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ABSTRACT. – Let {Sn} be a random walk onZ and letRn be the number of different points
among 0, S1, . . . , Sn−1. We prove thatψ(x) := limn→∞(−1/n) logP {Rn � nx} exists forx � 0
and establish some convexity and monotonicity properties ofψ. This is a sequel to a recent paper
which treats random walks onZd with d � 2.  2002 Éditions scientifiques et médicales Elsevier
SAS
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RÉSUMÉ. – Soit{Sn} une marche aléatoire surZ et soitRn le nombre des points distincts entre
0, S1, . . . , Sn. Nous démontrons que la limiteψ(x) := limn→∞(−1/n) logP {Rn � nx} existe
pourx � 0 et établissons quelques propriétés de convexité et de monotonie deψ. Ceci complète
un article récent qui traite des marches aléatoires surZ

d avecd � 2.  2002 Éditions scientifiques
et médicales Elsevier SAS

1. Introduction

Let X,X1,X2, . . . be i.i.d. Z-valued random variables such thatP {X = 0} < 1. Let
S0 = 0, Sk =∑k

i=1Xi and let|A| denote the cardinality of the setA. Therange(at time
n) of the random walk{Sk} is

Rn =
∣∣{0, S1, . . . , Sn−1}

∣∣= number of different points among 0, S1, . . . , Sn−1. (1.1)

It has been known for a long time that

lim
n→∞

1

n
Rn = π := P {Sn 	= 0 for all n� 1} a.s.
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(see [8], Section 4). Throughout this articleπ will denote the probability on the right here
(instead of half the circumference of the unit circle). Here we shall prove the following
large deviation theorem:

THEOREM 1. – Assume thatP {X = 0}< 1. Then

ψ(x)= lim
n→∞

−1

n
logP {Rn � nx} exists (1.2)

for all x (butψ(x)=∞ may occur). ψ(·) has the following properties:

ψ(x)= 0 for x � π, (1.3)

0<ψ(x) <∞ for π < x � 1, (1.4)

ψ(x)=∞ for x > 1, (1.5)

x �→ψ(x) is continuous on[0,1] (1.6)

and

x �→ψ(x) is strictly increasing on[π,1]. (1.7)

In a recent paper [4] we proved this same result whenX takes values inZd for d � 2,
and we refer the reader to that paper for some brief historical remarks about the subject.
In that paper we also showed that the following result follows quickly from Theorem 1:

COROLLARY 1. – Let µn be the probability distribution of the random variable
Rn/n. In the set-up of Theorem1, we have that

lim sup
n→∞

1

n
logµn(F )�− inf

x∈F ψ(x) (1.8)

for each closed subsetF ⊂ [π,∞) and that

lim inf
n→∞

1

n
logµn(G)�− inf

x∈Gψ(x) (1.9)

for each open subsetG⊂ [π,∞).

Remark1. – For a nearest neighbor random walkψ can be evaluated explicitly.
Specifically, if P {X = 1} = 1− P {X = −1} = p � 1/2, thenπ = 2p − 1 (see [3],
Section XIII.4) and forπ � x � 1,

ψ(x)= 1

2
(1+ x) log

1+ x
2p

+ 1

2
(1− x) log

1− x
2(1− p), (1.10)

where 0 log 0= 0. This can be proven in the same way as formula (1.23) in [4]
for the Wiener sausage. Indeed for a nearest neighbor walk,Rn = maxk�n−1 Sn −
mink�n−1Sn + 1. Therefore

P {|Sn−1|� nx − 1}� P {Rn � nx}�
∑

0�k,��n−1

P {|Sk − S�|� nx − 1}. (1.11)
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(1.10) follows by combining this with standard large deviation estimates for the binomial
distribution.

Outline of the proof of Theorem 1. – Unfortunately, the proof of [4] does not work in
the one-dimensional case. In fact, the one-dimensional case seems to be harder and we
have to use different methods depending on whether

lim sup
n→∞

[
P {|X|� n}]1/n = 1, (1.12)

or

lim sup
n→∞

[
P {|X|� n}]1/n

< 1. (1.13)

In both cases, the basic idea of the proof is of course to use subadditivity arguments.
However, these do not seem directly applicable to{Rn � nx}, but only to the probability
of certain subevents of{Rn � nx}. We first discuss the case of (1.12) in whichX does
not have an exponentially bounded tail. In this case we use subadditivity for “cylinder
paths”. Specifically, it is easy to see that

P
{
Rn+m � (n+m)x, 0< Si � Sn+m, 1� i � n+m}
� P

{
Rn � nx, 0< Si � Sn, 1� i � n

}
(1.14)

× P{
Rm �mx, 0< Si � Sm, 1 � i �m

}
.

Subadditivity then shows that

ψ+(x) := lim
n→∞

−1

n
logP

{
Rn � nx, 0< Si � Sn, 1� i � n

}
(1.15)

exists. Similarly,

ψ−(x) := lim
n→∞

−1

n
logP

{
Rn � nx, 0> Si � Sn, 1� i � n

}
(1.16)

exists. In order to obtain an upper bound forP {Rn � nx} we now decompose a typical
sample pathS0 = 0, . . . , Sn for which {Rn � nx} into piecesSκj , . . . , Sκj+1 for which

Sκj < Si � Sκj+1 for κj < i � κj+1 (1.17)

or

Sκj > Si � Sκj+1 for κj < i � κj+1. (1.18)

The κj have to be chosen as certain local maxima and minima of theSi , in order
that (1.17) or (1.18) hold. We then use (1.14) to put all the pieces for which (1.17)
holds together into one piece to which (1.15) applies. Similarly we combine all pieces
for which (1.18) holds into another piece to which (1.16) applies. One can think of this
procedure as unfolding the random walk path to pick out more or less increasing pieces
and more or less decreasing pieces (for the purpose of these informal remarks we call a
pieceSk, Sk+1, . . . , Sk′ “more or less increasing” ifSk � Si � Sk′ for k � i � k′ and more
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or less decreasing if the opposite inequalities hold fork � i � k′). This type of argument
was first used by [5] for counting self-avoiding walks. The result is that to each path
for whichRn � nx, one can associate a path made up of two pieces, the probabilities of
which can be controled by means of (1.15) and (1.16). However, the same two pieces
may be associated to many paths with{Rn � nx} . The number of such paths is bounded
by the number of ways in which theκj can be chosen. A principal step in the proof of
Lemma 3 is to show (by means of simple combinatorial arguments) that this number
grows slower than exponentially inn. This yields the bound

lim inf
n→∞

−1

n
logP {Rn � nx}� inf

0�α,y,z�1
αy+(1−α)z=x

[
αψ+(y)+ (1− α)ψ−(z)

]
. (1.19)

We then show, in Section 3, that the right hand side of (1.19) is also an upper bound
for lim supn→∞(−1/n) logP {Rn � nx}. This is done by exactly the same method as
used in [4] for deriving the basic subadditivity relation of Lemma 1 there. It is done by
“putting together” two pieces, one more or less increasing, of length�αn� and having
R�αn� � �αn�y, and another more or less decreasing piece of length�(1− α)n� and
R�(1−α)n� � �(1− α)n�z; hereα,y and z are chosen so that the infimum in the right
hand side of (1.19) is taken on at these values. The two pieces have to be put together so
that not too many points occur in both pieces, because such points contribute only once,
rather than twice, to the range of the combination of the pieces. This is achieved by
putting the initial point of the second piece not directly at the endpoint of the first piece,
but at a judiciously chosen point. This will complete the proof of Theorem 1 when (1.12)
prevails.

The last step which gives an upper bound for lim supn→∞(−1/n) logP {Rn � nx}
does not work in the case of (1.13). Indeed, in this case, whenX has exponentially
bounded tails, the right hand side of (1.19) can be strictly smaller than the limit of
(−1/n) logP {Rn � nx}. This is so because a more or less decreasing path and a more
or less increasing path will typically have many points in common when the initial
point of the former is close to the endpoint of the latter (consider for instance the case
of simple random walk paths). In this case we use a different decomposition of paths
with Rn � nx. We show that any such path can be decomposed into three pieces, two
of which are circuits (i.e., paths with the same final point as initial point), and these
circuits are connected by a more or less decreasing or more or less increasing path.
To find such circuits note that max0�i�n Si � 0 � min0�i�n Si . The first circuit is then,
roughly speaking, the piece fromS0 till the last time at which the sample path jumps
from [0,∞) to (−∞,0). The difficulty is that at this time the path does not necessarily
jump to 0, but jumps across 0. However, we show in Lemmas 4 and 7 that the subclass
of paths which do jump to 0 at this time has a probability at least eo(n)P {Rn � nx}.
On this subclass we can use the time of this jump to 0 as the last step of the first
circuit. The second circuit is found in a similar way, by interchanging the roles of
the initial point S0 and the final pointSn. Once we have the decomposition into two
circuits and a more or less monotonic piece it is easy to obtain a lower bound for
limn→∞(−1/n) logP {Rn � nx}. This rests on a simple subadditivity argument which
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shows that limn→∞(−1/n) logP {Rn � nx,Sn = 0} exists, for allx ∈ [0,1], with the
possible exception of at most one value,x0 (see Lemma 2).

Once we have the lower bound for limn→∞(−1/n) logP {Rn � nx,Sn = 0}, it is fairly
easy to show that the lower bound is also an upper bound, by combining one circuit
contained in[0,∞), one circuit contained in(−∞,0] and one more or less monotonic
path between them (see Lemmas 6 and 8).

2. Subadditivity arguments

Throughout we assume that the group generated by the support ofX is all of Z. This
is no loss of generality, because this group is necessarily of the formmZ, and ifm 	= 1,
then we can replaceX andXi by X/m andXi/m, repectively, without changingRn.
The group generated by the support ofX/m will then be equal toZ.

Define the events

A+
n (x)= {Rn � nx and 0< Sk � Sn,1� k � n},

A−
n (x)= {Rn � nx and 0> Sk � Sn,1� k � n},

(2.1)

and

Ã+
n (x)= {Rn � nx and 0� Sk � Sn,1� k � n},

Ã−
n (x)= {Rn � nx and 0� Sk � Sn,1� k � n}.

(2.2)

Note that the only difference betweenA+
n (x) and Ã+

n (x) is that Sk has to be strictly
positive in the former, while it may equal 0 in the latter.

LEMMA 1. – For all x ∈R,

ψ+(x) := lim
n→∞

−1

n
logP

{
A+
n (x)

}
and ψ−(x) := lim

n→∞
−1

n
logP

{
A−
n (x)

}
exist

(2.3)

(but may equal+∞), and

P
{
A±
n (x)

}
� e−nψ

±(x), n� 1. (2.4)

If

p+ := P {X > 0}> 0, (2.5)

then in addition

lim
n→∞

−1

n
logP

{
Ã+
n (x)

}=ψ+(x), (2.6)

andψ+(·) is convex, nondecreasing and bounded on[0,1]. Also,ψ+(·) is continuous
on [0,1). Similarly, if

p− := P {X < 0}> 0, (2.7)
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then

lim
n→∞

−1

n
logP

{
Ã−
n (x)

}=ψ−(x), (2.8)

andψ−(·) is convex, nondecreasing and bounded on[0,1]. Also,ψ−(·) is continuous
on [0,1).

Proof. –We restrict ourselves to the case corresponding to the superscript+. We have

A+
n+m

(
ny +mz
n+m

)
⊃A+

n (y) ∩
{|{Sn, Sn+1, . . . , Sn+m−1}|�mz

}
∩{
Sn < Si � Sn+m, n+ 1 � i � n+m}

,

(2.9)

because on the event in the right hand side the sets{0, S1, . . . , Sn−1} and{Sn, . . . , Sn+m−1}
have no points in common. It follows that

P

{
A+
n+m

(
ny +mz
n+m

)}
� P

{
A+
n (y)

}
P
{
A+
m(z)

}
. (2.10)

If p+ = P {X> 0} = 0, thenP {A+
n (x)} = 0 for n� 1, and (2.3) and (2.4) withψ+(x)=

∞ are obvious. These relations are also obvious whenx > 1 because necessarilyRn � n.
We may therefore assume that (2.5) holds and thatx � 1. Then forx � 1,

P
{
A+
n (x)

}
� P {Xi > 0,1� i � n} = [p+]n > 0. (2.11)

(2.3) and (2.4) now follow in the usual way from superadditivity, when we takey = z= x
(see [6], Problem I.98).

Now assume that (2.5) holds, so thatp+ > 0. Then we can extend a path ofn steps
which belongs toÃ+

n (x) by inserting� strictly positive steps in front. Each such step
adds a point that will not be visited again by the extended path and therefore increases
the range by 1. From this we see that for�� 1

P
{
Rn+� � nx + � and 0< Sk � Sn+�,1� k � n+ �} � [p+]�P{

Ã+
n (x)

}
. (2.12)

In particular, forx � 1

P
{
A+
n+1(x)

}
� P

{
Rn+1 � nx + 1 and 0< Sk � Sn+1,1� k � n+ 1

}
� p+P

{
Ã+
n (x)

}
� p+P

{
A+
n (x)

}
. (2.13)

(The last inequality is trivial becauseA+
n (x) ⊂ Ã+

n (x).) (2.6) now follows from (2.3)
whenx � 1. Again we do not have to prove anything forx > 1, sinceRn � n.

The fact thatψ+(x) <∞ for 0� x � 1 is immediate from (2.11). It is also clear from
the definition ofψ+ that it is nondecreasing.

The convexity ofψ+ also follows from (2.12) and the argument for (2.10). Indeed,
let x = αy + (1− α)z and replacen by �αn� andm by �(1− α)n� in the argument
for (2.10). We find that
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P
{
R�αn�+�(1−α)n�+� � αny + (1− α)nz+ �,
0< Sk � S�αn�+�(1−α)n�+�,1� k � �αn� + �(1− α)n�+ �}
� [p+]�P{

A+
�αn�(y)

}
P
{
A+
�(1−α)n�(z)

}
� exp

[−n(αψ+(y)+ (1− α)ψ+(z))+ o(n)
]
. (2.14)

If x < 1, then we can choose� such that for alln� 1

αny + (1− α)nz+ �� (n+ �+ 2)x.

Indeed, this inequality always holds if�� 2x/(1− x). For such� we then have for alln
that

P
{
R�αn�+�(1−α)n�+� �

(�αn� + �(1− α)n�+ �)x,
0< Sk � S�αn�+�(1−α)n�+�,1� k � �αn� + �(1− α)n�+ �}

is at least as large as the left hand side of (2.14). It follows thatψ+(x)� αψ+(y)+ (1−
α)ψ+(z), which is the desired convexity forx < 1. Forx = 1 there is nothing to prove,
for thenx = αy + (1− α)z with 0 � α,y, z � 1 can occur only fory = z = 1 or for
α = 0 or 1.

The fact thatψ+ is nondecreasing and bounded on[0,1], together with the convexity
shows thatψ+ is continuous on[0,1). ✷

Remark2. – We shall find it useful to introduce the following additional events for
u ∈ {1,2, . . .}:

B+
n (u) := {Rn = u and 0< Sk � Sn, 1 � k � n},

B̃+
n (u) := {Rn = u and 0� Sk � Sn, 1 � k � n}.

(2.15)

Clearly we have

A+
n (x)=

⋃
u�nx

B+
n (u) and Ã+

n (x)=
⋃
u�nx

B̃+
n (u).

By imitating the proofs of (2.9) and (2.13) we further obtain

P
{
B+
n+m(u+ v)

}
� P

{
R[0, n− 1] = u,R[n,n+m− 1] = v,
0< Si � Sn+m, 1 � i � n+m}

� P
{
B+
n (u)

}
P
{
B+
m(v)

}
, (2.16)

and

P
{
B+
n+1(u+ 1)

}
� p+P

{
B̃+
n (u)

}
� p+P

{
B+
n (u)

}
. (2.17)

HereR[a, b] stands for|{Si: a � i � b}|. For the case when (1.13) prevails, we shall
need another subadditivity result. We define the event

Cn(x)= {Rn � nx,Sn = 0}. (2.18)
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LEMMA 2. – Letϑ denote the period of the random walk{Sn}, that is,

ϑ = gcd
{
n� 1: P {Sn = 0}> 0

}
,

and define

x0 = sup
{
x: P {RN > �Nx� + 2, SN = 0}> 0 for infinitely manyN

}
. (2.19)

Then for0� x < x0

σ (x) := lim
n→∞

−1

nϑ
logP {Cnϑ(x)} exists and is finite, (2.20)

and for eachx > x0 there exists ann0<∞ such that

P {Cn(x)} = 0 for n� n0. (2.21)

Moreover, for eachη > 0 there existN =Nη and t = tη such that for0� x � x0 − 2η it
holds for alln� 1 that

P {Cnϑ(x)}� nNϑ2

P {RNϑ > t, SNϑ = 0} exp
[−(n+N)ϑσ(x)]. (2.22)

Finally, σ (·) is nondecreasing, convex and continuous on[0, x0).

Proof. –Of course if P {X > 0}P {X < 0} = 0, then P {Cn(x)} � P {Rn � nx,

Xi = 0,1� i � n} = 0 for nx > 1. In this case the conclusion of the lemma withx0 = 0
is obvious. We may therefore assume that

P {X> 0}P {X< 0}> 0. (2.23)

Before we begin the proof proper, we show that in this casex0 is well defined and lies in
(0,1].

In view of (2.23) there exist integersa, b� 1 such that

P {X =−a}P {X= b}> 0. (2.24)

We also haveP {Rp(a+b) � pa,Sp(a+b) = 0}> 0 for all integersp � 2. Indeed ifXi = b
for 1 � i � pa andXi =−a for pa + 1 � i � p(a + b), then we obtain a sample path
with Sp(a+b) = 0 andRp(a+b) � pa because the numbersSi = ib for 0 � i � pa are all
different. Thus the set in the right hand side of (2.19) contains allx < a/(a+ b), so that
x0 � a/(a + b). By interchanginga andb we even havex0 � (a ∨ b)/(a + b).

To prove (2.20) we first show that

P {Rn � t, Sn = 0, Sk � 0 for 0� k � n}� 1

n
P {Rn � t, Sn = 0}. (2.25)

To this end, we introduce a map* from the n-step pathsS0, S1, . . . , Sn which end
at Sn = 0 to the subclass of these paths which in addition stay in the nonnegative
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halfline. Specifically, letk be the random index at which the minimum of the path
S0, S1, . . . , Sn is first reached. Then interchange the two piecesS0, . . . Sk andSk, . . . , Sn,
“glue them together” (i.e., identifyS0 and Sn) and shift by−Sk to obtain the path
*(S0, . . . , Sn)= (Sk, . . . , Sn, S1, . . . , Sk)− Sk. One easily sees that the successive steps
of this new path areXk+1, . . . ,Xn,X1, . . . ,Xk . These are obtained from the original
steps by a random cyclical permutation, as in [8], Proof of Proposition 32.5). Obviously
the probability of obtaining the successive stepsXk+1, . . . ,Xn,X1, . . . ,Xk is the same as
the probability for the stepsX1,X2, . . . ,Xn. By construction the path*(S0, . . . , Sn)=
(Sk, . . . , Sn, S1, . . . , Sk) − Sk lies in [0,∞) and has final point and initial point 0.
It is also obvious that the range of the image is|{Sk, Sk+1, . . . , Sn, S1 . . . Sk−1}| =
|{S0, S1, . . . , Sn−1}| = Rn (recall that Sn = 0). Finally the number of pre-images
(under*) of a given path is at mostn. Therefore

P
{
Rn � t, Sn = 0, Sk � 0 for 0� k � n

}
� P

{
*{Rn � t, Sn = 0}} � 1

n
P {Rn � t, Sn = 0},

which proves (2.25).
We shall now “combine” two configurations in which{Rn � t1, Sn = 0} and a

“translate” of {Rm � t2, Sm = 0} occur, respectively, to form a configuration in which
Rn+m � t1 + t2 − 1. This will prove that

P
{
Rn+m � t1 + t2− 1, Sn+m = 0

}
� 1

m
P
{
Rn � t1, Sn = 0

}
P
{
Rm � t2, Sm = 0

}
.

(2.26)
To obtain this we decompose the event{Rn � t1, Sn = 0} according to the value of the
smallest indexq for which

Sq = max
0�p�n

Sp,

Then we see from (2.25) that the right hand side of (2.26) is not larger than
n∑
q=0

P
{
Rn � t1, Sn = 0, Si < Sq for 0� i < q, Sj � Sq for q < j � n

}
× P{

Rm � t2, Sm = 0, Sj � 0 for 0� j �m
}
. (2.27)

The summand in (2.27) is equal to

P
{
Rn � t1, Sn = 0, Si < Sq for 0 � i < q,

Sj � Sq for q < j � n, R[n,n+m− 1]� t2, (2.28)

Sn+m = Sn, Sh − Sn � 0 for n� h� n+m}
.

Now consider a path ofn + m steps with the properties listed in this probability. Let
its steps beX1,X2, . . . ,Xn+m. As in the proof of (2.25), we construct a new path by
permuting the steps. More specifically, we take the piece of the path consisting of its
lastm steps and insert this piece right after theqth step. That is, we arrange the steps in
the orderX1, . . . ,Xq,Xn+1, . . . ,Xn+m,Xq+1, . . . ,Xn. The new path coincides with the
original path up till timeq. Then it follows the loopSn, Sn+1, . . . , Sn+m = Sn translated
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by Sq , and then ends with the piece fromSq to Sn of the original path. Because of the
properties listed in (2.28), the pieces of the original path from 0 toSq and fromSq to Sn
lie in (−∞, Sq] while the loopSq + (Sn, Sn+1, . . . , Sn+m) lies in [Sq,∞). Thus this last
loop has only the pointSq in common with the other pieces, so that the range of the new
path is at least ∣∣{S0, . . . , Sn−1}

∣∣+ ∣∣{Sn, Sn+1, . . . , Sn+m−1}
∣∣− 1

=Rn +R[n,n+m− 1] − 1= t1 + t2− 1

(hereSj is the position at timej in the original path). Because the permuted path occurs
with the same probability as the original one, we see that the probability in (2.28) is at
most

P
{
Rn+m � t1+ t2 − 1, Sn+m = 0,

Si < Sq for 0� i < q, Sh � Sq for q � h� q +m, (2.29)

Sj � Sq for q +m< j � n+m}
.

The events in (2.29) for distinctq ’s are disjoint, because on the event in (2.29)q is the
smallest index for which∣∣{i: Si > Sq}∣∣<m− 1 but

∣∣{i: Si � Sq}
∣∣ �m+ 1.

It follows that (2.27) is not larger thanP {Rn+m � t1 + t2 − 1, Sn+m = 0}, which
implies (2.26).

Now letη > 0 andx � x0 − 2η. LetN =Nη be an integer for which

κ = κη := P{
RNϑ > �Nϑ(x0 − η)� + 2, SNϑ = 0

}
> 0. (2.30)

Such anN exists by the definition ofx0. Recall that there exists some integer� � 1
such thatP {Ssϑ = 0}> 0 for all s � � (see Appendix A21 in [1]). Letm� 1 be a given
integer. Forn� � we can expressn uniquely as

n= r(m+N)+ s (2.31)

with integersr, s satisfyingr � 0 and�� s < �+m+N . Now taket = tη = �Nϑ(x0−
η)� + 2, and assume thatn is so large that even

r[N(x0 − η)−Nx]� sx,

for ther, s of (2.31). (Note that the left hand side here is at leastrNη by our choice ofx
and that the right hand side is at most(�+m+N)x0.) We then also have

nϑx = [r(m+N)+ s]ϑx
� r

(
mϑx + �Nϑ(x0 − η)�)

= r(mϑx + tη − 2).

Finally, define

δ = inf
{
P {Ssϑ = 0}: �� s < �+m+N}

.
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Repeated application of (2.26), withm, t2 replaced bymϑ,mϑx or byN, t , then shows
that

P {Rnϑ � nϑx, Snϑ = 0}
�

[
1

mϑ
P {Rmϑ �mϑx, Smϑ = 0} 1

Nϑ
P {RNϑ � t, SNϑ = 0}

]r
× P {Rsϑ � 0, Ssϑ = 0}

� δ

[
1

mϑ
P {Cmϑ(x)} κ

Nϑ

]r
. (2.32)

Noting thatδ is strictly positive and independent ofn, we obtain that

lim sup
n→∞

−1

nϑ
logP {Cnϑ(x)}� −1

(m+N)ϑ logP {Cmϑ(x)} − log
(
κ/(mNϑ2)

)
(m+N)ϑ . (2.33)

Finally, if we letm go to infinity through a subsequence for which

−1

mϑ
logP {Cmϑ(x)} → lim inf

n→∞
−1

nϑ
logP {Cnϑ(x)},

then we obtain that

lim
n→∞

−1

nϑ
logP {Cnϑ(x)}

exists. This limit is finite by virtue of

P {RrNϑ � rNϑx, SrNϑ = 0}�
(
κ

Nϑ

)r
(which is a simplified version of (2.32) withm = s = 0). This proves (2.20) for any
x � x0 − 2η, and hence for all 0� x < x0. Furthermore, (2.22) is contained in (2.33).

Next, if x > x0, then forx0 < x
′ < x and largen

P {Cn(x)}� P
{
Rn > �nx′� + 2, Sn = 0

}= 0,

by the definitions ofCn andx0. Thus (2.21) holds.
The monotonicity, convexity and continuity ofσ are proven in the same way as for

ψ± in Lemma 1. ✷
Remark3. – It is not hard to show thatx0 = 1 when the support ofX is unbounded.

Even if the support ofX is bounded, it will be the case thatx0 = 1 if there exists
a, b > 1 with gcd(a, b) > 1 for which (2.24) holds. On the other hand, there are
certainly examples for whichx0 < 1 (for instance simple random walk). We expect that
limn→∞−1/(nϑ) logP {Cnϑ(x0)} also exists in these cases, but it may be infinity.

To controlCn(x) for x0 � x � 1, we take for 0< η < x0, a continuous increasing
functionx �→ rη(x) on [0, η] for which

rη(0)= 0 and rη(η)= 1

η
,
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and define

ση(x)=

σ
(
x ∧ (x0 − η)) if 0 � x � (x0+ η)∧ 1,

σ (x0− η)+ rη(x − x0 − η) if x0 + η� x � (x0+ 2η)∧ 1,
σ (x0− η)+ 1/η if x0 + 2η � x � 1.

(2.34)

Note thatση(x)� σ (x0− η) for all x � (x0+ η)∧ 1. Moreover,ση(·) is nondecreasing,
continuous and bounded on[0,1]. We also takeMη to be an integer such thatP {Cn(x0+
η)} = 0 for nϑ � Mη (see (2.21)). By the monotonicity inx of P {Cn(x)} and (2.21),
(2.22) we then have for alln�Mη and allx ∈ [0,1]

P {Cnϑ(x)}� nNϑ2

P {RNϑ > t, SNϑ = 0} exp
[−(n+N)ϑση(x)] (2.35)

(with N =Nη/2, t = tη/2).

3. An upper bound for P {Rn � nx}
Here we shall compare lim sup(−1/n) logP {Rn � nx} with

ψ∗(x) := inf
0�α,y,z�1
αy+(1−α)z=x

[
αψ+(y)+ (1− α)ψ−(z)

]
. (3.1)

LEMMA 3. – If (2.23)holds, then for0 � x � 1,

lim inf
n→∞

−1

n
logP {Rn � nx}� ψ∗(x). (3.2)

Proof. –We shall prove this lemma by ‘unfolding’ a random walk path. To this end
we define certain indices, as a function ofS1, S2, . . . , Sn. Roughly speaking these are the
successive times at whichSj reaches for the last or first time a maximum or minimum of
a piece of the sample path till timen (see Fig. 1). This splits the path into various pieces
Sj , . . . , Sj ′ , each of which is more or less increasing or more or less decreasing (in the
terminology introduced after (1.18)). We then permute these pieces and combine the
more or less increasing ones into one path,*1 say, and the more or less decreasing ones
into another path,*2 say. The probabilities of the resulting paths*1,*2 are estimated
by means of Lemma 1. This eventually gives the bound (3.40) for the probability of
all the possible*1,*2. Again the permuted paths occur with the same probability as
the original path, but we still need a combinatorial or numbertheoretical estimate for
the number of paths which result after permutation in a particular pair of*1,*2. This
estimate, which depends on our choice of the more or less increasing or decreasing
pieces, is provided after (3.40).

We now give the somewhat tedious details. We fixx ∈ [0,1] for the rest of this section.
Define

κ1 =max
{
i � n: Si =max{0, S1, S2, . . . , Sn}}; (3.3)

if κ2j−1< n, then define
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Fig. 1. Illustration of the location ofλ2, λ3, κ1, κ2 andκ3.

κ2j =max
{
i > κ2j−1: Si =min{Sκ2j−1, Sκ2j−1+1, . . . , Sn}}; (3.4)

and if κ2j < n, then define

κ2j+1 =max
{
i > κ2j : Si =max{Sκ2j , Sκ2j+1, . . . , Sn}}. (3.5)

We only defineκ� in this way as long asκ�−1 < n, so that the set in the right hand
sides of these definitions is nonempty. We define

ν =min{�: κ� = n} (3.6)

and leaveκ� undefined for� > ν. The piecesSκi , . . . , Sκi+1, 1 � i � ν − 1, are some of
the more or less increasing and more or less decreasing pieces into which we decompose
the original path.

In order to find the remaining pieces we also define indices similar to theκi , but going
downwards fromκ1. If κ1 > 0, then we define

λ2 =min
{
i < κ1: Si =min{Sκ1, Sκ1−1, . . . , S1,0}}; (3.7)

if λ2j > 0, then define

λ2j+1 =min
{
i < λ2j : Si =max{Sλ2j , Sλ2j−1, . . . , S1,0}}; (3.8)

if λ2j+1> 0, then define

λ2j+2 =min
{
i < λ2j+1: Si =min{Sλ2j+1, Sλ2j+1−1, . . . , S1,0}}. (3.9)

These indices are defined only as long as the preceding one is strictly positive. We set

µ=min{�: λ� = 0} (3.10)

and leaveλ� undefined for� > µ.



30 Y. HAMANA, H. KESTEN / Ann. I. H. Poincaré – PR 38 (2002) 17–58

Now letµ,λ and 0= �µ < �µ−1 < · · ·< �2 < k1 < · · ·< kν−1 < kν = n be fixed and
let us estimate the probability of

{Rn � nx, κj = kj ,1� j � ν,λm = �m, 2�m�µ}. (3.11)

To this end note that on this event, by the definition of theκ ’s,

Si < Sk1 for k1 < i � n, (3.12)

Si � Sk1 for 0 � i � k1, (3.13)

Sk2j−1 > Si � Sk2j for k2j−1 < i � k2j , (3.14)

Si > Sk2j for k2j < i � n, (3.15)

when 1� j � �ν/2�, and

Sk2j < Si � Sk2j+1 for k2j < i � k2j+1, (3.16)

Si < Sk2j+1 for k2j+1 < i � n, (3.17)

when 1� j � �(ν − 1)/2�. These inequalities imply furthermore that

Sk1 − Sk2 > Sk3 − Sk2 > Sk3 − Sk4 > · · ·> Skν−1 − Skν > 0 (3.18)

if ν is even, and

Sk1 − Sk2 > Sk3 − Sk2 > Sk3 − Sk4 > · · ·> Skν − Skν−1 > 0 (3.19)

if ν is odd. Similarly,

S�2 � Si � Sk1, �2 � i � k1, (3.20)

and

S�2j+1 � Si > S�2j , �2j+1 � i < �2j ,

S�2j+2 � Si < S�2j+1, �2j+2 � i < �2j+1,

(3.21)

provided 2j + 1� µ, respectively, 2j + 2 �µ.
We introduce the following notation for the events in (3.14), (3.16), (3.20) and (3.21):

F2j−1 := {
Sk2j−1 > Si � Sk2j for k2j−1 < i � k2j

}
,

F2j := {
Sk2j < Si � Sk2j+1 for k2j < i � k2j+1

}
,

F0 := {
S�2 � Si � Sk1 for �2 � i � k1

}
,

G2j := {
S�2j+1 � Si > S�2j for �2j+1 � i < �2j

}
,

and

G2j+1 := {
S�2j+2 � Si < S�2j+1 for �2j+2 � i < �2j+1

}
.

We also define

R[a, b] = |{Si: a � i � b}|. (3.22)
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In this notation,Rn =R[0, n− 1] and it is easy to see that

Rn =R[0, n− 1]�
µ−1∑
i=2

R[�i+1, �i − 1] +R[�2, k1− 1] +
ν−1∑
i=1

R[ki, ki+1 − 1].

From this one sees that the event (3.11) is contained in the union overv2, . . . , vµ−1 �
0, u0, . . . , uν−1 � 0, with

n�
µ−1∑
j=2

vj +
ν−1∑
i=0

ui � nx, (3.23)

of the events

{
R[�2, k1− 1] = u0, R[ki, ki+1− 1] = ui, Fi, 0� i � ν − 1,

R[�j+1, �j − 1] = vj , Gj , 2� j � µ− 1
}
.

(3.24)

The probability of this last event equals(
µ−1∏
j=2

P
{
R[�j+1, �j − 1] = vj ,Gj

})
P
{
R[�2, k1 − 1] = u0,F0

}

×
(
ν−1∏
i=1

P
{
R[ki, ki+1 − 1] = ui,Fi}

)
. (3.25)

We now combine all the factors corresponding to intervals on which the last value
of S exceeds the initial value, and the factor corresponding to the interval[�2, k1]. We
combine the other factors into another product. For the sake of argument, we assume
thatµ andν are even; we leave the trivial modifications for other cases to the reader. Let
µ= 2ζ andν = 2ξ . Then the factors of the first group are

P
{
R[�2j , �2j−1− 1] = v2j−1,G2j−1

}
, j = ζ, ζ − 1, . . . ,2,

P
{
R[�2, k1− 1] = u0,F0

}
and (3.26)

P
{
R[k2i, k2i+1 − 1] = u2i , F2i

}
, i = 1,2, . . . , ξ − 1.

Now, by the definition ofB+
n ,

P
{
R[k2i , k2i+1− 1] = u2i , F2i

}
= P{

R[k2i , k2i+1− 1] = u2i , Sk2i < Sp � Sk2i+1 for k2i < p � k2i+1
}

(3.27)

= P{
B+
k2i+1−k2i

(u2i)
}
.

Similarly, by the definition ofB̃+
n and (2.17)

P
{
R[�2, k1− 1] = u0,F0

}= P{
B̃+
k1−�2

(u0)
}

� [p+]−1P
{
B+
k1−�2+1(u0+ 1)

}
, (3.28)

P
{
R[�2j , �2j−1− 1] = v2j−1,G2j−1

}
� [p+]−1P

{
B+
�2j−1−�2j+1(v2j−1+ 1)

}
. (3.29)
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Next we construct a new random walk path by putting together paths for which the
events in the right hand sides of (3.27)–(3.29) occur. More precisely, we definemp

recursively by

m0 = 0,mp+1 −mp = �2ζ−2p−1− �2ζ−2p + 1 for p = 0,1, . . . , ζ − 2,

mζ −mζ−1 = k1− �2+ 1,

and finally

mζ+p −mζ+p−1 = k2p+1− k2p for p= 1, . . . , ξ − 1.

Then the right hand sides of (3.27)–(3.29) equal

P
{
B+
mζ+i−mζ+i−1

(u2i)
}
, [p+]−1P

{
B+
mζ−mζ−1

(u0 + 1)
}
,

and

[p+]−1P
{
B+
mζ−j+1−mζ−j (v2j−1 + 1)

}
,

respectively. DefineN,α ∈ [0,1] andy � 0 by

N = n+ 2ζ − 1,

αN =mζ+ξ−1 =
ζ∑
j=2

(�2j−1− �2j + 1)+ (k1 − �2+ 1)+
ξ−1∑
i=1

(k2i+1 − k2i),

and

αNy =
ζ∑
j=2

(v2j−1 + 1)+ u0 + 1+
ξ−1∑
i=1

u2i . (3.30)

Note that automaticallyy � 0. Repeated application of (2.16) then shows that the
product of the probabilities in (3.26) is at most

[p+]−ζ P{
R[mζ−j ,mζ−j−1− 1] = v2j−1+ 1, 2� j � ζ,

R[mζ−1,mζ − 1] = u0 + 1,

R[mζ+i−1,mζ+i − 1] = u2i , 1� i � ξ − 1,

0< Sp � SαN, 1 � p � αN
}
.

(3.31)

The events in the probability here for two distinct choices of the sequencesv2j−1,2 �
j � ζ , u2i ,0� i � ξ − 1, are disjoint. Therefore, for any fixedy, the sum of (3.31) over
all v2j−1, u2i which satisfy (3.30) is at most

[p+]−ζ P{
R[0, αN − 1] = αNy, 0< Sp � SαN, 1 � p � αN

}
= [p+]−ζ P{

B+
αN(αNy)

}
� [p+]−ζ P{

A+
αN(αNy)

}
� [p+]−ζ exp

[−αNψ+(y)
]

(by (2.4)). (3.32)
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The remaining factors in (3.25) correspond to intervals on which the last value ofS is
less than the initial value. These are the factors

P
{
R[�2j+1, �2j − 1] = v2j ,G2j

}
, j = 1, . . . , ζ − 1,

P
{
R[k2i−1, k2i − 1] = u2i−1,F2i−1

}
, i = 1, . . . , ξ.

(3.33)

The definitions ofN andα imply that

(1− α)N =
ζ−1∑
j=1

(�2j − �2j+1+ 1)+
ξ∑
i=1

(k2i − k2i−1).

In analogy with (3.30) we definez by

(1− α)Nz=
ζ−1∑
j=1

(v2j + 1)+
ξ∑
i=1

u2i−1. (3.34)

In particular this forcesz � 0. By virtue of (3.23) we only have to considery and z
which satisfy

αNy + (1− α)Nz=
2ζ−1∑
j=2

(vj + 1)+ (u0+ 1)+
2ξ−1∑
i=1

ui

� nx + 2ζ − 1�Nx (3.35)

(recallx � 1), and hence

αy + (1− α)z� x. (3.36)

Exactly as in (3.32) we now find that the sum overv2j , u2i−1 satisfying (3.34) for some
fixed z of the product of the factors in (3.33) is at most

[p−]−ζ+1P
{
R[0, (1− α)N − 1] = (1− α)Nz,
0> Sp � S(1−α)N, 1 � p � (1− α)N}

� [p−]−ζ+1P
{
A−
(1−α)N(z)

}
� [p−]−ζ+1 exp

[−(1− α)Nψ−(z)
]

(3.37)

(recall thatp− = P {X < 0}; see (2.7)). Combining this with the estimate in (3.32)
we find that the sum of the probabilities of the events in (3.24) overu’s and v’s
satisfying (3.30) and (3.34) is at most

[p−]−ζ+1[p+]−ζ exp
[−Nαψ+(y)−N(1− α)ψ−(z)

]
� p−2ζ+1 exp

[
−n inf

0�α�1,y,z�0
αy+(1−α)z=x

[
αψ+(y)+ (1− α)ψ−(z)

]]
. (3.38)
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Herep denotes min{p+,p−}. In the last inequality we used (3.36) and the fact that

inf
0�α�1,y,z�0
αy+(1−α)z�x

[
αψ+(y)+ (1− α)ψ−(z)

]
= inf

0�α�1,y,z�0
αy+(1−α)z=x

[
αψ+(y)+ (1− α)ψ−(z)

]
,

(3.39)

which follows from the monotonicity ofψ±. Indeed, ifαy+ (1−α)z = x′ > x, then we
have that

αψ+(y)+ (1− α)ψ−(z)� αψ+
(
x

x′
y

)
+ (1− α)ψ−

(
x

x′
z

)
,

which is not less than the right hand side of (3.39). We may add the restrictiony, z� 1
in the infimum here, because, as we already explained,ψ±(y) = ∞ for y > 1. Thus
the restrictiony, z � 1 has no influence on the infimum. From the left hand inequality
in (3.23) we see that we only have to consider valuesαNy � n+ ζ and(1− α)Nz �
n+ ζ . Thus the probability of the event in (3.11) is at most

(n+ ζ + 1)2p−2ζ+1 exp[−nψ∗(x)]� 4n2p−µ+1 exp[−nψ∗(x)]. (3.40)

In order to complete the proof of this lemma we must now estimate how many choices
there are for theµ,ν, �m and kj in (3.23). In fact we shall only estimate this for the
subclass of the sample paths which satisfy

5n :=
∣∣{i � n: |Xi |>√

n}∣∣ � γ (n)n, (3.41)

where we can take forγ (·) any function which satisfies

γ (n)n� 1, γ (n) ↓ 0 butγ (n) log
γ (n)

P {|X|>√
n} →∞ (3.42)

asn ↑∞. For instance,γ (n)= [− logP {|X|>√
n}]−1/2 ∨n−1 will do. We may restrict

ourselves to such paths, because the probability that (3.41) fails is at most(
n

�γ (n)n�
)[
P {|X|>√

n}]�γ (n)n� =O
(
neP {|X|>√

n}
nγ (n)

)γ (n)n
.

Under (3.42), we therefore have

lim sup
n→∞

1

n
logP {5n > γ (n)n} = −∞. (3.43)

Hence, we may and shall consider only sample sequences which satisfy (3.41) for the
proof of (3.2).
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We claim that under (3.41) it must be the case that (for largen)

ν � γ (n)n+ 2n3/4. (3.44)

To see this, letJ be the set ofj ∈ [1, ν − 1] for which there exists ani ∈ [kj + 1, kj+1]
with |Xi|>√

n. Then

|J |� γ (n)n.

Moreover, ∑
1�j<ν,
j /∈J

|Skj+1 − Skj |�
∑

1�i�n,
|Xi |�√

n

|Xi |� n3/2,

and the integers|Skj+1 − Skj |, 1 � j � ν − 1, j /∈ J , are strictly decreasing. In fact the
whole sequence of the|Skj+1 − Skj | is strictly decreasing by virtue of (3.18) and (3.19).
Now it is easy to see that ifr1, r2, . . . , rq are distinct positive integers with

∑q
t=1 rt �A,

thenq(q + 1)/2 � A since
∑q

t=1 t � ∑q
t=1 rt . Thus in such a situation we must have

q �
√

2A. If we apply this with thert the successive values of|Skj+1 − Skj |, 1 � j �
ν− 1, j /∈ J , then we see that there can be at most

√
2n3/4 such indicesj . Thus the total

number of|Skj+1 − Skj | is at most|J | +√
2n3/4+ 1, and (3.44) holds.

The bound (3.44) also holds forµ− 1. Since theki and�j , as well asµ andν have to
take values in[0, n] we find that the total number of choices forµ,ν and theki, �j is for
largen at most

n2

(
n+ 1

�2γ (n)n+ 4n3/4�
)
= eo(n).

For each such choice of theki, �j ,µ and ν, the probability of the event in (3.24) is
bounded by the right hand side of (3.40). We have finally proven that

P {Rn � nx}� P {5n > γ (n)n} + 4n2p−γ (n)n−2n3/4
exp

[−nψ∗(x)+ o(n)
]
,

which, together with (3.43), implies (3.2).✷

4. A lower bound for P {Rn � nx} in the case (1.12)

In this section we show that lim(−1/n) logP {Rn � nx} is given by the right hand
side of (3.2) when (1.12) prevails. In order to make use of (1.12), the following lemma
will be helpful; (1.12) gives us thatχ+ in (4.1) (or its analogue on the negative side,χ−
equals 0).

LEMMA 4. – Assume that(2.23)holds. Let

χ+ = lim inf
n→∞

−1

n
logP {X= n}. (4.1)
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If χ+ <∞, then there exists a constantc1 and a functiong+ : {1,2, . . .} → {1,2, . . .}
such that

g+(n)= o(n), (4.2)

and

P
{
Sg+(n) = n,−c1 � Si � n+ c1,0� i � g+(n)

}
� e−χ

+n+o(n). (4.3)

Moreover, foru� 0

P {Rn � nx,Sn =−u}� eχ
+u+o(u)P {Rn+g+(u) � nx,Sn+g+(u) = 0}

= eχ
+u+o(u)P

{
Cn+g+(u)

(
nx

n+ g+(u)
)}
. (4.4)

(See(2.18)for Cn.)

Proof. –Recall the we assumed that the group generated by the support ofX equalsZ.
This means that there exist integersa, b and positive integersr, s such thatP {Sr = a}>
0,P {Ss = b} > 0 anda − b = 1. By virtue of (2.23) we may takea, b > 0, because we
can replacea, b by a+mc,b+mc if P {St = c}> 0 for somet . As in [1], Appendix A21,
this implies that fork � somek0 there exists anh(k)� 1 for whichP {Sh(k) = k} > 0.
But then there also existm andu such that

P {Sh(1+mu)+mu = 1}� P {Sh(1+mu) = 1+mu}[P {X =−u}]m > 0.

The same argument holds with positive and negative interchanged, so that there exist
integersm+,m− and a constantc2 > 0 such that

P {Sm+ = 1}> c2 and P {Sm− = −1}> c2. (4.5)

Now let ki � 1, i = 1,2, . . . be such that

ki+1 � 2ki, i � 0, P {X = ki}> 0

and lim
i→∞

−1

ki
logP {X= ki} = χ+ <∞.

(4.6)

For anyn� k1 we can then find ann′ ∈ [n− k1+ 1, n] such that

n′ =
i0∑
i=1

tiki

for some non-negative integersi0, ti which satisfy

ki0 � n < ki0+1, ti <
ki+1

ki
.
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Indeed, after findingi0 so that the first relation holds, one merely has to taketi0 = �n/ki0�
and then fori = i0− 1, . . . ,1,

ti =
⌊

1

ki

(
n−

i0∑
j=i+1

tj kj

)⌋
.

Let i1 be the unique index withki1 �√
n < ki1+1. Then

i0∑
i=1

ti �
i0∑
i=1

ki+1 ∧ n
ki

� 1

ki1

[
n+

i0∑
i=i1+1

ki

]
+ ki1

i1−1∑
i=1

1

ki

� 1

ki1

[
n+

i0∑
i=i1+1

ki02
−(i0−i)

]
+ ki1

i1−1∑
i=1

1

k1
2−i+1

� 3n

ki1
+ 2ki1 � 3n

ki1
+ 2

√
n= o(n).

Moreover, by virtue of (4.5), there exists some�= �(n− n′) such thatP {S� = n− n′}>
0. In fact the only possibilities forn− n′ are the integers 0,1, . . . , k1− 1, so that we can
take

�(n− n′)=m+(n− n′)�m+k1 and P {S�(n−n′) = n− n′}� [c2]n−n′ � [c2]k1 =: 2c3,

uniformly in n. After that we can choosec1 > 0 so that

P
{
S� = n− n′, |Si|� c1 for i � �

}
� P {S� = n− n′} − P{|Si|> c1 for somei �m+(n− n′)}
� c3.

Finally we take

g+(n)=
i0∑
i=0

ti + �(n− n′).

Clearly (4.2) is satisfied, by virtue of the preceding estimate for
∑
ti . In addition, by

virtue of (4.6) and the fact that allki are strictly positive,

P
{
Sg+(n) = n,−c1 � Si � Sg+(n) + c1 for i � g+(n)

}
�

i0∏
i=1

[P {X = ki}]tiP{
S�(n−n′) = n− n′, |Si|� c1 for i � �(n− n′)}

� c3 exp

[
−

i0∑
i=1

ti
(
χ+ki + o(ki)

)]
= exp

[−χ+n+ o(n)
]
.
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Thus also (4.3) holds.
Finally, (4.4) follows from (4.3) and

P {Rn+g+(u) � nx,Sn+g+(u) = 0}

� P {Rn � nx,Sn =−u}P
{
n+g+(u)∑
i=n+1

Xi = u
}
. ✷ (4.7)

Remark5. – Define

χ− := lim inf
n→∞

−1

n
logP {X=−n}. (4.8)

Of course, whenχ− <∞, then the analogous results to Lemma 4 with positive and
negative interchanged hold. We then have to replaceg+(n) by someg−(n)= o(n).

Note thatχ± =∞ is possible, for instance whenX is bounded on one or both sides.
In this case (4.4) should be replaced by

P {Rn � nx, Sn =−u} � [c2]−uP {Rn+um+ � nx,Sn+um+ = 0}
= [c2]−uP

{
Cn+um+

(
xn

n+ um+

)} (4.9)

for u� 0. This inequality again follows from (4.7) withg+(u) replaced byum+, if one
takes into account thatP {Sum+ = u}� [P {Sm+ = 1}]u (see (4.5) form+ andc2).

With the help of Lemma 4 we can now prove an analogue of Lemma 1 in [4], for the
case (1.12).

LEMMA 5. – Assume that(1.12) and (2.23) hold. Then, there exists a constantM
and a functionr : {1,2, . . .}→ {1,2, . . .} with the following properties:

r(p)→∞ but r(n)= o(n) asn→∞, (4.10)

r(n+ 1)− r(n)� 1, n� 0, (4.11)

and for all integersn,m�M andy, z ∈ [0,∞) it holds that

P
{
Rn+m+r(n+m) � y + z− r(n+m)} � e−r(n+m)P {Rn � y}P {Rm � z}. (4.12)

Proof. –This proof is essentially the same as that of Lemma 1 in [4]. Suppose that we
can find a set;=;(n,m)⊂Z and functionsg, r : {1,2, . . .}→ {1,2, . . .} such that

g(w)� r(n+m), w ∈;, (4.13)

for eachw ∈;, P {Sg(w) =w}� 2e−r(n+m) (4.14)

and

nm

r(n+m) � 1

2
|;|. (4.15)
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Then a few simple modifications in the proof of inequality (2.11) in [4] show that for
suchn,m

P
{
Rn+m+r(n+m) � y + z− r(n+m)} � 2e−r(n+m)

|;|
1

2
|;|P {Rn � y}P {Rm � z}.

We therefore merely have to find the functionr and a replacement for the set;q which
we used in [4], in such a way that (4.10), (4.11) and (4.13)–(4.15) are satisfied for
n,m�M

To find the requiredr and; we appeal to Lemma 4. If (1.12) holds, thenχ+ = 0 or
χ− = 0. For the sake of argument we assume thatχ+ = 0. By Lemma 4 there then exists
a funtiong+ such that

g+(p)= o(p) and lim
p→∞

1

p
logP {Sg+(p) = p} = 0.

But then we can find ap0 and a nondecreasing functiont : {1,2, . . .}→ {1,2, . . .} which
increases so slowly that

t (p)→∞ but t (p)= o(p) asp→∞, (4.16)

g+(w)� p

t(p)
for all p0 �w � 4p

(
t (p)+ 1

)
(4.17)

and

P {Sg+(w) =w}� 2e−p/t (p) for p0 �w� 4p
(
t (p)+ 1

)
. (4.18)

Finally we takeg+ for g and

r(p)=


⌈ p0
t (p0)

⌉
if p� p0,⌈

p

t(p)

⌉
if p > p0,

and

;=
[
p0,

4(n+m)2
r(n+m)

]
⊂ [

p0,4(n+m)t(n+m)].
It is easy to see that this choice satisfies all requirements for some suitableM and
n,m�M . We merely comment on the requirement (4.11). This follows from the fact
thatt is nondecreasing. Indeed this monotonicity implies(p+1)/t (p+1)−p/t (p)� 1,
and hence also�(p+ 1)/t (p+ 1)� − �p/t (p)�� 1. ✷

We can now prove (1.2) in the case of (1.12).

LEMMA 6. – Assume that(1.12)holds and that0� x � 1. Then

lim
n→∞

−1

n
logP {Rn � nx} =ψ∗(x). (4.19)
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Proof. –If p− = P {X < 0} = 0 (and hencep+ = P {X > 0} > 0, becauseP {X =
0} < 1), thenP {A−

n (x)} = 0 for n � 1 andψ−(x) = ∞. Thus the right hand side
of (4.19) equalsψ+(x). Moreover,P {Rn � nx} = P {Ã+

n (x)}, sinceSk is nondecreasing
with probability 1. Thus (4.19) is included in (2.6) in this case. A similar argument
applies ifp+ = 0, so that we may assume that (2.23) holds for the remainder of this
proof.

In view of (3.2) it suffices for (4.19) to prove

lim sup
n→∞

−1

n
logP {Rn � nx}�ψ∗(x). (4.20)

First we consider the special case of this whenx = 1. In this case, the only convex
combinationsαy + (1 − α)z with 0 � α,y, z � 1 which equalx are combinations
with y = z = 1 or α ∈ {0,1}. Thus, forx = 1, the right hand side of (4.20) equals
min{ψ+(1),ψ−(1)}. The inequality (4.20) forx = 1 therefore follows from (2.3) and
the fact that

P {Rn � nx}� max
{
P {A+

n (1)},P {A−
n (1)}

}
� pn (4.21)

for eachx ∈ [0,1] (see (2.11) and recall thatp =min{p+,p−}).
For the remainder of this proof we fix 0� x < 1 andε > 0. Since we already know

from Lemma 1 thatψ± are bounded on[0,1], we can also fixα,y, z ∈ [0,1] such that

x = αy + (1− α)z, (4.22)

and

ψ∗(x)� αψ+(y)+ (1− α)ψ−(z)− ε. (4.23)

Necessarilyα > 0, y � x, or α < 1, z � x. For the sake of argument we assume that
α > 0 andy � x < 1. Sinceψ+ is continuous on[0,1) (by virtue of Lemma 1), we can
further choosey′ > y such that even

ψ∗(x)� αψ+(y′)+ (1− α)ψ−(z)− 2ε. (4.24)

We now apply (4.12) withn andm replaced by�αn� and�(1− α)n�, respectively, and
with y andz replaced by�αn�y′ and�(1− α)n�z, respectively. This gives for largen

P
{
Rn+2+r(�αn�+�(1−α)n�) � �αn�y′ + �(1− α)n�z− r(�αn� + �(1− α)n�)}
� P

{
R�αn�+�(1−α)n�+r(�αn�+�(1−α)n�)
� �αn�y′ + �(1− α)n�z− r(�αn� + �(1− α)n�)}

� e−r(�αn�+�(1−α)n�)P
{
R�αn� � �αn�y′}P{

R�(1−α)n� � �(1− α)n�z}
� e−r(�αn�+�(1−α)n�)P

{
A+
�αn�(y

′)
}
P
{
A−
�(1−α)n�(z)

}
� exp

[
o(n)− αnψ+(y′)− (1− αn)ψ−(z)

]
(by (2.3) and (4.10))

� exp
[
o(n)− nψ∗(x)− 2nε

]
. (4.25)

Now, for a given large�, find n such that
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n+ 2+ r(�αn� + �(1− α)n�)� �

� n+ 1+ 2+ r(�α(n+ 1)� + �(1− α)(n+ 1)�). (4.26)

By virtue of (4.11) we then have

n+ 2+ r(�αn�+ �(1− α)n�) � �� n+ 3+ r(�αn� + �(1− α)n�)+ 2.

Hence, for large�,

�x = �(αy + (1− α)z)� �αn�y′ + �(1− α)n�z− r(�αn�+ �(1− α)n�).
Consequently, by the monotonicity properties ofP {R� � z},

P {R� � �x}� P
{
Rn+2+r(�αn�+�(1−α)n�)
� �αn�y′ + �(1− α)n�z− r(�αn�+ �(1− α)n�)}.

Together with (4.25) this implies

lim sup
�→∞

−1

�
logP {R� � �x}� lim sup

�→∞
1

�

[
n(ψ∗(x)+ 2ε)+ o(n)

]
,

wheren is determined as a function of� by (4.26). In particular, the latter relation,
together with (4.10), shows that lim�/n = 1. Finally, this implies (4.20) and (4.19),
sinceε > 0 was arbitrary. ✷

5. Another upper bound for P {Rn � nx}
In this section we derive an alternative to the upper bound forP {Rn � nx} of

Lemma 3. This bound will be used only in the case when the distribution ofX has
an exponentially bounded tail, that is when (1.13) holds. Forx ∈ [0,1) we define

ρ+(x)= inf
0�α�1,y<1,z<x0
αy+(1−α)z=x

[
αψ+(y)+ (1− α)σ (z)],

ρ−(x)= inf
0�α�1,y<1,z<x0
αy+(1−α)z=x

[
αψ−(y)+ (1− α)σ (z)] (5.1)

and

ψ?(x)=min
{
ρ+(x), ρ−(x)

}
. (5.2)

LEMMA 7. – Assume that(2.23) holds and thatχ+ > 0 and χ− > 0. Finally, let
x < 1. Then

lim inf
n→∞

−1

n
logP {Rn � nx}�ψ?(x). (5.3)

Proof. –Analogously to the proof of Lemma 3 we introduce times at which the sample
path of{Sn} achieves its maximum and minimum. More precisely, we let
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Fig. 2. Illustration of the location ofκ, κ ′, λ andτ1.

κ =max
{
i � n: Si =max{0, S1, S2, . . . , Sn}},

λ=min
{
i � 0: Si =min{0, S1, S2, . . . , Sn}}.

For the sake of argument we consider the caseλ� κ ; the caseλ > κ is similar. If λ� κ

we also introduce

κ ′ =max
{
i � κ: Si =min{Sκ, Sκ+1, . . . , Sn}}.

For the time being we make the extra assumption

0< χ+ <∞ and 0< χ− <∞. (5.4)

We remind the reader of (4.21). This implies thatP {Rn � nx} � exp(−c4n) for some
constantc4 <∞. Since we assumedχ± > 0, we can find a constantc5 <∞ such that

P {Rn � nx}� 2P
{
Rn � nx, |Xi|� c5n,1� i � n

}
. (5.5)

We shall estimate the right hand side in two pieces:

(i) P
{
Rn � nx, |Xi|� c5n,1� i � n, Sn � 0

}
,

(ii) P
{
Rn � nx, |Xi|� c5n,1� i � n, Sn > 0

}
.

For the time being we shall work on the first piece. For this estimate we first define

τ1 =max{i: κ � i � κ ′, Si � 0}
(see Fig. 2). We note first thatSκ = max{0, S1, . . . , Sn} � 0, while Sκ ′ � Sn � 0 in
case (i). Thus, the set on the right in this definition is non-empty, so thatτ1 is well
defined. If τ1 = κ ′, then 0� Sτ1 = Sκ ′ � Sn � 0, and henceSn = 0. But P {Rn �
nx,Sn = 0} = P {Cn(x)}. If x > x0 this vanishes for largen, and if x � x0, then
lim inf(−1/n) logP {Cn(x)}� σ (x−)� ψ?(x) (compare the lines before (5.24) below).
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We may therefore ignore the caseSn = 0 and restrict ourselves toτ < κ ′, andSτ1 � 0.
We next show that we may assumeSτ1 = 0 at a “small cost in probability”. Specifically
we shall prove (5.17) below, which corresponds to takingSτ1 = 0 and evenSτ2 = 0,
where τ2 is defined in (5.11). If|Xτ1+1| < c5n and Sτ1 � 0 � Sτ1+1, then we must
have 0� Sτ1 � c5n and 0� Sτ1+1 � −c5n. There must therefore exist a constantc6

(independent ofn) and integerspi, s, t, ri such that

0� p1,p2 � c5n, 0� s � t � n,

0� r1 � s, 0� r2 � n− s, r1 + r2 � nx,

(5.6)

and such that

P
{
Rn � nx, |Xi|� c5n, 1� i � n,

τ1 = s, Sτ1 = p1, Sτ1+1 =−p2, κ
′ = t,

R[0, s − 1] = r1, R[s, n− 1] = r2, Sn � 0
}

� c6

(n+ 1)6
P
{
Rn � nx, Sn < 0, |Xi|� c5n, 1� i � n

}
. (5.7)

(Note that we can takec6 = [c5]−2.) If the event in the left hand side here occurs, then
X1, . . . ,Xn are such that

Rs = r1, Ss = p1, Xs+1 =−p1− p2,

j∑
i=s+1

Xi �−p1, s + 1� j � t,

t∑
i=s+1

Xi �
n∑

i=s+1

Xi �−p1, (5.8)

R[s, n− 1] = r2, |Xh|� c5n, 1� h� n.

Thus, by virtue of (4.4) (with positive and negative interchanged) and the definition of
χ−, the left hand side of (5.7) is at most

P {Rs = r1, Ss = p1}P {Xs+1=−p1 − p2}

×P
{

j∑
i=s+2

Xi � p2, s + 2� j � t,

t∑
i=s+2

Xi �
n∑

i=s+2

Xi � p2,

R[s + 1, n− 1]� r2 − 1, |Xh|� c5n, s + 2 � h� n

}
� eχ

−p1+o(p1)P
{
Rs+g−(p1) � r1, Ss+g−(p1) = 0

}
e−χ

−[p1+p2+o(p1+p2)]

× P
{

j∑
i=s+2

Xi � p2, s + 2 � j � t,

t∑
i=s+2

Xi �
n∑

i=s+2

Xi � p2,

R[s + 1, n− 1]� r2 − 1, |Xh|� c5n, s + 2� h� n

}
. (5.9)

Finally, by (4.3) (again with positive and negative interchanged), the left hand side
of (5.7) is bounded by
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eo(n)P
{
Rs+g−(p1) � r1, Ss+g−(p1) = 0

}
× P{

Sg−(p2) =−p2, c1 � Si �−p2 − c1,0 � i � g−(p2)
}

× P
{

j∑
i=s+2

Xi � p2 for s + 2 � j � t,

t∑
i=s+2

Xi �
n∑

i=s+2

Xi � p2,

R[s + 1, n− 1]� r2 − 1, |Xh|� c5n, s + 2� h� n

}
� eo(n)P

{
Rs+g−(p1) � r1, Ss+g−(p1) = 0

}
× P{

Sg−(p2) =−p2, Sh � c1, 0� h� g−(p2),

Sj � 0, g−(p2)� j � g−(p2)+ t − s − 1,

Sg−(p2)+t−s−1 � Sg−(p2)+n−s−1 � 0,

Rg−(p2)+n−s−1 � r2 − 1, |Xi |� c5n∨ (p2+ 2c1)� 2c5n,

1 � i � g−(p2)+ n− s − 1
}
. (5.10)

Here and in the rest of this proof o(n) is such thatn−1o(n)→ 0 asn→∞, uniformly
in thepi, ri, s, t andu (some of these will only be chosen below). However, the precise
value of the o(n) expressions may vary from one appearance to another. To handle the
last probability in the right hand side here, we introduce

τ2 =min{i: Si � Sg−(p2)+n−s−1}. (5.11)

Note thatτ2 � g−(p2) + t − s − 1 if the event in the last probability occurs. Arguing
as above one now decomposes the sample path 0, S1, . . . , Sg−(p2)+n−s−1 into the piece
0, S1, . . . , Sτ2−1, the jumpXτ2, and the pieceSτ2, . . . , Sg−(p2)+n−s−1. One can now find
integersu,p3,p4, r3, r4 such that

0� p3,p4 � 2c5n, u� g−(p2)+ t − s − 1� n+ g−(p2)

r3 � u, r4 � n− s − 1− τ2 + g−(p2)� n− s − u+ g−(p2), (5.12)

r3+ r4 � r2 − 2,

and such that the last probability in (5.10) is at most

eo(n)P
{
c1 � Si � Su− p3, 0� i � u,Ru = r3}

×e−χ
−(p3+p4)P

{
Rg−(p2)+n−s−u−2 � r4, Sg−(p2)+n−s−u−2 = p4

}
.

(5.13)

Here we fixed some random variables as follows:τ2 − 1= u, Sτ2−1 − Sg−(p2)+n−s−1 =
p3,Xτ2 = −p3 − p4, and consequentlySg−(p2)+n−s−1 − Sτ2 = p4,R[0, τ2 − 2] =
r3,R[τ2, g

−(p2)+ n − s − 2] = r4. By using (4.4) once more we see that (5.13) is at
most

eo(n)P
{
c1 � Si � Su− p3, 0 � i � u,Ru = r3}

×e−χ
−p3P

{
Rg−(p2)+g−(p4)+n−s−u−2 � r4, Sg−(p2)+g−(p4)+n−s−u−2 = 0

}
.

(5.14)
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Further, by (4.3) we can write

e−χ
−p3 � eo(n)P

{
Su+g−(p3) − Su =−p3,

c1 � Si − Su �−p3− c1, u� i � u+ g−(p3)
}
.

(5.15)

By putting together a sample pathX1, . . . ,Xu for which the first event in (5.14) occurs
and a sample pathXu+1, . . . ,Xu+g−(p3) for which the event in the right hand side
of (5.15) occurs, we see that (5.14) is bounded by

eo(n)P
{
2c1 � Si � Su+g−(p3) − c1,0� i � u+ g−(p3),Ru+g−(p3) � r3

}
×P{

Rg−(p2)+g−(p4)+n−s−u−2 � r4, Sg−(p2)+g−(p4)+n−s−u−2 = 0
}
.

(5.16)

Combining (5.5)–(5.16) we finally obtain that

P
{
Rn � nx, Sn < 0, |Xi|� c5n, 1� i � n

}
� eo(n)P

{
Rs+g−(p1) � r1, Ss+g−(p1) = 0

}
× P{

2c1 � Si � Su+g−(p3) − c1, 0� i � u+ g−(p3), Ru+g−(p3) � r3
}

× P{
Rg−(p2)+g−(p4)+n−s−u−2 � r4, Sg−(p2)+g−(p4)+n−s−u−2 = 0

}
.

(5.17)

Now leta � 1 be such thatP {X =−a}> 0. As in (2.12), if{
2c1 � Si � Su+g−(p3) − c1,0� i � u+ g−(p3),Ru+g−(p3) � r3

}
occurs, then we can insert 2c1 steps of value−a in front of X1, . . . , Xu+g−(p3) andc1

such steps at the end. If the original path took stepsX1, . . . ,Xu+g−(p3), then the new path
takes steps−a,−a, . . . ,−a (2c1 times),X1, . . . ,Xu+g−(p3),−a,−a, . . . ,−a (c1 times).
Clearly the partial sums of this extended path of lengthu+ g−(p3)+ 3c1 lie between 0
and the last sum, and therefore this extended path lies inÃ−

u+g−(p3)+3c1
(r3/(u+g−(p3)+

3c1)). In other words

P
{
2c1 � Si � Su+g−(p3) − c1, 0� i � u+ g−(p3), Ru+g−(p3) � r3

}
� [P {X =−a}]−3c1P

{
Ã−
u+g−(p3)+3c1

(
r3

u+ g−(p3)+ 3c1

)}
(5.18)

� exp
[
o(n)− (

u+ g−(p3)+ 3c1
)
ψ−

(
r3

u+ g−(p3)+ 3c1

)]
(by (2.13) and (2.4)). We defineα,y andz by

α = u

n
∧ 1, y = r3

u
if u 	= 0, y = 0 if u= 0,

z= r1 + r4
n− u ∧ 1 if n− u 	= 0, z= 0 if n− u= 0.
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Note that these quantities depend onn,u, s, t, pi andri , but we do not indicate this in
our notation. Then the right hand side of (5.18) is bounded above by

exp
[
o(n)− αnψ−(y + o(1)

)]
,

where the o(1) here (in the argument ofψ−) and later o(1) terms in this proof tend
to 0 asn→∞, uniformly in u, s, t , and in thepi, ri . Indeed, we know thatψ−(·)
is increasing and bounded on 0� t � 1 by − logp− (compare (2.11)). Moreover,
g−(p) = o(p) = o(n) for p � n, and r3 � u � n + g−(p2), so thatu = αn + o(n)
(see (5.12)).

On the other hand, the product of the first and third probability in the right hand side
of (5.17) is, by virtue of (2.26), at most(

n+ o(n)
)
P
{
Rs+g−(p1)+g−(p2)+g−(p4)+n−s−u−2 � r1+ r4 − 1,

Ss+g−(p1)+g−(p2)+g−(p4)+n−s−u−2 = 0
}
.

(5.19)

To estimate this define

G−(n)= {
n
[
1+ max

p�2c5n
g−(p)

]}1/2
.

Note that asn→∞,

G−(n)→∞,
G−(n)
n

→ 0 and
g−(p1)+ g−(p2)+ g−(p4)

G−(n)
→ 0.

Now let 0� η < x0 and letMη be as in the lines following (2.34). Ifn − u − 2
= (1− α)n+ o(n)�G−(n), then the expression in (5.19) is at most(

n+ o(n)
)
P
{
C(1−α)n+o(n)

(
z+ o(1)

)}
� exp

[
o(n)− (1− α)nση(z+ o(1)

)]
,

by virtue of (2.35) and the fact thatr1+ r4 � n− u+ g−(p2) (see (5.6) and (5.12)). The
final estimate here for (5.19) remains valid even ifn→∞ through a subsequence for
whichn− u− 2�G−(n), for then we can simply estimate the probability in (5.19) by

1 � exp
[
o(n)− (1− α)nση(z)],

provided we take o(n)� 2G−(n)ση(1). We conclude that for largen

− logP
{
Rn � nx, |Xi |� c5n, 1 � i � n, Sn < 0

}
� o(n)+ αnψ−(y + o(1)

)+ (1− α)nση(z+ o(1)
)
.

Before we take the limit overn we replaceψ− by its left continuous modification

ψ−
c (y) := lim

ε↓0
ψ−(y − ε).
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Since we already knew thatψ− is continuous on[0,1) (and in fact on(−∞,1) as one
easily checks),ψ−

c is continuous on[0,1] and

ψ−
c (y)=ψ−(y) for y < 1 and ψ−

c (1)� ψ−(1).

Similarly we introduce

σc(z)=
{

limε↓0σ (z− ε) if z� x0,
∞ if z > x0.

For the same reasons as in the preceding lines,σc(z)= σ (z) for z < x0.
It follows from our estimates for (5.18) and (5.19) that for each fixed 0< η < x0

lim inf
n→∞

−1

n
logP

{
Rn � nx, |Xi|� c5n, 1� i � n, Sn � 0

}
� inf

[
αψ−

c (y)+ (1− α)ση(z)
]
,

(5.20)

where the inf is over

0 � α,y, z� 1, αy + (1− α)z� x − η.
The last inequality here comes fromnα = u + o(n) and uy = r3, whenceαny �
r3 − ηn/3 for largen (see (5.12)), and similarly(1− α)nz� r1 + r4 − ηn/3 (note that
r1+r4 � n−u+o(n) by (5.6) and (5.12)), and finally,r1+r3+r4 � r1+r2−2� nx−2
(see (5.12) and (5.6)).

The inequality (5.20) is close to what we want in (5.3). In order to complete the
estimate of piece i) we shall now show that forx < 1

lim inf
η↓0

inf
0�α,y,z�1

αy+(1−α)z�x−η

[
αψ−

c (y)+ (1− α)ση(z)
]
� ρ−(x). (5.21)

(The definition ofρ−(x) is given in (5.1).) To see this, letαη, yη, zη be such that forη ↓ 0
along a suitable seqence we have[

αηψ
−
c (yη)+ (1− αη)ση(zη)

]
→ lim inf

η↓0
inf

0�α,y,z�1
αy+(1−α)z�x−η

[
αψ−

c (y)+ (1− α)ση(z)
]
, (5.22)

and such thatαηyη+(1−αη)zη � x−η. By going over to a subsequence we may assume
that(αη, yη, zη)→ (α0, y0, z0) for someα0, y0, z0 with α0y0+ (1−α0)z0 � x. Sinceψ−

c

is continuous on[0,1] we haveαηψ−
c (yη)→ α0ψ

−
c (y0). Similarly, the monotonicity of

σ and the definition ofση show that

lim inf
η↓0

(1− αη)ση(zη)� (1− α0)σc(z0).

Thus, the liminf in the left hand side of (5.21) is at least

α0ψ
−
c (y0)+ (1− α0)σc(z0), (5.23)
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for some 0� α0, y0, z0 � 1 with α0y0 + (1− α0)z0 � x. We can and shall even assume
thatα0y0 + (1− α0)z0 = x becauseψ−

c andσc are nondecreasing (compare (3.39)). We
complete the proof by showing that the expression (5.23) is at least as large as the right
hand side of (5.21). A number of cases have to be distinguished.

If α0< 1 andz0> x0, then (5.23) equals∞ and (5.21) certainly holds.
If α0 = 1, then we must havey0 = α0y0 + (1− α0)z0 = x. Then (5.23) is at least

ψ−
c (y0)=ψ−

c (x)= lim
k→∞

{
k

k + 1
ψ−

(
x(k + 1)

k

)
+ 1

k+ 1
σ (0)

}
,

by the continuity ofψ− on [0,1). Note also that we provedx0 > 0 in the lines
following (2.23). This is at least as large as the right hand side of (5.21), so that (5.21)
again holds.

If z0 < x0 and y0 < 1, then the continuity ofψ− and σ on [0,1) and [0, x0),
respectively, shows that (5.23) equals

α0ψ
−(y0)+ (1− α0)σ (z0),

which again is at least as large as the right hand side of (5.21).
If z0< x0, y0 = 1, α0 < 1, then we use that (5.23) is at least

lim
k→∞

{
α0ψ

−
(

1− 1− α0

k

)
+ (1− α0)σ

(
z0+ α0

k

)}
.

Thus (5.21) again holds.
We still need to verify (5.21) whenα0 < 1, z0 = x0. If α0< 1, z0 = x0 < y0, then (5.23)

equals

lim
k→∞

{(
α0+ 1

k

)
ψ−

(
y0 − 1

k
(y0 − x0)

)
+

(
1− α0− 1

k

)
σ

(
x0 − 1

k
(y0 − x0)

)}
,

which again implies (5.21).
If 0 <α0 < 1, z0 = x0 � y0, then 1> x = α0y0+ (1−α0)z0 � y0 and therefore (5.23)

equals

lim
k→∞

{
α0ψ

−
(
y0 + 1− α0

k

)
+ (1− α0)σ

(
x0 − α0

k

)}
.

Finally, if α0 = 0, z0 = x0, thenz0 = x0 = x and 0< x0 = x < 1. In this case (5.23)
equals

σc(x0)= lim
k→∞

{
1

k
ψ−

(
x0 + 1

k

)
+ k− 1

k
σ

(
x0 − 1

k(k− 1)

)}
.

This proves (5.21) in all cases and hence

lim inf
n→∞

−1

n
logP

{
Rn � nx, |Xi |� c5n, 1 � i � n, Sn � 0

}
� ρ−(x), (5.24)

under (5.4).
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Essentially the same argument takes care of piece ii), that is, ofP {Rn � nx, |Xi | �
c5n,1� i � n, Sn > 0}. This will lead to

lim inf
n→∞

−1

n
logP

{
Rn � nx, |Xi |� c5n,1� i � n, Sn > 0

}
� ρ+(x) (5.25)

(see (5.1) for the definition ofρ+(x)). We only need a small change in the definitions of
τ1 andτ2. This time they have to be chosen in[λ, κ] instead of in[κ, κ ′]. The definitions
for this case should be

τ1 =max{i: λ� i � κ,Si � 0},
and on the event{τ1 = s, Ss+1 = p2},

τ2 =min{i: Si � Sg+(p2)+n−s−1}.
We leave the details to the reader. (5.24), (5.25) and (5.5) together imply (5.3).

So far we have worked under the extra assumption (5.4). To illustrate the small
changes needed when this fails, let us assume thatχ− =∞. We can no longer use (4.3)
and (4.4) (or rather their analogues with positive and negative interchanged). However,
if χ− =∞, thenP {Xi �−n} goes to 0 faster than exponentially inn. Thus there exists
a functionk(n) which iso(n) and such that

P {Rn � nx}� 2P
{
Rn � nx, c5n�Xi �−k(n),1� i � n

}
.

In other words, we may replace the restriction|Xi | � c5n in (5.5)–(5.10) byc5n �
Xi � −k(n). Now, if we want to estimate the analogue of the first piece, that is,
P {Rn � nx, c5n � Xi � −k(n),1 � i � n, Sn � 0}, we defineτi as before, and note
that ifXi �−k(n) for 1� i � n, then necessarilyXτi �−k(n), i = 1,2, so that we may
take 0� p1,p2 � k(n) in (5.6) and 0� p3,p4 � 2k(n) in (5.13)–(5.18). Instead of (4.3)
and (4.4) we can now use (4.9) and the trivial estimatesP {Xs+1 = −p1 − p2} � 1,
P {Xu =−p3 − p4}� 1. We can then takeg−(p)=m−p and replace (5.7)–(5.10) with
the estimate

P
{
Rn � nx, c5n�Xi �−k(n),1� i � n, τ1 = s, Sτ1 = p1,

Sτ1+1 =−p2, κ
′ = t,R[0, s − 1] = r1, R[s, n− 1] = r2, Sn � 0

}
� [c2]−p1−p2P

{
Rs+m−p1 � r1, Ss+m−p1 = 0

}
× P{

Sm−p2 =−p2, Sh � c1, 0 � h�m−p2,

Sj � 0, m−p2 � j �m−p2+ t − s − 1,

Sm−p2+t−s−1 � Sm−p2+n−s−1 � 0,Rm−p2+n−s−1 � r2 − 1,

c5n�Xi �−k(n),1� i �m−p2+ n− s − 1
}
.

The later estimates can be changed similarly and we end up with (5.24) as before. Note
that finiteness ofχ+ plays no role in estimatingP {Rn � nx, c5n � Xi � −k(n),1 �
i � n, Sn � 0}, and similarly, the finiteness ofχ− is not needed to estimateP {Rn �
nx, k(n) � Xi � −c5n,1 � i � n, Sn > 0}. Therefore (5.3) holds (under (2.23)) as
soon asχ+χ− > 0. ✷
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6. Lower bound for P {Rn � nx} in case (1.13)

We shall show in the next lemma, that under (1.13) the right hand side of (5.3) is also
an upper bound for lim supn→∞(−1/n) logP {Rn � nx}.

LEMMA 8. – Assume that0� x < 1 and that(1.13)and(2.23)hold. Then

lim sup
n→∞

−1

n
logP {Rn � nx}� ψ?(x). (6.1)

Proof. –The right hand side of (6.1) is finite becauseψ?(x) is bounded by min{ψ+(x),
ψ−(x)} (see (5.2) for the definition ofψ?). Hence, for allη > 0 there existαη ∈
[0,1], yη < 1, zη < x0 such that

αηyη + (1− αη)zη = x
and

αηψ
+(yη)+ (1− αη)σ (zη)� η+ψ?(x), (6.2)

or the last inequality holds withψ+ replaced byψ−. For the sake of argument assume
that (6.2) holds for a certainη. It will suffice to show that for each suchη

lim sup
n→∞

−1

n
logP {Rn � nx}� αηψ

+(yη)+ (1− αη)σ (zη). (6.3)

If αη = 1, thenyη = x and (6.3) certainly holds, because the left hand side here is at most
ψ+(x) by (2.3). For the remainder of this proof we therefore may restrict ourselves to
αη < 1.

Now fix az ∈ (zη, x0) and let 0� r � ϑ = the period of{Sn}. Then combine a cylinder
pathS1, S2, . . . , S�αηn�+r for which

R
[
0, �αηn� + r − 1

]
� (�αηn� + r)yη

and 0� Si � S�αηn�+r , 1 � i � �αηn� + r,
with a circuitS�αηn�+r , . . . , Sn for which

R
[�αηn� + r, n− 1

]
�

(
n− �αηn�− r)z

and
n∑

i=�αηn�+r+1

Xi = 0,
p∑

i=�αηn�+r+1

Xi � 0, �αηn�+ r + 1� p � n.

In order for such a circuit to exist we must taker such thatn−�αηn�−r is divisible byϑ .
It is easy to see (compare the argument for (2.26)) that the combined pathS1, . . . , Sn will
have

Rn �R
[
0, �αηn�+ r − 1

]+R[�αηn� + r, n− 1
]− 1

� (�αηn� + r)yη + (n− �αηn� − r)z− 1.

Sinceαη < 1 andz > zη, the right hand side here is, for largen, greater thann[αηyη +
(1− αη)zη] = nx. It follows that
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P {Rn � nx}
� P

{
R�αηn�+r � (�αηn�+ r)yη, 0� Si � S�αηn�+r ,1 � i � �αηn�+ r}

× P{
Rn−�αηn�−r � (n− �αηn� − r)z,
Sn−�αηn�−r = 0, Sp � 0, 0� p � n− �αηn�− r}

� P
{
A+
�αηn�+r (yη)

}[n− �αηn�− r]−1P
{
Cn−�αηn�−r (z)

}
(by (2.25)).

It therefore follows from (2.3) and (2.20) that

lim sup
n→∞

−1

n
logP {Rn � nx}� αηψ

+(yη)+ (1− αη)σ (z).

(6.3) now follows by lettingz ↓ zη, becauseσ (·) is continuous atzη < x0. ✷
7. Proof of Theorem 1

The limit limn→∞(−1)/n logP {Rn � n} exists because

P {Rn+m � n+m}� P {Rn � n}P {Rm �m}.
limn→∞(−1)/n logP {Rn � nx} also exists ifP {X < 0} = 0 (orP {X > 0} = 0). Indeed
in this caseP {Rn � nx} = P {Ã+

n (x)} (or P {Ã−
n (x)}, respectively), so that (1.2) is a

consequence of (2.6) and (2.8). Thus we may assume that (2.23) applies. If (1.12) holds,
then Lemma 6 proves (1.2) withψ equal toψ∗ defined in (3.1). We therefore only have
left the case 0� x < 1 under the assumptions (1.13) and (2.23). In this situation (1.2)
holds by virtue of Lemmas 7 and 8, this time withψ equal toψ? defined in (5.2).

It remains to prove the properties (1.3)–(1.7). We first prove (1.6) as a separate lemma.

LEMMA 9. – Under the assumptions of Theorem1, x �→ ψ(x) is continuous on
[0,1]. This function is also convex if(1.12)holds.

Proof. –Let us first assume that (2.23) holds. Then, as we saw in Lemma 1,ψ±(x) <
∞ for 0 � x � 1, andψ± are nondecreasing, bounded and convex on[0,1] and
continuous on[0,1). Clearlyψ∗ (which is defined in (3.1)) is then also nondecreasing
and bounded on[0,1]. To show thatψ∗ is convex, letx1, x2, γ ∈ [0,1] and let

(α1, y1, z1) ∈L(x1), (α2, y2, z2) ∈L(x2), (7.1)

whereL(x)= {(α, y, z) ∈ [0,1]3: αy+ (1−α)z= x}. Then, by the definition ofψ∗ and
the convexity ofψ±,

ψ∗(γ x1+ (1− γ )x2)

=ψ∗(γ α1y1 + (1− γ )α2y2 + γ (1− α1)z1+ (1− γ )(1− α2)z2
)

�
[
γ α1+ (1− γ )α2

]
ψ+

(
γ α1y1 + (1− γ )α2y2

γ α1+ (1− γ )α2

)
+ [
γ (1− α1)+ (1− γ )(1− α2)

]
ψ−

(
γ (1− α1)z1+ (1− γ )(1− α2)z2

γ (1− α1)+ (1− γ )(1− α2)

)
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� γ α1ψ
+(y1)+ (1− γ )α2ψ

+(y2)+ γ (1− α1)ψ
−(z1)+ (1− γ )(1− α2)ψ

−(z2).

Now taking the inf overα1, α2, y1, y2, z1, z2 satisfying (7.1) gives

ψ∗(γ x1+ (1− γ )x2)� γψ∗(x1)+ (1− γ )ψ∗(x2).

Thus if (2.23) holds, thenψ∗ is convex on[0,1]. If P {X < 0} = 0 (butP {X > 0}> 0),
thenψ−(x)=∞ andψ∗(x)=ψ+(x) for all x ∈ [0,1]. By Lemma 1,ψ∗ is still convex
and bounded on[0,1] in this case. A similar argument applies whenP {X> 0} = 0.

Essentially the same argument proves thatρ+ andρ− defined in (5.1) are convex and
bounded on[0,1) if (2.23) holds. (Note thatρ± � ψ±.)

Sinceψ∗ andρ± are also nondecreasing we conclude from their convexity that all
these functions are continuous on[0,1) when (2.23) holds. We already proved the same
property forψ+ whenP {X> 0}> 0 and forψ− whenP {X< 0}> 0. Butψ equalsψ∗
orψ± orψ? =min{ρ+, ρ−} (see (5.2)), depending on which ofP {X> 0} andP {X < 0}
is strictly positive, and on which of (1.12) or (1.13) holds. One easily checks from the
above that in all casesx �→ψ(x) is bounded on[0,1] and continuous on[0,1). We also
haveψ(x)= ψ∗(x) convex on[0,1] if (1.12) holds. Finally, the proof thatψ(x) is also
continuous atx = 1 is the same as for (1.14) in [4].✷

Proof of the properties (1.3)–(1.5) and (1.7). – All but (1.7) are proven in exactly the
same way as the corresponding results in Theorem 1 of [4]. If (1.12) holds, then we even
know from the preceding lemma thatψ is convex on[0,1] and (1.7) is then immediate
from (1.4) as in [4]. Thus here we only have to prove (1.7) under (1.13). We may also
assume that there exist integersa, b � 1 such thatP {X=−a}P {X = b}> 0 (i.e., (2.23)
holds), for if this fails, thenψ equalsψ+ or ψ− and thenψ is convex again. Thus we
are in the situation whereψ =ψ? (see Lemmas 7 and 8). Unfortunately we only have a
somewhat circuitous proof of (1.7) in this case.

To show thatψ is indeed strictly increasing on[π,1] we are first going to compute
ψ±(0). We distinguish the following two subcases: i)EX = 0 and ii)EX 	= 0 (recall
that we are now assuming (1.13), so thatP {|X|� t}→ 0 exponentially fast int , so that
X has all moments). In case i) the random walk is recurrent, that isπ = 0. Moreover, by
the strong law of large numbers,Sk/k→ 0 a.s. Therefore, there exists a functionq(n)
such thatq(n)/n→ 0 and such that

P
{
max
i�n

|Si|� q(n)
}

� 1

2
. (7.2)

If |Si|� q(n) for 0 � i � n, then we can insertq(n) stepsb beforeX1 and also 2q(n)
stepsb afterXn. The resulting path of lengthn + 3q(n) will have all its partial sums
between 0 andSn+3q(n) and will therefore lie inÃ+

n+3q(n)(0). Thus

P
{
Ã+
n+3q(n)(0)

}
� 1

2
[P {X= b}]3q(n), (7.3)

and consequentlyψ+(0) = 0. The same argument can be used to showψ−(0) = 0
and σ (0) = 0. Henceρ±(0) = 0 and alsoψ?(0) = 0. On the other hand, by (1.4),
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ψ?(x) = ψ(x) > 0 for x > 0. As before withψ , this shows that the convex functions
ρ± are both strictly increasing on[π,1) = [0,1). Since the minimum of two strictly
increasing functions is strictly increasing, this implies (1.7) in subcase i).

We turn to subcase ii). For the sake of argument we assume thatEX > 0. We claim
that then

ψ+(x)= 0 for 0� x < π. (7.4)

Indeed, it is immediate from the strong law of large numbers that mink�0Sk is almost
surely finite ifEX > 0. By reversing the random walk this shows that also{maxk�n(Sk−
Sn) :n� 1} is a tight family. Thus, there exists a constantc7 such that

P {−c7 � Sk � Sn + c7, 1� k � n}� 1

2

for all n� 1. SinceRn/n→ π a.s. (see [7] and [8, pp. 38–40]) this shows that forx < π

andn sufficiently large

P
{
Rn � nx,−c7 � Sk � Sn+ c7, 1� k � n

}
� 1

4
.

(7.4) follows from this as in the argument for (7.3) or (5.18).
On the other hand,

ψ−(0)= lim
n→∞

−1

n
logP {0� Sk � Sn, 1� k � n}

� lim
n→∞

−1

n
logP {Sn � 0}> 0. (7.5)

All but the last inequality here are obvious. The last inequality follows from standard
large deviation estimates (see Cramér’s theorem in [2, Section 2.2.1], or (7.9) below).
Unfortunately we need to go into more detail about the Cramér transform in order to
show that in fact the first inequality in (7.5) is an equality in the present situation, that
is,

ψ−(0)= lim
n→∞

−1

n
logP {Sn � 0}. (7.6)

To prove this we set

D(λ)=E{
eλX

}= ∫
R

eλx dF(x),

whereF is the distribution function ofX, and ifD(λ) <∞, then we also define the
distribution

dFλ(x)= eλx dF(x)

D(λ)
.
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In view of (1.13)D(λ) <∞ on some intervalJ which contains 0 in its interior. OnJ
the expectation ofFλ, that is,

1

D(λ)

∫
R

xeλx dF(x),

is continuous and strictly increasing inλ (provided we allow the values+∞ and−∞ at
the right and left hand endpoint, respectively, ofJ ). Thus there either is a unique value
of λ0 ∈ J such that this expectation atλ0 is 0, orJ has a finite left endpoint where the
expectation ofFλ is still finite but strictly positive. In the latter case we takeλ0 equal
to the left endpoint ofJ . Note thatEX > 0 implies that−∞< λ0 < 0. In any case we
defineF ∗ asFλ0 and letX∗,X∗

i , i � 1, be i.i.d. random variables with distributionF ∗.
We also takeS∗0 = 0 andS∗n =

∑n
i=1X

∗
i . It is easy to see that

P
{
Sn = r, |Sk|� q, 0 � k � n

}
= e−λ0r [D(λ0)]nP{

S∗n = r, |S∗k |� q, 0� k � n
}
, (7.7)

and hence

P
{|Sk|� q,0 � k � n

}
� e−|λ0|q[D(λ0)]nP{|S∗k |� q, 0 � k � n

}
. (7.8)

In particular, by takingq =∞ in (7.7),

P {Sn � 0}�
∑
r�0

e−λ0r[D(λ0)]n.

Thus

lim
n→∞

−1

n
logP {Sn � 0}�− logD(λ0). (7.9)

In the other direction we claim that there exists a functionq(n) with q(n)/n→ 0 and
for which

lim
n→∞

1

n
logP

{|S∗k |� q(n), 0� k � n
}= 0. (7.10)

Once this is proved, with the help of (7.8), the same argument as used for (7.3) will yield

ψ−(0)= lim
n→∞

−1

n+ 3q(n)
logP

{
Ã−
n+3q(n)(0)

}
�− logD(λ0)− lim

n→∞
1

n
logP

{|S∗k |� q(n), 0 � k � n
}+ lim

n→∞
|λ0|q(n)

n

=− logD(λ0),

which, together with (7.5) and (7.9), proves the desired (7.6). Now, ifEX∗ = 0,
then (7.10) follows from the strong law of large numbers as in (7.2). The remaining
possibility is that 0< EX∗ <∞ and λ0 is the left endpoint ofJ . That means that
D(λ)=∞ for all λ < λ0, whence

lim inf
n→∞

−1

n
logP {X∗ = −n} = 0.
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Thus, by Lemma 4 with positive and negative interchanged, applied toX∗, it follows that
there exists a functiong−(p) and a constantc1 such thatg−(p)/p→ 0 and asp→∞,

P
{
S∗g−(p) =−p, c1 � S∗i �−p− c1, 0 � i � g−(p)

}
� eo(p). (7.11)

Finally, we can build a path which satisfies{|S∗k |� q(n),0� k � n}, by putting together
roughlyn/(g−(p)+ p/EX∗) pieces which go down−p units ing−(p) steps to end in
[−p,−p/2], and then go back up to[0,p/2] in at most 4p/EX∗ steps along which the
path has standard weak law of large numbers behavior. The details are as follows. For
k � 0 we defineτk by τ0 = 0 and

τk+1 = inf
{
i � τk + g−(p): Si − Sτk+g−(p) ∈

[
0,
p

2

]}
, k � 0.

Letµ be the smallest integer satsfisyingτµ � n. Then we have that

µ� �(n) :=
⌈

n

g−(p)+ p/(4EX∗)

⌉
if p/(4EX∗)� τk+1− τk−g−(p)� 2p/EX∗ occurs for all 0� k � �(n). Therefore we
obtain for 2p+ c1 � q(n) that

P
{|S∗k |� q(n), 0� k � n

}
� P

{
S∗τk+g−(p)− S∗τk =−p, 0 � k � µ− 1,

µ� �(n), |S∗h|� 2p+ c1, 0� h� n
}

� P

{
S∗τk+g−(p) − S∗τk =−p, 0� k � �(n)− 1,

p

4EX∗ � τj+1 − τj − g−(p)� 2p

EX∗ , 0 � j � �(n),

|S∗h|� 2p+ c1, 0 � h� n

}
.

Note that ifS∗τk+g−(p) ∈ [−p,−p/2] and |S∗τk+g−(p)+i − S∗τk+g−(p) − iEX∗| � p/8 for
0� i � τk+1− τk−g−(p), thenp/(4EX∗)� τk+1− τk−g−(p)� 2p/EX∗. Therefore,
the right hand side of the previous inequality is at least

P
{
S∗τk+g−(p) − S∗τk =−p,
|S∗τk+g−(p)+i − S∗τk+g−(p)− iEX∗|� p

8
, 0� i � τk+1 − τk − g−(p),

− p− c1 � S∗h − S∗τk � c1, τk � h� τk + g−(p) for all 0� k � �(n)
}
.

Consequently we have that

P
{|S∗k |� q(n),0� k � n

}
�

[
P
{
S∗g−(p) =−p, c1 � S∗i �−p− c1, 0� i � g−(p)

}
× P

{
|S∗i − iEX∗|� p

8
,0� i � 2p

EX∗

}]�(n)+1

.
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The second factor in square brackets here tends to 1 asp→∞, by the strong law of large
numbers (or even just the weak law of large numbers). Thus we can take anyp(n), q(n)

such thatp(n), q(n)→∞, q(n)/n→ 0 andp(n)� q(n)/4 to obtain

lim inf
n→∞

1

n
logP

{|S∗k |� q(n), 0 � k � n
}

� lim inf
p→∞

1

g−(p)+ p/(4EX∗)
× logP

{
S∗g−(p) =−p, c1 � S∗i �−p− c1, 0 � i � g−(p)

}
= 0

(by (7.11)). This proves (7.10), and hence (7.6), whenEX > 0.
Recall thatϑ is the period of the random walk{Sk}. By the definition of{S∗k }, this is

also the period of{S∗k }. A small variation on the last argument shows that even

lim
n→∞

1

nϑ
logP {S∗nϑ = 0} = 0,

and hence, by (7.7),

σ (0)= lim
n→∞

−1

nϑ
logP {Snϑ = 0} =− logD(λ0)=ψ−(0). (7.12)

(This is more or less contained in Cramér’s theorem and probably well known.)
Our next task is to show that

ψ−(x)� ψ−(0)− λ0x > ψ
−(0) for 0< x � 1. (7.13)

Fortunately, this is almost immediate from (7.7). Indeed, if 0> Sk � Sn for 1 � k � n,
then only the integers in[Sn,−1] are possible forSk,1 � k � n− 1. Therefore, if also
Rn � nx, then it must be the case that−Sn + 1 � nx. Therefore, by (7.7) withq =∞,

P
{
A−
n (x)

}
� P {Sn �−nx + 1}� [D(λ0)]n

∑
r�−nx+1

e−λ0r ,

and (7.13) follows (recall thatλ0< 0).
It would simplify our proof if we could also showσ (x) > σ(0) for 0< x < x0, but we

do not know how to do this in general. Let us summarize what we already know. In the
case whenψ is equal toψ?,

ψ?(x)= 0 for 0� x � π and ψ?(x) > 0 for π < x � 1 (7.14)

(see (1.3) and (1.4)). But from the definition ofψ? given in (5.2) we see thatψ?(x) > 0
impliesρ+(x) > 0 andρ−(x) > 0. In particular, this holds forx > π . Together with the
convexity ofρ+ andρ+(0)=min{ψ+(0), σ (0)} = 0 this implies

ρ+ is strictly increasing on[π,1). (7.15)
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Similarly, the convexity ofψ−, together with (7.13), shows that

ψ− is strictly increasing on[0,1]. (7.16)

Further, from the definition ofρ− and the fact thatψ− andσ are nondecreasing, we see
that ρ− is nondecreasing andρ−(x) � ρ−(0) = min{ψ−(0), σ (0)} = σ (0). Moreover,
the fact thatψ− is strictly increasing shows thatρ−(x) > ρ−(0)= σ (0) for x > x0. The
convexity ofρ− then shows thatρ− is strictly increasing on[x0,1). In fact, we can say
more. Let

x1 := sup{z < x0: σ (z)= σ (0)}.
We claim that even

ρ− is strictly increasing on[x1,1). (7.17)

In view of the preceding statement we only have to prove this ifx1 < x0. By continuity of
σ on [0, x0) we haveσ (x1)= σ (0) in that case. Then, ifx = αy+ (1−α)z > x1, it must
be the case thatα > 0, y � x > x1,ψ

−(y) > ψ−(0) = σ (0) or α < 1, z > x1, σ (z) >

σ(x1). In either caseρ−(x) > ρ−(0) = σ (0) for x > x1, so that (7.17) indeed follows.
Again, since the minimum of two strictly increasing functions is strictly increasing, it
follows thatψ is strictly increasing on[x1 ∨ π,1). Of course, this also makesψ strictly
increasing on[x1 ∨ π,1], sinceψ is nondecreasing. Ifπ � x1, this proves (1.7), so we
may assumeπ < x1 from now on.

Finally, let

x2 = inf
{
x < x1: ρ+(x)= σ (x)} (7.18)

if the set on the right here is nonempty. We know from (7.4), (7.5) and (7.12) that
σ (0) > 0= ρ+(0). Thus if the set on the right in (7.18) is empty, thenρ+(x) < σ(x)=
σ (0)� ρ−(x) for x < x1, and hence

ψ?(x)=min
{
ρ+(x), ρ−(x)

}= ρ+(x) for x < x1. (7.19)

But thenψ? is strictly increasing on[π,x1], by (7.15), as well as on[x1,1], by the
preceding lines. In this case (1.7) holds. We therefore only have to consider the case
whenx2 < x1.

We conclude our proof of (1.7) by showing thatx2 < x1 is impossible. To see this,
recall thatσ (0) > 0 by (7.12) and (7.5). As in (7.19) we have

ψ?(x)= ρ+(x) for x < x2.

Moreover, by continuity ofψ? and the convex functionsρ+ on [0,1) and of σ on
[0, x0) we must haveψ?(x2) = ρ+(x2) = σ (x2) > 0 if x2 < x1 � x0. In this case
we would have alsox2 > π by (7.14), andρ+(x) > ρ+(x2) = σ (0) for any x > x2,
by (7.15). But the definition ofρ+ implies thatρ+(x) � σ (x) for x < x0, and hence
σ (x)� ρ+(x) > ρ+(x2)= σ (x2)= σ (0) for x2 < x < x1. This contradicts the definition
of x1.
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