positive recurrent, with
recurrent point� (see for instance Zubkov [31] and Pakes [24]), the same necessarily
holds forϕ ◦ D, hence forϕ itself.

(2) Suppose that the reproduction lawFϑ is constant in space and configuration, crit-
ical, admitting second moments

∑
k�2 kF

ϑ({k}) = 2β. Suppose further that branching
and immigration occur at constant ratesκϑ ≡ aϑ ∈ (0,∞), cϑ ≡ bϑ ∈ (0,∞) such that
bϑ < aϑ ·β. Then Zubkov [31], Theorem 2 shows thatL(R2 −R1 |Qx,ϑ) belongs to the
domain of attraction of a positive stable law with indexα = 1− bϑ

aϑ ·β .

Example3.4. – We present an example for null-recurrent situations satisfying
condition R(ϑ ) with a certain space dependency. Suppose thatFϑ, κϑ andcϑ depend
only on the sizel of a configuration and are independent of the space,F ϑ being binary.
Take some 0< α < 1

2 fixed and some parametric family{κξ (k): ξ ∈,, k � 1} such that
1
2 � κξ (k)� 1. Suppose that there is some fixed thresholdk0 such that for allk � k0

cξ (k)= k + α − kκξ (k)

and

Fξ(k, {0})= 1

2κξ (k)
, F ξ (k, {2})= 1−Fξ(k, {0}).
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Note thatcξ (k) > 0 for all k � k0 and that forlt = l(ϕt ) the number of particles at timet

Qx,ξ (lt+h = k + 1 | lt = k)=
(
k

2
+ α

)
· h+ o(h) ash→ 0

and

Qx,ξ (lt+h = k − 1 | lt = k)= k

2
· h+ o(h) ash→ 0,

k � k0. Hence under everyξ , (lt )t�0 restricted to{lt � k0} can be considered as classical
critical branching process with immigrations at constant rateα and branching at rate 1
for every particle. Define for everyk a birth rateλξk and a death rateµξ

k by

λ
ξ
k := kκξ (k)F ξ (k, {2})+ cξ (k), µ

ξ
k := kκξ (k)F ξ(k, {0})

and write

m
ξ
k := λ

ξ
0 · · ·λξk−1

µ
ξ
1 · · ·µξ

k

.

By Karlin and McGregor [18] we know that only the asymptotic behaviourk → ∞ of
λ
ξ
k andµξ

k determines the asymptotic behaviour oflt . But asymptotically,mξ
k behaves

like

mk = λ0 · · ·λk−1

µ1 · · ·µk

with λk = 1
2k + α andµk = 1

2k, which is the invariant measure for a classical birth and
death process. As a consequence we know thatQx,ξ (R2 −R1 > t) ∼ C/t1−2α, for some
constantC, independently ofξ .

3.3. LAN and LAMN at ϑ

We now dispose of all the tools allowing to prove local asymptotic normality or local
asymptotic mixed normality of the model. WriteFn := (Fnt )t�0. For ϑ ∈ , such that
R(ϑ ) holds, let

(Mi)n,ϑ (t) := un(ϑ)(Mi)ϑtn, t � 0, 1� i � 6, (3.42)

be the rescaled score function martingales where

un(ϑ)


= 1/

√
n if mϑ(S)= 1 ,

∼ (;(1− α)Qx,ϑ(R2 −R1 > n))1/2 if Qx,ϑ(R2 −R1 > ·) ∈
RV−α, 0<α < 1,

∼ ( 1
n

∫ n
0 Qx,ϑ(R2 −R1 > t) dt)1/2 if L(R2 −R1 |Qx,ϑ)

is relatively stable,

(3.43)

with RVα the set of all regularly varying functions at infinity, with indexα.
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DEFINITION 3.5. – We define a Campbell measurēmϑ on (R × S,B(R × S))

associated to the invariant measuremϑ via

m̄ϑ(B ×C) :=
∫
S

x(B)1C(x)m
ϑ(dx)

for B ∈ B(R),C ∈ B(S).
Remark3.6. – Note that in cases wherebϑ , σ , κϑ ,Fϑ ,πϑ are purely position

dependent and wherecϑ(x)νϑ(x, dy) ≡ µϑ(dy) independent ofx ∈ S, with notation

Fϑπϑ(y,A) :=∑
k �=0

Fϑ(y, {k})
k∑

l=1

∫
R

πϑ
(
y, dul

)
1A
(
ul
)
,

y ∈R,A ∈ B(R), we have a representation

m̄ϑ(· × S)= µϑ

( ∞∑
n=0

(
UϑκϑFϑπϑ

)n)
Uϑ

in cases wherēmϑ(R × S) <∞, with notation

Uϑ(y,A) :=Ey

( ∞∫
0

dt 1A(Xt)e
−
∫ t

0
κϑ (Xr) dr

)
,

y ∈R, A ∈ B(R), for a diffusion

dXt = bϑ(Xt ) dt + σ (Xt) dWt ,

(Uϑκϑ)(x, dy) := Uϑ(x, dy)κϑ (y) (see Höpfner and Löcherbach [12]). This follows
from conditioning on first branching events during one life cycle ofϕ. The same
argument shows that in purely position dependent situations, in null-recurrent cases,
m̄ϑ(A × S) ≡ ∞ for all A ∈ B(R), hence the projection of̄mϑ ontoR does no longer
make sense in this case (compare to Höpfner and Löcherbach [12], Remark 2.4).

We impose the following integrability conditions.

Condition I(ϑ ). –
(a) f 1

ϑ (·, δ(ϑ)) ∈ L1(mϑ), f i
ϑ(·, δ(ϑ)) ∈ L1(κϑm̄ϑ) for i = 2,3,4 andf i

ϑ(·, δ(ϑ)) ∈
L1(cϑmϑ) for i = 5,6, where κϑm̄ϑ(dy, dz) = κϑ(y, z)m̄ϑ(dy, dz), cϑmϑ(dx) =
cϑ(x)mϑ(dx).

(b) Integrability of the information processes.
Assume that(I i)ϑ ∈ L1(mϑ) component-wise fori = 1,5,6 and (I i)ϑ ∈ L1(m̄ϑ)

component-wise fori = 2,3,4.
(c) Define

(J i)ϑ :=
∫
S

(I i)ϑ(x)mϑ(dx), i = 1,5,6, (3.44)
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(J i)ϑ :=
∫

R×S

(I i)ϑ(y, z)m̄ϑ(dy, dz), i = 2,3,4, (3.45)

<=<(ϑ)=



(J1)ϑ 0 0 0 0 0
0 (J2)ϑ 0 0 0 0
0 0 (J3)ϑ 0 0 0
0 0 0 (J4)ϑ 0 0
0 0 0 0 (J5)ϑ 0
0 0 0 0 0 (J6)ϑ

 , (3.46)

J = J (ϑ) :=
6∑

i=1

(J i)ϑ =
∫

R×S

I ϑ(y, z)m̄ϑ(dy, dz) (3.47)

with I ϑ as in (3.38), and assume thatJ is invertible.

Fix some directionh ∈ R
k and some pointϑ ∈, with R(ϑ ). Writeϑn := ϑ + un(ϑ)h

for a sequenceun(ϑ) of norming constants as in (3.43). We consider the sequence of
filtered local models atϑ(

&x,A,Fn, {Qx,ϑ+un(ϑ)h: h ∈ ,ϑ,n}), (3.48)

where&x := {ψ ∈&: ψ0 = x}, ,ϑ,n := {h ∈ R
k: ϑ +un(ϑ)h ∈,}, and prove LAN and

LAMN respectively for the filtered local model (3.48). Denote byL
h/0
n,ϑ(t) := L

ϑn/ϑ
t ·n the

likelihood ratio process ofQx,ϑn to Qx,ϑ relative toF
n and(<i)

h/0
n,ϑ (t) := (<i)ϑn/ϑ(tn)

for i = 1, . . . ,6,<h/0
n,ϑ (t) :=<ϑn/ϑ(tn).

THEOREM 3.7. – Consider some pointϑ ∈ , fixed such thatD1(ϑ )–D6(ϑ ), R(ϑ )
and I(ϑ ) hold, some directionh ∈ R

k fixed and norming constantsun(ϑ) as above
in (3.43).

(a) The log-likelihood ratio process ofQx,ϑn to Qx,ϑ relative to F
n admits the

decomposition

(<i)
h/0
n,ϑ = hT(Mi)n,ϑ − 1

2
hT〈(Mi)n,ϑ

〉
h+ Remn,ϑ,h, 1 � i � 6,

and

<
h/0
n,ϑ = hTM̄n,ϑ − 1

2
hT〈M̄n,ϑ

〉
h+ Remn,ϑ,h,

where M̄n,ϑ := ∑6
i=1(Mi)n,ϑ , with a process of remainder terms such that

sups�t |Remn,ϑ,h(s)| → 0 in Qx,ϑ -probability asn→ ∞ for all t � 0.
(b) Let Mn,ϑ := ((M1)n,ϑ , . . . , (M6)n,ϑ )T be the array of rescaled score function

martingales. Then we have weak convergence(
Mn,ϑ ,

〈
Mn,ϑ

〉)→ (Y, 〈Y 〉) asn ↑ ∞,
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(weak convergence inD(R+,R6k × R
6k×6k) underQx,ϑ ) and(

M̄n,ϑ ,
〈
M̄n,ϑ

〉)→ (
Ȳ , 〈Ȳ 〉) asn ↑ ∞,

(weak convergence inD(R+,Rk × R
k×k) underQx,ϑ ) whereY = Y (ϑ)= (Y 1, . . . , Y 6)

is a continuous6k-dimensional limit process which is specified in(3.49) and (3.50)
below. Ȳ is given byȲ :=∑6

i=1Y
i. Let B be a continuous6k-dimensional Gaussian

martingale on some arbitrary probability space with covariance matrix< = <(ϑ) as
in (3.46)above. Then

Y = B, 〈Y 〉 =< if mϑ(S)= 1 or if (3.40)holds, (3.49)

Y = B ◦Wα, 〈Y 〉 =< ·Wα if Qx,ϑ(R2 −R1 > ·) ∈RV−α, 0< α < 1, (3.50)

with B independent of the Mittag–Leffler processWα of indexα.

Proof. –(1) The proof of the decomposition of the log-likelihood ratio processes
imitates a well-known scheme, see for instance the proof of Theorem 1 in Luschgy [22].
We just give the basic ideas, for the decomposition of(<2)h/0

n,ϑ – the other terms are
treated analogously.

In a first step, we consider the martingale part[ κϑn
κϑ

− 1] ∗ (µB − νB,ϑ) of (<2)h/0
n,ϑ .

Define

Y n
t :=

t n∫
0

∫
S×R×Mp

[
κϑn

κϑ
− 1− (ϑn − ϑ)Tκ̇ϑ

]
(y, x)

(
µB − νB,ϑ

)
(ds, dx, dy, dp)

=
[
κϑn

κϑ
− 1

]
∗ (µB − νB,ϑ

)
t ·n − hT(M2)n,ϑ (t).

Then by assumption D2(ϑ ), Y n belongs toM2
loc(Qx,ϑ,F

n). Lenglart’s domination
theorem (cf. Jacod and Shiryaev [16, I.3.30]) yields

Qx,ϑ

(
sup
s�t

∣∣Y n(s)
∣∣� ε

)
� η

ε
+Qx,ϑ

(〈Y n〉t � η
)

(3.51)

for all t � 0, for all ε > 0 andη > 0. Using the form of the compensatorνB,ϑ of µB

underQx,ϑ as in (2.11) and condition D2(ϑ ) we achieve

〈
Y n
〉
t
� |h|2un(ϑ)2

t n∫
0

ϕs

(
κϑf 2

ϑ (., ., |ϑn − ϑ |))ds. (3.52)

Thanks to the assumptions onf 2
ϑ and due to condition R(ϑ ), this last term tends to

0 in probability asn → ∞. Using Lenglart’s inequality, this leads to the required
convergence

sup
s�t

|Y n(s)| → 0 inQx,ϑ -probability asn→ ∞.
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In a second step it remains to consider terms

Rn(t) :=
t n∫

0

∫
S×R×Mp

[
log

κϑn

κϑ
− κϑn

κϑ
+ 1+ 1

2

(
un(ϑ)h

Tκ̇ϑ
)2]

(y, x)µB(ds, dx, dy, dp).

These terms are treated exactly as in Luschgy [22], proof of Theorem 1, using Lenglart’s
inequality a couple of times.

The other terms corresponding toi = 3,4,5,6 are handled analogously. Thus the
decomposition of(<i)

h/0
n,ϑ for i = 2, . . . ,6 follows with [(Mi)n,ϑ ] instead of〈(Mi)n,ϑ 〉.

We show that fori = 2, . . . ,6,

sup
s�t

hT([(Mi)n,ϑ
]− 〈(Mi)n,ϑ

〉)
(s)h→ 0 inQx,ϑ -probability (3.53)

which is seen as follows. For arbitraryε > 0, for i = 2, we have

hT([(M2)n,ϑ
]− 〈(M2)n,ϑ

〉)
(s)h

= un(ϑ)
2

s n∫
0

∫
S×R×Mp

(
hTκ̇ϑ

)2
1{|un(ϑ)hTκ̇ϑ |>ε} dµB

− un(ϑ)
2

s n∫
0

∫
S×R×Mp

(
hTκ̇ϑ

)2
1{|un(ϑ)hTκ̇ϑ |>ε} dνB,ϑ +Rn,ϑ,h,ε(s),

whereRn,ϑ,h,ε ∈M2
loc(Qx,ϑ,F

n) is given by

Rn,ϑ,h,ε(s) =
s n∫
0

∫
S×R×Mp

(
un(ϑ)h

Tκ̇ϑ
)2

1{|un(ϑ)hTκ̇ϑ |�ε} d
(
µB − νB,ϑ

)
.

By assumption I(ϑ )

un(ϑ)
2

t n∫
0

∫
S×R×Mp

(
hTκ̇ϑ

)2
1{|un(ϑ)hTκ̇ϑ |>ε} dνB,ϑ

and as a consequence also

un(ϑ)
2

t n∫
0

∫
S×R×Mp

(
hTκ̇ϑ

)2
1{|un(ϑ)hTκ̇ϑ |>ε} dµB

tend to 0 inQx,ϑ -probability asn→ ∞. Moreover,

〈Rn,ϑ,h,ε〉(t) � ε2

tn∫
0

∫
S×R×Mp

(
un(ϑ)h

Tκ̇ϑ
)2
dνB,ϑ
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and
tn∫

0

∫
S×R×Mp

(
un(ϑ)h

Tκ̇ϑ
)2
dνB,ϑ = hT

(
un(ϑ)

2

tn∫
0

ϕs

(
(I2)ϑ

)
ds

)
h

which in case ofmϑ(S) = ∞ tends to[∫R×S(I2)ϑ(y, z)m̄ϑ(dy, dz)] · Wα
t and in case

mϑ(S) = 1 to [∫R×S(I2)ϑ(y, z)m̄ϑ(dy, dz)] · t . Hence〈Rn,ϑ,h,ε〉(t) is bounded inQx,ϑ -
probability, and sinceε may be chosen arbitrarily small, this leads to (3.53).

The decomposition of(<1)h/0
n,ϑ is shown analogously.

(2) It remains to prove the joint weak convergence of the rescaled score function
martingales together with their angle bracket processes. Since(M1)ϑ is a continuous
martingale and(M2)ϑ–(M6)ϑ are purely discontinuous martingales,〈(

(M1)n,ϑ
)l
,
(
(Mj)n,ϑ

)m〉≡ 0

for all 1 � l,m � k and for all j = 2, . . . ,6. (Mi)n,ϑ and (Mj)n,ϑ for i = 2,3,4 and
j = 5,6 do not have any common jumps. Hence,[(

(Mi)n,ϑ
)l
,
(
(Mj)n,ϑ

)m]≡ 0

for all 1� l,m� k, for all i = 2,3,4 andj = 5,6, and therefore also〈(
(Mi)n,ϑ

)l
,
(
(Mj)n,ϑ

)m〉≡ 0

for all 1 � l,m � k, for all i = 2,3,4 andj = 5,6. Furthermore, fori = 2,3,4 and
j = 2,3,4, i �= j ,

〈(Mi)n,ϑ , (Mj)n,ϑ 〉t = un(ϑ)
2
∫

R×S

(I ij)ϑ(y, z)ηnt (dy, dz),

(see (2.13) for the notation) and fori = 5,6, j = 5,6 with j �= i,

〈
(Mi)n,ϑ , (Mj)n,ϑ

〉
t
= un(ϑ)

2
∫
S

(I56)ϑ (x)mnt (dx),

where

(I23)ϑ(y, z) :=
(∑

n�0

Fϑ(y, z, {n})[Ḟ ϑ (y, z, n)
(
κ̇ϑ
)T
(y, z)

])
κϑ(y, z), (3.54)

(I24)ϑ(y, z) :=
(∑

n�0

Fϑ(y, z, {n})

×
[∫
Rn

n⊗
k=1

πϑ
(
y, z, dpk

)
ṗϑ(y, z,p)

](
κ̇ϑ
)T
(y, z)

)
κϑ(y, z), (3.55)
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(I34)ϑ(y, z) :=
(∑

n�0

Fϑ(y, z, {n}) (3.56)

×
[∫
Rn

n⊗
k=1

πϑ
(
y, z, dpk

)
ṗϑ(y, z,p)

](
Ḟ ϑ
)T
(y, z, n)

)
κϑ(y, z)

and

(I56)ϑ(x) :=
(∫
R

νϑ(x, dy)q̇ϑ (x, y)

)(
ċϑ
)T
(x)cϑ (x). (3.57)

Due to our differentiability assumptions Di(ϑ ), all these terms (3.54) to (3.57) vanish.
Consider for example(I23)ϑ and letξn → ϑ such thatξn − ϑ = δne, δn ↓ 0, for some
arbitrarye ∈ R

k with |e| = 1. Then we get for̃e ∈ R
k arbitrary,

eT(I23)ϑ (y, z)ẽ= 1

δn

(∑
n�0

Fϑ(y, z, {n})
[
δne

TḞ ϑ(y, z, n)− Fξn

F ϑ
(y, z, {n})+ 1

])
× (κ̇ϑ

)T
(y, z)κϑ(y, z)ẽ

for all y ∈R andz ∈ S. By Jensen’s inequality and assumption D3(ϑ ),∑
n�0

Fϑ(y, z, {n})
[
δne

TḞ ϑ(y, z, n)− Fξn

F ϑ
(y, z, {n})+ 1

]

�
(∑

n�0

Fϑ(y, z, {n})
[
Fξn

F ϑ
(y, z, {n})− 1− δne

TḞ ϑ(y, z, n)

]2
)1/2

�
√
f 3
ϑ (y, z, δn) · δn.

Here,
√
f 3
ϑ (y, z, δn) → 0 asn → ∞. Hence we haveeT(I23)ϑ (y, z)ẽ ≡ 0 for all e,

ẽ ∈ R
k which means(I23)ϑ(y, z) ≡ 0. The arguments for the other covariation terms

are analogous.
Then the joint weak convergence of the rescaled score function martingales together

with their angle brackets follows from Theorem 3.2 above of Touati: Note that by
conditions I(ϑ ) and R(ϑ ), all martingales(Mi)n,ϑ satisfy a Lindeberg condition

1

un(ϑ)

tn∫
0

∫
|x|21{|x|>ε

√
un(ϑ)}ν

(i)(ds, dx) → 0 in probability

asn → ∞, for all t andε > 0, whereν(i)(ds, dx) denotes the compensator of jumps of
(Mi)ϑ . Then by Jacod and Shiryaev [16], VI.3.26, IX.1.19 and VI.6.1, convergence of
(Mi)n,ϑ to the limit processY i implies convergence of the pair((Mi)n,ϑ , 〈(Mi)n,ϑ 〉) to
(Y i, 〈Y i〉) and thus the assertion.

(3) The decomposition of<h/0
n,ϑ follows from the decomposition of the(<i)

h/0
n,ϑ for

1 � i � 6 since〈M̄n,ϑ 〉 =∑6
i=1〈(Mi)n,ϑ 〉, as〈(Mi)n,ϑ , (Mj)n,ϑ〉 ≡ 0 for i �= j which

was shown above. This completes the proof of the theorem.✷
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Example3.8. – We continue our Example 3.4. Suppose for simplicity, that the fixed
thresholdk0 of 3.4. equals 0. We present a location-scale model for the family{κξ }.
Choose some fixed functionκ0 :R+ → [1

2,1] which is continuously derivable, such that
κ̇0 has compact support, κ̇0 being the derivative ofκ0. We define forξ = (ξ1, ξ2) ∈
(0,∞)× (0,∞)

κξ (k) := κ0
(
ξ1 + kξ2).

Then the integrability assumption I(ϑ ) is clearly satisfied, and Theorem 3.7 is applicable
since by 3.4 R(ϑ ) also holds. Roughly speaking, null-recurrent situations are treatable
in cases where the dependency on the parameter is restricted to small sets such that
the integrability condition I(ϑ ) holds and such that we dispose nevertheless of the limit
theorems which we need.

Remark3.9. – (1) In case of ergodicity (see for instance 3.3(1)), condition I(ϑ ) is not
restrictive since in this casemϑ is finite.

(2) In situations as in 3.3(2), condition I(ϑ ) will neverbe fulfilled, since in this case all
error-bound terms and all information terms depend only on the positions of particles,
not on the whole configuration. As a consequence, the measure which is involved in
condition I(ϑ ) is the measurēmϑ(· × S) which – as pointed out in 3.5 – is identically
equal to infinity. Hence it does not make sense in this situation to try to obtain locally
quadratic approximations of likelihoods with renormalisation factors coming from a life-
cycle decomposition ofϕ.

Remark3.10. – Suppose we have LAN(ϑ ) or LAMN(ϑ ). As a well-known conse-
quence of LAN(ϑ ) or LAMN(ϑ ), we are able to characterise efficiency of estimators for
the unknown parameterϑ . Consider estimators(gn)n�1 which are regular in the sense
of Hájek (see Hájek [8]), i.e. satisfying

∀h: L
(
un(ϑ)

−1(gn − (ϑ + un(ϑ)h)
) |Qx,ϑ+un(ϑ)h

) w→: F

whereF is independent ofh. (These estimators are approximately equivariant in small
neighbourhoods ofϑ .)

Hájek [8] shows that under LAN(ϑ ) necessarilyF = N(0, J−1) ∗ Q for some
probability measureQ, with J as in (3.47). Under LAMN(ϑ ), Jeganathan [17] proves
for sub-convex loss functionsl(.) that

∫
l(z)F (dz)�

∫ ∫
P 〈Ȳ 〉1(di)N

(
0, i−1)(dv)l(v),

whereP 〈Ȳ 〉1 is the distribution of〈Ȳ 〉1, with Ȳ as in Theorem 3.7. This justifies calling
an estimatorgn regular andefficient atϑ , if F = L(Z | P0) whereZ = 〈Ȳ 〉−1

1 Ȳ1 is the
maximum likelihood estimator in the limit model.
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4. Some remarks on explosion for branching diffusions

4.1. The case without interactions

In a first step, we consider branching diffusions without interactions and immigra-
tions: In cased = 1, suppose that all particles move and evolve independently, that the
immigration ratec fulfils c(.) ≡ 0 (no immigrations) and that Assumption 2.8(b) holds.
In the sequel, x will always denote a point inR. Consider a filtered probability space
(&̃, (Gt )t ,F,Px) satisfying the usual conditions and a(Px, (Gt )t )-Brownian motionW ,
one-dimensional. Let(Gt )t be the filtration generated byW and consider the diffusion
process

Xt = x +
t∫

0

b(Xs) ds +
t∫

0

σ (Xs) dWs

of (2.2) driving one-particle motions of the branching diffusion process. Then, condi-
tioning on the first branching event in the particle process, with

u(t, x) :=Qb,σ,κ,0,F,π,ν
x (T∞ � t),

we arrive at the expansion

u(t, x) =
t∫

0

Ex

(
e−
∫ s

0
κ(Xu) duκ(Xs)g

(
Xs,u(t − s,Xs)

))
ds, (4.58)

where

g(x, s) := 1−
∞∑
k=0

F(x, {k})(1− s)k for |s| � 1.

In the following, we use techniques from the theory of backward stochastic differential
equations (see for example El Karoui, Peng and Quenez [5] or Pardoux and Peng [25])
in order to be able to handle the Feynman–Kac type formula (4.58). We fix someT > 0
and put

Yt := u(T − t,Xt) for 0� t � T ,

et := e−
∫ t

0
κ(Xu) du, At := κ(Xt)g(Xt, Yt).

Then the Markov property gives

Ȳt := etYt =
T∫
t

Ex(esAs | Gt ) ds.

Let Bt := etAt . In a first step, suppose thatκ(.) is bounded. Thenξ := ∫ T
0 Bs ds ∈

L2(Px,GT ), hence by the representation theorem,ξ = Ex(ξ) + ∫ T
0 Zs dWs . Taking
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Vt := ξ − ∫ t0 Bs ds, we have

T∫
t

Bs ds = Vt =Ex(ξ)+
T∫

0

Zs dWs −
t∫

0

Bs ds

and

0= VT =Ex(ξ)+
T∫

0

Zs dWs −
T∫

0

Bs ds.

Thus we get forȲt =Ex(Vt | Gt )

Ȳt =Ex(Vt | Gt )− VT = −
T∫
t

Zs dWs +
T∫
t

Bs ds.

SinceYt = (et )
−1Ȳt andd(et )−1 = κ(Xt)(et )

−1 dt ,

0= YT = Yt +
T∫
t

Ȳs d(es)
−1 +

T∫
t

(es)
−1 dȲs

= Yt +
T∫
t

Ysκ(Xs) ds −
T∫
t

As ds +Mt,

whereM is a martingale. Taking conditional expectations, we thus have

Yt =Ex

({ T∫
t

κ(Xs)
(
g(Xs, Ys)− Ys

)
ds

}
| Gt

)
. (4.59)

If κ(.) is unbounded, takeR such that|x| � R/2, write τR := inf{t : |Xt | � R} and use
a representation theorem forξR := ∫ T0 Bs∧τR ds ∈ L2(Px,GT ). Then following the same
arguments as above, one arrives at a backward representation forYR

t := (et∧τR )−1 Ȳ R
t ,

with Ȳ R
t := ∫ Tt Ex(Bs∧τR ds | Gt ), andR → ∞ gives the assertion (4.59).

THEOREM 4.1. – Suppose that
• |κ(x)| �C(1+ |x|p) for p � 2.
• |g(x,u)− g(x,u′)| �L|u− u′| for all x ∈ R.
• ‖b‖∞ <∞, ‖σ‖∞ <∞.

We consider only solutionsY of (4.59)withEx(|Yτ |2) <∞ for all stopping timesτ � T .
Then we have unicity for(4.59)in casep < 2. In casep = 2, unicity holds if additionally
T < (

√
8C(L+ 1)‖σ‖∞)−1.

Proof. –
(1) In a first step we show that any solutionY of (4.59) satisfies

Ex

(|YT∧τR |2
)
� 3, (4.60)
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if R is sufficiently large.
Write for shortf (s, x, u) := κ(x)(g(x,u)− u). Then (4.59) implies

Yt∧τR =Ex

(
YT∧τR +

T∧τR∫
t∧τR

f (s,Xs, Ys) ds | Gt∧τR

)
.

Thus withA := {|X0| �R/2},

1A|Yt∧τR | � Ex

({
1A|YT∧τR | +

T∫
t

|f (s ∧ τR,Xs∧τR, Ys∧τR )|1A ds
}

| Gt∧τR

)
. (4.61)

Now

|f (s ∧ τR,Xs∧τR , Ys∧τR )|1A � C
(
1+Rp

)
(1+ |Ys∧τR |1A)

sinceg(., .) is bounded by 1. Moreover,|YT∧τR |1A = (|YT∧τR |1A)(1A · 1{τR�T }). Hence

Ex

(|YT∧τR |1A | Gt∧τR
)
�Ex

(|YT∧τR |21A | Gt∧τR
)1/2

Ex

(
1A1{τR�T } | Gt∧τR

)1/2

and thus forR sufficiently large

Ex

(
Ex

(|YT∧τR |1A | Gt∧τR
)2)�Ex

(|YT∧τR |2
)1/2

Px(τR � T )1/2

�
√

2e−CT R
2 · (1+Ex

(|YT∧τR |2
))

since
√
x � 1 + x. To obtainPx(τR � T ) � 2e−2CT R

2
, note that for everyR such that

R/2� ||b||∞T + x the following holds:

Px(τR � T )= Px

(
sup
t�T

|Xt | � R
)
� Px

(
sup
t�T

|
t∫

0

σ (Xs) dWs | � R

2

)
.

Write Mt := ∫ t0 σ (Xs) dWs , then〈M〉t � ‖σ‖2∞ · t , hence by an exponential inequality

Px

(
sup
t�T

|Mt | � R

2

)
� 2exp

(
− R2

4T ‖σ‖2∞

)

and thus the assertion withCT := 1/(8T ‖σ‖2∞).
As a consequence of the previous considerations, coming back to Eq. (4.61), we arrive

at

Ex

(|Yt∧τR |2
)
�

√
2e−CT R

2 · (1+Ex

(|YT∧τR |2
))+C2(1+Rp

)2 T∫
t

(
1+Ex(|Ys∧τR |2)

)
ds

and hence by Gronwall’s inequality, withf (t) :=Ex(|Yt∧τR |2),

f (t) �
([√

2e−CT R
2(

1+ f (T )
)]+ 1

)
eC

2(1+Rp)2(T−t ). (4.62)
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Now for t → T we obtain

f (T ) �
√

2e−CT R
2 + √

2e−CT R
2
f (T )+ 1.

If R is sufficiently large,
√

2e−CT R
2 � 1/2, and hence

Ex

(|YT∧τR |2
)
� 3,

which is (4.60).
(2) Now let (Yt)t�T and (Ȳt )t�T be two solutions of (4.59),�t := Yt − Ȳt and

�fs := f (s,Xs, Ys)− f (s,Xs, Ȳs). Then

�t∧τR =Ex

(
�T∧τR +

T∧τR∫
t∧τR

�fs∧τR ds | Gt∧τR

)
.

Since|�fs∧τR | �C(1+Rp) · (L+ 1) · |�s∧τR |, we have withA := {|X0| � R/2}

1A|�t∧τR | � Ex

(
1A|�T∧τR | | Gt∧τR

)+C(L+ 1)
(
1+Rp

) T∫
t

Ex

(
1A|�s∧τR | | Gt∧τR

)
ds.

Thus Gronwall’s inequality yields

Ex(|�t∧τR |) �Ex(|�T∧τR |) · eα(1+Rp)(T−t ) (4.63)

with α := C(L+ 1). Note that�T∧τR = 0 if τR � T . As a consequence,

Ex(|�T∧τR |)=Ex

(|�T∧τR |1{τR�T }
)
�Ex

(|YT∧τR |2 + |ȲT∧τR |2
)1/2 · Px(τR � T )1/2

�
√

6 · √2e−CT R
2

by (4.60) and (1). This yields

Ex(|�t∧τR |)� cT · e−CT R
2+C(L+1)(T−t )Rp

for some constantcT depending onT . If p < 2, thene−CT R
2+C(L+1)(T−t )Rp

clearly tends
to 0 asR → ∞. If p = 2, then e−CT R

2+C(L+1)(T−t )R2
tends to 0 ifCT − C(L + 1) ×

(T − t) > 0 for all t � T which is true ifT < 1/(
√

8C(L+ 1)‖σ‖∞). This finishes the
proof. ✷

COROLLARY 4.2. – Consider a branching diffusion without interactions of particles,
with immigrations at bounded ratec, fulfilling Assumption2.8(b)and all conditions of
Theorem4.1. Then the branching diffusion does not explode: Qb,σ,κ,c,F,π,ν

x (T∞ <∞)= 0
for all initial configurationsx ∈ S.

Proof. –(1) Consider first a branching diffusion withc(.)≡ 0. Then by Theorem 4.1,
for T sufficiently small, for allx ∈ S ∩ R, Qb,σ,κ,0,F,π,ν

x (T∞ � T ) = u(T , x) = 0 (note
thatYt ≡ 0, 0 � t � T , is always a solution of (4.59)). Using the Markov property, we
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thus arrive atQb,σ,κ,0,F,π,ν
x (T∞ � t) = 0 for all t , hence the assertion for everyx ∈ R.

Now for x = (x1, . . . , xl) ∈ S, by the independence assumptions,

Qb,σ,κ,0,F,π,ν
x (T∞ <∞)= 1−

l∏
k=1

Q
b,σ,κ,0,F,π,ν
xi

(T∞ = ∞)= 0.

(2) A branching diffusionϕ with bounded immigration ratec � ‖c‖∞ can be
constructed in a coupled way with a branching diffusionϕ̄ with immigrations at constant
rate‖c‖∞ such thatϕ is a subprocess of̄ϕ. It is clear, thatϕ̄ cannot explode in finite time
by (1), hence the same holds forϕ. ✷

Remark4.3. – The relation of explosion problems for branching processes and
non-linear partial differential equations is well-known, see for instance Ikeda and
Watanabe [15] for treatment of explosion problems for branching Brownian motion. In a
sense, our Theorem 4.1 is not really far from explosion problems for branching Brownian
motion since drift and diffusion coefficients are supposed to be bounded. However, we
give the proof of Theorem 4.1 in detail since the theory of partial differential equation is
not involved at all – the arguments we are using are purely probabilistic ones.

4.2. The case with interactions

In situations with interactions, methods as in Section 4.1 (conditioning on first
branching events etc.) are no more helpful, and the only methods we can use are coupling
methods. We recall a result of Löcherbach [21], Proposition 5.13.

PROPOSITION 4.4. –Suppose that0< a � κ(., .) � b < ∞, that c(.) � d < ∞ for
some constantsa, b, d, and that the family of reproduction lawsF(xi , x, .) admits as
upper bound(in the sense of convolution of probability measures) some lawF̄ with
finite mean offspring number:

F̄ is a probability measure onN0 \ {1}, ∑
k �=1

k F̄ ({k}) <∞,

and F(xi, x, .) ∗ G(xi, x, .) = F̄ (.) for all (xi, x) ∈ R × S for some kernelG from
(R × S,B(R × S)) to N0. ThenQb,σ,κ,c,F,π,ν

x (T∞ <∞)= 0.
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