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ABSTRACT. — Let{S,} be a random walk o and letR,, be the number of different points
among 0 S, ..., S,—1. We prove that/(x) :=lim,_, . (—1/n)log P{R, > nx} exists forx >0
and establish some convexity and monotonicity prpperti@ls dhis is a sequel to a recent paper
which treats random walks &&f with d > 2.0 2002 Editions scientifiques et médicales Elsevier
SAS
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RESUME. — Soit{S, } une marche aléatoire sdret soitR, le nombre des points distincts entre
0, 81,...,S,. Nous démontrons que la limit¢(x) := lim, - (—1/n)log P{R, > nx} existe
pourx > 0 et établissons quelques propriétés de convexité et de monotoyiie@kri compléte

un article récent qui traite des marches aléatoireg$avecd > 2.0 2002 Editions scientifiques
et médicales Elsevier SAS

1. Introduction
Let X, X1, X,, ... be i.i.d. Z-valued random variables such thafX =0} < 1. Let
So=0, Sy = Zf;l X; and let|A| denote the cardinality of the sdt Therange(at time
n) of the random walK S} is
R, =[{0, 81, ..., S,—1}| = number of different points among 84, ..., S,—1. (1.1)

It has been known for a long time that

1
lim —R,=m:=P{S,#0foralln >1} a.s.

n—o0o p
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(see [8], Section 4). Throughout this artietevill denote the probability on the right here

(instead of half the circumference of the unit circle). Here we shall prove the following
large deviation theorem:

THEOREM 1. — Assume thaP{X =0} < 1. Then
=1 .
Y(x) = Ilmoo — log P{R, > nx} exists 1.2)
n— n

for all x (but(x) = oo may occuy. ¥ () has the following properties

Y(x)=0 forx<m, 1.3)
O<y(x)<oo form<x<1, (1.4)
Y(x) =00 forx>1, (1.5)
x — ¥ (x) is continuous off0, 1] (1.6)
and
x = ¥ (x) is strictly increasing onjr, 1]. .7

In a recent paper [4] we proved this same result wkigakes values iZ? for d > 2,
and we refer the reader to that paper for some brief historical remarks about the subjec
In that paper we also showed that the following result follows quickly from Theorem 1.

COROLLARY 1.— Let u, be the probability distribution of the random variable
R, /n.In the set-up of Theoret) we have that

imsup’ logys,(F) < — inf ¥ (x) (1.8)

n—oo

for each closed subsét C [, 00) and that

1
liminf —logu,(G) > — ingg[r(x) (1.9
n—oo n xe

for each open subsét C [, 00).

Remark 1. — For a nearest neighbor random walk can be evaluated explicitly.
Specifically, if P{IX =1} =1—- P{X =-1} = p > 1/2, thenw = 2p — 1 (see [3],
Section XIlI.4) and forr <x <1,

X
21-p)’

where 0log0= 0. This can be proven in the same way as formula (1.23) in [4]
for the Wiener sausage. Indeed for a nearest neighbor Wl max.<,_1 S, —
Ming<,—1 S, + 1. Therefore

1 1 1
Y(x)==(1+x) Iogﬂ-l——(l—x) log (1.10)
2 2p 2

P{S,—1l 2nx =< P{R,>nx}< > P{S—S>nx—1).  (1.11)
0Lk, e<n—-1
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(1.10) follows by combining this with standard large deviation estimates for the binomial
distribution.

Outline of the proof of Theorem % Unfortunately, the proof of [4] does not work in
the one-dimensional case. In fact, the one-dimensional case seems to be harder and
have to use different methods depending on whether

limsup[P{|X] >n}]"" =1, (1.12)
or
limsup[P{|X| >n)]"" <1. (1.13)

In both cases, the basic idea of the proof is of course to use subadditivity arguments
However, these do not seem directly applicabl€Rp > nx}, but only to the probability
of certain subevents dfR, > nx}. We first discuss the case of (1.12) in whig¥hdoes
not have an exponentially bounded tail. In this case we use subadditivity for “cylinder
paths”. Specifically, it is easy to see that

P{Ryim=(m+m)x, 0<S; <Syym, 1<i<n+m}
>P{R,>nx, 0<S;<S,, 1<i<n} (1.14)
X P{R, >mx, 0<8; <S,, 1<i <m}.
Subadditivity then shows that
vt (x) = lim _—1IogP{Rn >nx, 0<S;<S,, 1<i<n} (1.15)

n—o0o n

exists. Similarly,

-1
¥~ (x):= lim —logP{R, >nx, 0> S;>S,, 1<i<n} (1.16)
n—oo n

exists. In order to obtain an upper bound ®fR, > nx} we now decompose a typical
sample pattfp =0, ..., S, for which {R, > nx} into piecesS,, ..., A for which

Se; < 8i <8y, fore; <i<ejn (2.17)
or

SKj >8> SK_/+1 for Kj < i < Kjt1. (118)

The «; have to be chosen as certain local maxima and minima ofSthén order

that (1.17) or (1.18) hold. We then use (1.14) to put all the pieces for which (1.17)
holds together into one piece to which (1.15) applies. Similarly we combine all pieces
for which (1.18) holds into another piece to which (1.16) applies. One can think of this
procedure as unfolding the random walk path to pick out more or less increasing piece
and more or less decreasing pieces (for the purpose of these informal remarks we call
pieceSy, Sii1, ..., Sy “more or less increasing” if, < S; < Sy for k <i <k’ and more
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or less decreasing if the opposite inequalities holdfeari < k’). This type of argument

was first used by [5] for counting self-avoiding walks. The result is that to each path
for which R, > nx, one can associate a path made up of two pieces, the probabilities of
which can be controled by means of (1.15) and (1.16). However, the same two piece
may be associated to many paths Wiy > nx} . The number of such paths is bounded
by the number of ways in which the, can be chosen. A principal step in the proof of
Lemma 3 is to show (by means of simple combinatorial arguments) that this numbe!
grows slower than exponentially in This yields the bound

-1
liminf —log P{R, > nx} > inf [y (y) + (1 — )y (2)]. (1.19)
n—oo pn 0<a,y,z<1

ay+(1—a)z=x

We then show, in Section 3, that the right hand side of (1.19) is also an upper bounc
for limsup,_, ..(—1/n)log P{R, > nx}. This is done by exactly the same method as
used in [4] for deriving the basic subadditivity relation of Lemma 1 there. It is done by
“putting together” two pieces, one more or less increasing, of lefgtj and having
Riym = [an]y, and another more or less decreasing piece of lefigth- «)n] and
Ria-eyn = [(1 — @)n]z; herea, y andz are chosen so that the infimum in the right
hand side of (1.19) is taken on at these values. The two pieces have to be put together
that not too many points occur in both pieces, because such points contribute only onc
rather than twice, to the range of the combination of the pieces. This is achieved by
putting the initial point of the second piece not directly at the endpoint of the first piece,
but at a judiciously chosen point. This will complete the proof of Theorem 1 when (1.12)
prevails.

The last step which gives an upper bound for limsup(—1/n) log P{R, > nx}
does not work in the case of (1.13). Indeed, in this case, whdras exponentially
bounded tails, the right hand side of (1.19) can be strictly smaller than the limit of
(=1/n)log P{R, > nx}. This is so because a more or less decreasing path and a more
or less increasing path will typically have many points in common when the initial
point of the former is close to the endpoint of the latter (consider for instance the case
of simple random walk paths). In this case we use a different decomposition of path:
with R, > nx. We show that any such path can be decomposed into three pieces, twi
of which are circuits (i.e., paths with the same final point as initial point), and these
circuits are connected by a more or less decreasing or more or less increasing pat
To find such circuits note that mgx <, S; > 0 > mingg; <, S;. The first circuit is then,
roughly speaking, the piece frosy till the last time at which the sample path jumps
from [0, c0) to (—o0, 0). The difficulty is that at this time the path does not necessarily
jump to 0, but jumps across 0. However, we show in Lemmas 4 and 7 that the subclas
of paths which do jump to O at this time has a probability at le8$tR{R, > nx)}.

On this subclass we can use the time of this jump to O as the last step of the firs
circuit. The second circuit is found in a similar way, by interchanging the roles of
the initial point Sp and the final points,. Once we have the decomposition into two
circuits and a more or less monotonic piece it is easy to obtain a lower bound for
lim,_..(—1/n)log P{R, > nx}. This rests on a simple subadditivity argument which
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shows that lim_ ..(—1/n)log P{R, > nx, S, = 0} exists, for allx € [0, 1], with the
possible exception of at most one valug(see Lemma 2).

Once we have the lower bound for ljm..(—1/n)log P{R, > nx, S, = 0}, itis fairly
easy to show that the lower bound is also an upper bound, by combining one circui
contained in[0, oo), one circuit contained ifi—oo, 0] and one more or less monotonic
path between them (see Lemmas 6 and 8).

2. Subadditivity arguments

Throughout we assume that the group generated by the supp®risdadll of Z. This
is no loss of generality, because this group is necessarily of theddtmand ifm # 1,
then we can replac& and X; by X/m and X;/m, repectively, without changin®,,.
The group generated by the supporthfm will then be equal td&.

Define the events

Af(x) ={R, >nx and O< 5, < S,,

N

1<k <n},
(2.1)
1<k

A, (x)={R, 2 nxand 0> S; > S,, nj},

N

and

Af(x) ={R, >nx and 0< Sy < S, 1 <k < n), 22)
A-(x)={R,>nxand 0> S, > S,, 1 < k <n).

Note that the only difference betweet (x) and Z;f(x) is that S; has to be strictly
positive in the former, while it may equal O in the latter.

LEMMA 1.— Forall x e R,

Y () = lim _71 log P{A; (x)}

1 (2.3)
and ¢~ (x):= lim —logP{A (x)} exist
n—oo n
(but may equak-oc0), and
P{AF)}<e™ ™, p>1 (2.4)
If
pT:=P{X>0}>0, (2.5)
then in addition
lim —= log P{A}(x)} =y (x), (2.6)
n—oo n

and " (-) is convex, nondecreasing and bounded[@rl]. Also, " (-) is continuous
on [0, 1). Similarly, if

p =P{X <0} >0, (2.7)
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then

lim _—llogP{Z;(x)} =y (x), (2.8)

n—>o00 n
and ¢~ (-) is convex, nondecreasing and bounded[@rl]. Also, vy ~(-) is continuous
on[0, 1).

Proof. —We restrict ourselves to the case corresponding to the superschijge have

ny+mz
AF (y—> S AFG) N {{Sn. Susts -2 Spamot}] = mz)
n—+m (2.9)

N{S, <S8 <Spim, n+1<i<n+m},

because on the event in the right hand side the{6el, ..., S,_1} and{S,, ..., Syim_1}
have no points in common. It follows that

ny +mz
PS AT > P{AT(y)}P{A} (D)} 2.10
{ n+m(n+m )} { n(y)} { m(Z)} ( )
If p¥=P{X >0} =0, thenP{A](x)} =0forn >1, and (2.3) and (2.4) witl " (x) =
oo are obvious. These relations are also obvious wherl because necessari®y; < n.
We may therefore assume that (2.5) holds and.thatl. Then forx <1,

P{Af ()} > P{X;>0,1<i<n}=[p']">0. (2.11)

(2.3) and (2.4) now follow in the usual way from superadditivity, when we jake; = x
(see [6], Problem 1.98).

Now assume that (2.5) holds, so that > 0. Then we can extend a path ofsteps
which belongs toA " (x) by inserting¢ strictly positive steps in front. Each such step
adds a point that will not be visited again by the extended path and therefore increase
the range by 1. From this we see that for 1

P{R,¢>nx+€and0< S, < Sy, 1<k <n+£} > [pr'P{AT ().  (2.12)

In particular, forx <1
P{A} ()} > P{R, ;1 >nx+1and O< S, < S0, 1<k <n+1}
> p P{Af (1)} = pTP{AT (1)} (2.13)

(The last inequality is trivial becausé; (x) C Zj(x).) (2.6) now follows from (2.3)
whenx < 1. Again we do not have to prove anything foe- 1, sinceR, < n.

The fact that)* (x) < oo for 0 < x < 1 isimmediate from (2.11). It is also clear from
the definition ofy ™ that it is nondecreasing.

The convexity ofy ™ also follows from (2.12) and the argument for (2.10). Indeed,
let x =ay + (1 — @)z and replace: by [an] andm by [(1 — «)n] in the argument
for (2.10). We find that
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P{Rioni+1(1-am1+¢ = any + (1 —a)nz + £,
0 < St < Stami+r@—ani+e> L <k < Tan] +[(1—a)n] + £}
2 [p+]ZP{Am”](y)}P{AR1 a)nw(Z)}
> exp[—n(ay*(y) + - )y (2) +om)]. (2.14)
If x <1, then we can choogesuch that for alk > 1

any+ QA —a)nz+£L>nm+ L+ 2)x.

Indeed, this inequality always holdsdt> 2x /(1 — x). For such¢ we then have for ak
that

P{Rion+ra-wm+e = ([an] + (L —o)n] + £)x,
0 < Sk < Stamt4ra—ami+6> L <k < Janl 4+ [(1—a)n] + £}

is at least as large as the left hand side of (2.14). It follows#hatr) < oy (y) + (1 —
a)Y¥t(z), which is the desired convexity far < 1. Forx = 1 there is nothing to prove,
for thenx = oy + (1 — o)z with 0 < «, y, z < 1 can occur only fory = z = 1 or for
a=0o0r1.

The fact thaty* is nondecreasing and bounded[0n1], together with the convexity
shows that/ ™ is continuous ori0, 1). O

Remark2. — We shall find it useful to introduce the following additional events for
ue{l 2 ..}

/

Bl (u):={R,=uand 0< S; < S,, 1<k <n},
(2.15)

Bf(u):={R,=uand 0< S < S,, 1<k <n}.

/

Clearly we have

Af) = |J Bfw) and Af(x)= |J B ).
uz=nx uz=nx
By imitating the proofs of (2.9) and (2.13) we further obtain
P{B , (u+v)}=>P{RIO,n—1=u,Rln,n+m—1=v,
0<Si <Spim, 1<i<n+m}
> P{B}u)}P{B;}(v)}, (2.16)

n—+m

and
P{B} (u+D}>p P{B w}>p P{B w))}. (2.17)
HereR[a, b] stands foi{S;: a <i < b}|. For the case when (1.13) prevails, we shall
need another subadditivity result. We define the event

C,(x)={R, > nx, S, =0}. (2.18)
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LEMMA 2. — Let® denote the period of the random wdlk,}, that is,
¥ =gcdkn > 1: P{S, =0} >0},
and define
xo=sup{x: P{Ry > [Nx]+2, Sy =0} > 0for infinitely manyN }. (2.19)

Then forO < x < xg
-1
o(x):= lim vy log P{C,s(x)} exists and is finite (2.20)
n—oo n

and for eachx > xg there exists amg < oo such that
P{C,(x)}=0 forn = ng. (2.21)

Moreover, for eachy > 0 there existV = N, and¢ =1, such that for0 < x <xg — 27 it
holds for alln > 1 that

P} < N e (n+ Ny (o) (2.22)
a0 (X))} < P{Ryy > 1. Snp = O] pl—(n+ N)do(x)]. .

Finally, o (-) is nondecreasing, convex and continuoug@nxg).

Proof. —Of course if P{X > O}P{X < 0} = 0, then P{C,(x)} < P{R, > nx,
X;=0,1<i <n}=0fornx > 1. In this case the conclusion of the lemma wigh= 0
is obvious. We may therefore assume that

P{X>0}P{X <0} >0. (2.23)

Before we begin the proof proper, we show that in this ogge well defined and lies in
(0, 1].
In view of (2.23) there exist integets b > 1 such that

P{X = —a}P{X =b} > 0. (2.24)

We also haveP{R 41 = pa, Spw+» = 0} > 0 for all integersp > 2. Indeed ifX; = b
for 1<i < pa andX; = —a for pa + 1 <i < p(a + b), then we obtain a sample path
with S, 46 = 0 andR .45 > pa because the numbess = ib for 0 <i < pa are all
different. Thus the set in the right hand side of (2.19) contains all:/(a + b), so that
xo = a/(a + b). By interchanging: andb we even haveg > (a v b)/(a + b).

To prove (2.20) we first show that

1
P{R,>1t, S,=0, S, >0for0<k<n)>=-P{R,>1, S, =0}. (2.25)
n

To this end, we introduce a map from the n-step pathsSo, Si, ..., S, which end
at S, = 0 to the subclass of these paths which in addition stay in the nonnegative
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halfline. Specifically, lett be the random index at which the minimum of the path
So, 81, ..., S, is first reached. Then interchange the two pieggs.. S, andSy, ..., S,,
“glue them together” (i.e., identif\§, and S,) and shift by —S; to obtain the path
O(So, ..., S8)=(S, ..., S, S1,...,8) — Sk. One easily sees that the successive steps
of this new path areX;,1,..., X,, X1, ..., X;. These are obtained from the original
steps by a random cyclical permutation, as in [8], Proof of Proposition 32.5). Obviously
the probability of obtaining the successive stépss, ..., X,,, X1, ..., X isthe same as
the probability for the stepX,, X», ..., X,,. By construction the pat®(So, ..., S,) =
(Skyeevy Suy S1,...,8) — S lies in [0, 00) and has final point and initial point O.

It is also obvious that the range of the image|{S;, Ski1,..., Sn, S1...Sc_1}| =

[{So, S1,...,S,_1}| = R, (recall thatS, = 0). Finally the number of pre-images
(under®) of a given path is at most. Therefore

P{R,>1t, §,=0, Sy >0for0<k<n}
1
> P{O{R,>1, $,=0}} > ~P{R, >1, S, =0},

which proves (2.25).

We shall now “combine” two configurations in whichR, > 7, S, = 0} and a
“translate” of {R,, > 1, S, = 0} occur, respectively, to form a configuration in which
Ruim = t1 +t, — 1. This will prove that

1
P{Rn+m>tl+t2_1a Sn+m:0}>_P{R tlaS —O}P{Rm t2» —O}
m

(2.26)
To obtain this we decompose the evéRt, > t;, S, = 0} according to the value of the
smallest index; for which

Then we see from (2.25) that the right hand side of (2.26) is not larger than
ZP{R >n, $,=0, 8 <S,for0<i<gq, S;<8,forg <j<n}

x P{R, >12, S, =0, S; >0for0< j <m}. (2.27)
The summand in (2.27) is equal to
P{R >n, $,=0, 8 <S,for0<i <gq,
S;< S, forg<j<n, Rln,n+m—1] > 1, (2.28)
Sptm =Sn, Sp— Sy =0forn <h<n+mj}.

Now consider a path of + m steps with the properties listed in this probability. Let
its steps beXq, X», ..., X,.. As in the proof of (2.25), we construct a new path by
permuting the steps. More specifically, we take the piece of the path consisting of its
lastm steps and insert this piece right after gtd step. That is, we arrange the steps in
the orderXs, ..., X, Xui1, .- -, Xugm, Xg41, ..., X,,. The new path coincides with the
original path up till timeg. Then it follows the loopsS,,, S,1, - - ., Sptm = S, translated
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by S,, and then ends with the piece frafp to S, of the original path. Because of the
properties listed in (2.28), the pieces of the original path from §),tand fromsS, to S,

lie in (—oo, S,] while the loopS, + (S,, Sut1, - - -, Suym) liesin[S,, 00). Thus this last
loop has only the poing, in common with the other pieces, so that the range of the new
path is at least

|{SO»'--aSn—l}| + |{Sn» Sn+la---»Sn+m—l}| -1
=R, +Rn,n+m—-1-1=1+1t-1

(hereS; is the position at timg in the original path). Because the permuted path occurs
with the same probability as the original one, we see that the probability in (2.28) is at
most

P{Ryym>t1+12—1, S =0,
Si<S,for0<i<gq, Sy =>8,forg<h<g+m, (2.29)
S;<S,forg+m<j<n+m}.
The events in (2.29) for distinet’s are disjoint, because on the event in (2.29% the
smallest index for which
[{i: ;> S} <m—1 but|{i: §; >S,}{>m+1

It follows that (2.27) is not larger thaw{R, ., > t1 + 2 — 1, S, = 0}, which
implies (2.26).
Now letn > 0 andx < xg — 2n. Let N = N,, be an integer for which

Kk =ky:=P{Ryy >[NV (xg—n)]+2, Syy =0} >0. (2.30)

Such anN exists by the definition ofy. Recall that there exists some integer 1
such thatP{S,y =0} > 0 for all s > ¢ (see Appendix A21 in [1]). Leiz > 1 be a given
integer. Fom > £ we can express uniquely as

n=r(m+N)-+s (2.31)

with integersr, s satisfyingr > 0 and¢ <s <£+m + N. Now taket =1, = [N (xo —
n)] + 2, and assume thatis so large that even

r[N(xo—n) — Nx] = sx,
for ther, s of (2.31). (Note that the left hand side here is at leash by our choice ofx
and that the right hand side is at mgét- m + N)xo.) We then also have
ndx=[r(m+ N)+s]ox

<r(mdx+ [NO(xo—n)])

=r(mdx +1t,—2).
Finally, define

§=inf{P{S;y=0}: £<s<l+m+N}.
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Repeated application of (2.26), with, ¢, replaced byn®, mdx or by N, ¢, then shows
that

P{Rm? P> m?x, Sm? = O}

r

1 1
> | —P{Rys = mdx, Spy =0——P{Rys =1, Sny =0
{ 5 {Ryp = mitx, Sy }Nz? {Rny no =0}

m
X P{R;y >0, S;y =0}
>3 [ip{cmﬂ(x)}L } (2.32)
md N
Noting thats is strictly positive and independent @f we obtain that
2
liglsogpn—; log P{Cpy (x)} < m log P{Cyi (x)} — 'Og((;/imN]\)]Z ). (2.33)

Finally, if we letm go to infinity through a subsequence for which

-1 .. -1
—log P{C,,s(x)} — liminf — log P{C,5 (x)},
muv n—oo pi

then we obtain that

=1
lim —log P{C,s(x)}

n—o0 pi

exists. This limit is finite by virtue of

K r
P{R,N3y Z2TNvVx, S;yy =0} > (W)
(which is a simplified version of (2.32) witlh = s = 0). This proves (2.20) for any
x < xg — 25, and hence for all & x < xo. Furthermore, (2.22) is contained in (2.33).
Next, if x > xq, then forxg < x’ < x and largen

P{C,(x)} < P{R, > [nx"14+2, S,=0} =0,

by the definitions ofC,, andx,. Thus (2.21) holds.
The monotonicity, convexity and continuity ef are proven in the same way as for
yEinLemmal. O

Remark3. — It is not hard to show thaty = 1 when the support ok is unbounded.
Even if the support ofX is bounded, it will be the case thap = 1 if there exists
a,b > 1 with gcda, b) > 1 for which (2.24) holds. On the other hand, there are
certainly examples for whiclg < 1 (for instance simple random walk). We expect that
lim,_ . —1/(m®)log P{C,s(x0)} also exists in these cases, but it may be infinity.

To control C,,(x) for xg < x < 1, we take for O< n < xo, @ continuous increasing
functionx — r,(x) on [0, »] for which

1
}",7(0)20 and I‘n(r))ZZ,
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and define
o(x A (xo—mn)) if 0<x<(xo+n) Al
oy(xX)=qo@o—n+ryx—xo—n if xo+n<x<(xo+2n) AL, (2.34)
a(xo—n)+1/n if xo+2n<x<L

Note thato, (x) < o (xo —n) for all x < (xo + 1) A 1. Moreoverg, (-) is nondecreasing,
continuous and bounded ¢@, 1]. We also takelf, to be an integer such th&{C, (xo +
m} =0 for ny > M, (see (2.21)). By the monotonicity in of P{C,(x)} and (2.21),
(2.22) we then have for atl > M,, and allx € [0, 1]

P{Cpy(x)} < nNo® ex N (2.35)
o (X))} < P{Ryy > 1, Syy = O} p[_(n + N) O’,)(X)} .

(with N = N77/2’ t= t77/2)'

3. An upper bound for P{R, > nx}

Here we shall compare limsup-1/n)log P{R, > nx} with

pra= inf eyt + Q- ayT @) (3.1)
ay+(1—a)z=x

LEMMA 3. — If (2.23)holds, then fol0 < x <1,

~1
liminf — log P{R,, > nx} > ¥*(x). (3.2)
n—oo n

Proof. —We shall prove this lemma by ‘unfolding’ a random walk path. To this end

we define certain indices, as a function$gf S, .. ., S,. Roughly speaking these are the
successive times at whic$) reaches for the last or first time a maximum or minimum of
a piece of the sample path till time(see Fig. 1). This splits the path into various pieces

S;,...,Sj, each of which is more or less increasing or more or less decreasing (in the
terminology introduced after (1.18)). We then permute these pieces and combine th
more or less increasing ones into one p&h say, and the more or less decreasing ones

into another path@, say. The probabilities of the resulting pathg, ®, are estimated

by means of Lemma 1. This eventually gives the bound (3.40) for the probability of
all the possible®,, ®,. Again the permuted paths occur with the same probability as
the original path, but we still need a combinatorial or numbertheoretical estimate for

the number of paths which result after permutation in a particular pa#,08,. This

estimate, which depends on our choice of the more or less increasing or decreasir

pieces, is provided after (3.40).
We now give the somewhat tedious details. Wexfix [0, 1] for the rest of this section.
Define

k1 =max{i <n: S; =maxo0, 1, S, ..., S} }; (3.3)
if k2;_1 < n, then define
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Fig. 1. lllustration of the location ofy, A3, k1, k2 andks.

ko =max{i > kpj_1: S; = MiN{Se,; 1» Sipj 1415 -+ +» Sa}s (3.4)
and ifkz; < n, then define

K2j+1 = max{i > K2j: S; = max{SKz_,., SKZ,;‘-‘rl’ Ceey Sn}} (35)

We only definex, in this way as long ag,_; < n, so that the set in the right hand
sides of these definitions is nonempty. We define

v=min{{: x, =n} (3.6)

and leavec, undefined fort > v. The piecesS,., ..., S,,,,, 1<i <v -1, are some of

the more or less increasing and more or less decreasing pieces into which we decompa
the original path.

In order to find the remaining pieces we also define indices similar to; it going
downwards fromk;. If 1 > 0, then we define

ro=min{i <k1: Si =min{S,, Sep-1, - - -, S1. 0} }; (3.7)
if X2; > 0, then define
Aojra=min{i <Ay S = MaxX{Sy,;» Sipj—1s - - -» S1, 0}}; (3.8)
if A2j41 > 0, then define
hojrz=min{i < Agji1: S = MIN{S5,;,10 Sigjia—10 -+ -5 S1, 0}}. (3.9)
These indices are defined only as long as the preceding one is strictly positive. We set
w=min{¢: 1, =0} (3.10)

and leave\., undefined for > .
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Now letu,Aand 0=¢, <, 1 <--- <l <ky <--- <k,_1 <k, =n be fixed and
let us estimate the probability of

(R, 2nx,kj=kj, 1< j<v, k=4, 2<m < u}. (3.11)

To this end note that on this event, by the definition oftfe

Si <S8 forky<i<n, (3.12)
Si <8, for0<i <k, (3.13)
Stoj1 > Si 2 Sk, fOrkoj1 <i <kaj, (3.14)
Si > Sk, forkg; <i <n, (3.15)
when 1< j < [v/2], and
Stoy < Si < Sipyyy  fOTkoy <i <kojya, (3.16)
Si < Skpy fOrkajn <i<n, (3.17)

when 1< j < [(v — 1)/2]. These inequalities imply furthermore that

Sky — Sky > Skg — Sky > Sks — Sky >+ > Sk, — Sk, >0 (3.18)
if viseven, and

Sky — Sky > Skg — Sk > Skg — Sy >+ > Sg, — S, -1>0 (3.19)

if vis odd. Similarly,
Se, <8 <S8y, L2< i<k, (3.20)
and

Sty 28 > Se,,, Lojy1<i <l
J+ J (3.21)
S221+2 S < ngjJrl, sz_,_z < i < sz_,_l,

provided 2 + 1 < u, respectively, 2 + 2 < u.
We introduce the following notation for the events in (3.14), (3.16), (3.20) and (3.21):

Fpj1:={Sky_, > Si = Spy, fOr kpj_1 <i <hoj},
Fji={Siy; < Si < Siyy,y fON koj <i <hkojya})s
Fo:= {8y, < 8; < S, for €p <i <k},
Gaoji={Sey,1 = Si > Se,, fOr €11 <i < Ly},

and

G2j+1 {szj+2 S; < S£21+l for sz_,_z i< Z2j+1}-
We also define
Rla,b] = |{S;: a <i <b}|. (3.22)
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In this notation,R, = R[0,n — 1] and it is easy to see that
v—1
R[O,n — 1] < Z R[€it1, & — 11+ R[€2, k1 — 1]+ Y Rlki, kisa — 1].
i=1

From this one sees that the event (3.11) is contained in the uniorvaver, v, >
O, U, ..., Uy_1 = O, with

n— v—1
n}Zvj+Zu,->nx, (3.23)
j=2 i=0
of the events

{R[€2, k1 — 1] =uo, Rlkj, kiy1—1=u;, F;, 0<i<v—1,

(3.24)
R[€;1,0; — 1l =v;, G;, 2<j<pn—1}.
The probability of this last event equals
(HP{R it —1=v;,G; })P{R [€2, k1 — 1] = ug, Fo}
v—1
X <HP{R[kiaki+1_l]:Mi=E}>- (325)
i=1

We now combine all the factors corresponding to intervals on which the last value
of § exceeds the initial value, and the factor corresponding to the intgivdl;]. We
combine the other factors into another product. For the sake of argument, we assun
thatu andv are even; we leave the trivial modifications for other cases to the reader. Let
w=2¢ andv = 2¢. Then the factors of the first group are

P{R[lj,loj—1— U =v3;-1,Gj-1}, j=¢¢0—-1....2
P{R[ls. ks — 1] =up, Fo} and (3.26)
P{Rlkzi. kzis1 — U =z, Fa}, i=12,....6—1
Now, by the definition ofB;,
P{R[kzi, koiv1 — 1 =uy;, in}
= P{Rlkyi, kait1— 1 = u2;, Sk, < Sp < Sky,q fOr ko < p <koiy1} (3.27)
= P{Bg, 1, 2}

Similarly, by the definition ofﬁj and (2.17)

P{R[t2. k1 — 11 =uo, Fo} = P{B{_, (o)} <[p"1*P{B{_,,.1(uo+ D}, (3.28)

P{R[{l2;,€2j-1— 1l =vpj_1,G2j_1} < +]_1P{Bezj 41 (V2j-1+ D} (3.29)
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Next we construct a new random walk path by putting together paths for which the
events in the right hand sides of (3.27)—(3.29) occur. More precisely, we define
recursively by

m0:0,mp+1—mp:£2;_2p_1—£2;_2p+1 fOI’pzo, 1,...,0 -2,

me—me_1=ki—4€x+1,
and finally
Mepp —Meyp1=kopr1—ksp forp=1...¢6-1
Then the right hand sides of (3.27)—(3.29) equal

P{By .y w2}, [PT17HP{BY _,  (wo+ D},

Me+i
and
[pT17tP{B; (v2j1+ D},

Me—j+17Me—j

respectively. DefingV, « € [0, 1] andy > 0 by

N=n+2; -1,
¢ -1
aN=mge1=Y (loj_1— Lo+ 1)+ (ks — L2+ D)+ > (kaip1 — kai),
j=2 i=1
and
¢ -1
aNy:Z(vzj_l—l—l) +u0—|—l+Zuzl~. (3.30)

j=2 i=1

Note that automaticallyy > 0. Repeated application of (2.16) then shows that the
product of the probabilities in (3.26) is at most

(PP P{RIm_j,m_j_1— U =nvp;_1+1, 2<j <,
Rim;_1,m; — 1l =uog+1,
Rlimgyi1,mey — 1 =up, 1<i<&-1,
0<S,<Sun, 1< p<aN}.

(3.31)

The events in the probability here for two distinct choices of the sequanges 2 <
Jj<<C,up,0<i <& — 1, are disjoint. Therefore, for any fixed the sum of (3.31) over
all vp;_1, up; which satisfy (3.30) is at most
[pT17¢P{R[0,aN —1]=aNy, 0< S, < Syn, 1< p<aN}
=[p"1 P{B}y(@Ny)} <[pT1*P{Aly(@Ny)}
<[pfI ¢ expl—aNy™(y)] (by (2.4)) (3.32)
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The remaining factors in (3.25) correspond to intervals on which the last valtiesof
less than the initial value. These are the factors

P{R[€2j+1,€2j—1]=U2j,G2j}, j=19---9{_1’

(3.33)
P{Rlkpi—1,kpi — 1l =upi_1, Foi_1}, i=1... &
The definitions ofN and« imply that
-1 3
1-a)N= Z(EZj —lojy1+1)+ Z(kZi —kai—1).
j=1 i=1
In analogy with (3.30) we defineby
¢-1 §
(L—a)Nz=) (vj + D+ > uz1. (3.34)
j=1 i=1

In particular this forceg > 0. By virtue of (3.23) we only have to considerand z
which satisfy

aNy+ (1—a)Nz= 2i1(vj + 1+ (mo+1 +25§_:1ui
=2 i=1
212x+2{ —1>Nx (3.35)
(recallx < 1), and hence
ay+ (Ll—a)z > x. (3.36)

Exactly as in (3.32) we now find that the sum owey, uy;_; satisfying (3.34) for some
fixed z of the product of the factors in (3.33) is at most
[p717*™P{R[0, 1—a&)N —1] = (1 —a)Nz,
0>S8,>Sa-an, 1<p<(A—0a)N}
[P_]_HlP{A(_l—a)N(Z)}
(P71 exp[~ (1~ )Ny~ (2)] (3.37)
(recall thatp~ = P{X < 0}; see (2.7)). Combining this with the estimate in (3.32)

we find that the sum of the probabilities of the events in (3.24) overand v’s
satisfying (3.30) and (3.34) is at most

<
<

[p 1 pt I exp[—Nay T (y) = N(1— a)y ™ (2)]
< p—2¢+1exp[—n inf [otlﬁ+(y)+(1—a)w_(z)”. (3.38)

0<a<l,y,z>0
ay+(1—a)z=x
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Here p denotes mifip™, p~}. In the last inequality we used (3.36) and the fact that

[Ollﬁ+(y) + 1=y ()]

O<o¢<1
ay+(1— ot)z>x

= . it oyt )+ A-a)y @),

O<o¢<1
ay+(1— a)z X

(3.39)

which follows from the monotonicity ofy . Indeed, ifay + (1 — )z = x’ > x, then we
have that

ay M+ L-a)y” (Z)>0le+< >+(l Oé)l/f( )

which is not less than the right hand side of (3.39). We may add the restrictiog 1

in the infimum here, because, as we already explaiged,y) = oo for y > 1. Thus
the restrictiony, z < 1 has no influence on the infimum. From the left hand inequality
in (3.23) we see that we only have to consider valudsy <»n + ¢ and(1 — )Nz <

n + ¢. Thus the probability of the event in (3.11) is at most

(n+¢ +1?p 2 exp—ny*(x)] < dn’p T exp—ny* (x)]. (3.40)

In order to complete the proof of this lemma we must now estimate how many choices
there are for theu, v, £,, andk; in (3.23). In fact we shall only estimate this for the
subclass of the sample paths which satisfy

T, = |{i <n: |Xi|>/n}|<y@)n, (3.41)
where we can take for (-) any function which satisfies

yn =1y L0 buty(mlog—2" oo (3.42)

P{|X| > /n}

asn 4 oco. For instancey (n) = [—log P{|X| > «/n}]~%? v n~t will do. We may restrict
ourselves to such paths, because the probability that (3.41) fails is at most

" FyGon neP{|X| > ﬁ})y<n>n
P{|IX —of "eLUAT> Vi) ‘
<W(”)”]>[ 1X1> )] ( ny (n)

Under (3.42), we therefore have

lim sup1 log P{T", > y(n)n} = —oo. (3.43)

n—oo

Hence, we may and shall consider only sample sequences which satisfy (3.41) for th
proof of (3.2).
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We claim that under (3.41) it must be the case that (for lajge
v < y(n)n 4 2n%4, (3.44)

To see this, let/ be the set ofj € [1, v — 1] for which there exists ane [k; + 1, k; ;1]
with | X;| > /n. Then

T <y@mn.

Moreover,

S 1Sk =Sl < DD X<

1< <, 1<i<n,
J¢l 1X; 1<V
and the integer§S;, ., — S|, 1< j<v—1,j¢J, are strictly decreasing. In fact the
whole sequence of they, , — Sy, | is strictly decreasing by virtue of (3.18) and (3.19).
Now it is easy to see thatif, r», ..., r, are distinct positive integers wiff;_, r, < A,
theng(g + 1)/2< A since>?_;t <37 r. Thus in such a situation we must have
q < ~/2A. If we apply this with ther; the successive values ., — S|, 1< j <
v—1, j ¢ J, then we see that there can be at mg&:%/* such indicesj. Thus the total
number of| Sy, — S, | is at mostJ| + +/22%* + 1, and (3.44) holds.
The bound (3.44) also holds far— 1. Since the; and{;, as well agw andv have to
take values in0, n] we find that the total number of choices forv and thek;, ¢; is for
largen at most

2 n+1 o(n)
" ([2)/ (m)n + 4n3/41>

For each such choice of the, ¢;, © and v, the probability of the event in (3.24) is
bounded by the right hand side of (3.40). We have finally proven that

P{R, > nx}) < P{T, > y (m)n} + 4n?p ™7 =2  expl —ny*(x) + o(n)],

which, together with (3.43), implies (3.2).0

4. A lower bound for P{R, > nx} in the case (1.12)

In this section we show that lith-1/n) log P{R, > nx} is given by the right hand
side of (3.2) when (1.12) prevails. In order to make use of (1.12), the following lemma
will be helpful; (1.12) gives us that™ in (4.1) (or its analogue on the negative sige,
equals 0).

LEMMA 4. — Assume thaf2.23)holds. Let

-1
x T =liminf —log P{X = n}. 4.1)
n—oo n
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If x* < oo, then there exists a constant and a functiong®:{1,2,...} — {1,2,...}
such that

g (n) =o(n), (4.2)
and
P{Setmy=n,—c1 <8 <n+c1,0<i<g"(n)} > g X ntoln) 4.3)
Moreover, foru >0

P{R, >2nx,S,=—u} < eX+u+0(u)P{Rn+g+(u) Znx, Sn+g+(u) =0}

nx
= eX+u+0(u)P{Cn+g+(u) <m) } (44)

(Seeg(2.18)for C,,.)

Proof. —Recall the we assumed that the group generated by the suppoeamialsZ.
This means that there exist integet$ and positive integers s such thatP{S, = a} >
0, P{S; = b} > 0 anda — b = 1. By virtue of (2.23) we may take, b > 0, because we
canreplace, b bya+me, b+mcif P{S; =c} > 0forsome. Asin[1], Appendix A21,
this implies that fork > somekg there exists am (k) > 1 for which P{S,x, = k} > 0.
But then there also exigt andu such that

P{Sh(l+mu)+mu = 1} = P{Sh(l+mu) = 1+mu}[P{X = _”}]m > 0.

The same argument holds with positive and negative interchanged, so that there exi
integersn™, m~ and a constant, > 0 such that

P(Syr =1} >c, and P{S,- =—1} > c,. (4.5)

Now letk; > 1, i =1, 2,... be such that

kiy1>2ki, i >0, P{X=k}>0
1 (4.6)
and lim . logP{X =k}=x" < co.

1

For anyn > k; we can then find an’ € [n — k1 + 1, n] such that

for some non-negative integeis #; which satisfy

kit1

ki <n <kigp1, i<
:
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Indeed, after findingp so that the first relation holds, one merely has to tgke |n/k;,|
and thenfori =ip—1,...,1,

1 o
t,~:{;<n— Z tjkj)J.
! j=i+1

Leti; be the unique index witk;, < /n < k;,+1. Then

-
Zl‘,’ < Z kH—]lCi/\ n

i=1 i=1
-1 q
[ IS oF-
i=i1+1 i=1 """
i1—1 1
“|n+ Z k; 2 (io— l)] +kllz 2—l+l
i1 i= 11+l i= 1
3n
<3 o < 2= om).
ki, ki,

Moreover, by virtue of (4.5), there exists sohe: £(n — n’) such thatP{S, =n —n'} >
0. In fact the only possibilities fat — n’ are the integers,@, ..., k; — 1, so that we can
take

tn—ny=mt(n—n)<m'ky and P{Syu_ny=n—n'} >[ca]" "> [ea]M =: 2¢s,

uniformly in n. After that we can choosg > 0 so that
P{S¢=n—n",|S;)| <cifori <t}
> P{S;=n—n"} — P{|Si| > c1 for somei <m*(n —n")}
> C3.

Finally we take

io
gt (n) = Zti +4(n—n').
i=0
Clearly (4.2) is satisfied, by virtue of the preceding estimatedf. In addition, by
virtue of (4.6) and the fact that al} are strictly positive,

P{S +y =N, —C1 < <S8 et T C1 for i <g+(n)}
> ﬁ[P{X =k} )" P{Sei—ny=n—n",|Si| <cyfori <&(n—n")}
i=1 )
> czexp|— > _ 1 (x ki + 0o(k;))
i=1
= exp[—x+n + O(n)} .
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Thus also (4.3) holds.
Finally, (4.4) follows from (4.3) and

P{Rn+g+(u) 2 nx, Sn-',—g*(u) = 0}

n+g™t ()
2P{Rn>nx,Sn:—u}P{ Z X,-:u}. O 4.7)
i=n+1

Remark5. — Define
_ . —1
x~ :=liminf —log P{X = —n}. (4.8)
n—-oo n

Of course, whery~ < oo, then the analogous results to Lemma 4 with positive and
negative interchanged hold. We then have to repigd@a) by someg~ (n) = o(n).

Note thaty* = oo is possible, for instance whex is bounded on one or both sides.
In this case (4.4) should be replaced by

P{R, > nx, S, =—u} <[c2] " P{Ryyum+ = nx, Sppum+ = 0}

= [Cz]_“P{Cn+um+ (L) } (4.9)

n+umt

for u > 0. This inequality again follows from (4.7) with* () replaced byum™, if one
takes into account that{S,,,+ = u} > [P{S,,~ = 1}]* (see (4.5) fomm™* andc,).

With the help of Lemma 4 we can now prove an analogue of Lemma 1 in [4], for the
case (1.12).

LEMMA 5. — Assume thafl.12) and (2.23) hold. Then, there exists a constamt
and a functiornr: {1, 2, ...} — {1, 2, ...} with the following properties

r(p) > oo butr(n) =o(n) asn— oo, (4.10)
rn+1) —r(n)<l, n=0, (4.11)

and for all integers:, m > M andy, z € [0, co) it holds that
P{Rn+m+r(n+m) zy+z— r(n+ m)} = e_r(n+m)P{Rn > y}P{Rm P Z}~ (412)

Proof. —This proof is essentially the same as that of Lemma 1 in [4]. Suppose that we
can find a seE = E(n, m) C Z and functions, r: {1, 2,...} — {1, 2, ...} such that

gw)<r(n+m), wekg, (4.13)
foreachw € B, P{S,) = w} > 27 "™ (4.14)

and

=

nm

— < =|E|. 4.15
r(n +m) 2| | ( )
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Then a few simple modifications in the proof of inequality (2.11) in [4] show that for
suchn, m

e—r(n+m)

P{Rn+m+r(n+m) 2 y +z —I‘(l’l +m)} 2 _|E|P{Rn 2 y}P{Rm >Z}

g 2
We therefore merely have to find the functiomnd a replacement for the sgj which
we used in [4], in such a way that (4.10), (4.11) and (4.13)—(4.15) are satisfied for
n,m>M

To find the required and E we appeal to Lemma 4. If (1.12) holds, ther =0 or
x~ = 0. For the sake of argument we assume jhat= 0. By Lemma 4 there then exists
a funtiong™ such that

1
g (p)=0(p) and pl_l)rpo;IogP{SgW):p}:O.

But then we can find @y and a nondecreasing function{1, 2, ...} — {1, 2, ...} which
increases so slowly that

t(p) > o0 butr(p)=0(p) asp— oo, (4.16)
gt (w) < t% for all po < w < 4p(t(p) + 1) (4.17)
p
and
P{Sgray = w} = 2e77/"P) for po <w < 4p(t(p) +1). (4.18)

Finally we takeg™ for ¢ and

(o551 it p < po,
rp)=93,4 .
(1551 it p> po,

and

4(n 4+ m)?
r(n+m)
It is easy to see that this choice satisfies all requirements for some sultalalied
n,m > M. We merely comment on the requirement (4.11). This follows from the fact

thatr is nondecreasing. Indeed this monotonicity implies-1)/t(p+1)—p/t(p) < 1,
and hence alsf(p + 1)/t (p+ 11— Tp/t(p)1<1. O

8= {po, } C [p0,4(n +m)t(n +m)}.

We can now prove (1.2) in the case of (1.12).

LEMMA 6. — Assume thal.12)holds and thaD < x < 1. Then

nli_[nw _71 log P{R, > nx} =y *(x). (4.19)
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Proof. —If p~ = P{X <0} =0 (and hencep* = P{X > 0} > 0, becauseP{X =
0} < 1), thenP{A, (x)} =0 forn > 1 andy~(x) = co. Thus the right hand side
of (4.19) equals/ ™ (x). Moreover,P{R, > nx} = P{Xj(x)}, sinces;, is nondecreasing
with probability 1. Thus (4.19) is included in (2.6) in this case. A similar argument
applies if p* = 0, so that we may assume that (2.23) holds for the remainder of this
proof.

In view of (3.2) it suffices for (4.19) to prove

-1
limsup—log P{R, > nx} < ¥*(x). (4.20)
n

n—oo

First we consider the special case of this whes 1. In this case, the only convex
combinationsay + (1 — «)z with 0 < «, v,z < 1 which equalx are combinations
with y =z =1 ora € {0,1}. Thus, forx = 1, the right hand side of (4.20) equals
min{y*(1), ¥~ (1)}. The inequality (4.20) forx = 1 therefore follows from (2.3) and
the fact that

P{R, > nx} = max{ P{Af (D}, P{A, (D}} = p" (4.21)

for eachx € [0, 1] (see (2.11) and recall that= min{p™, p~}).
For the remainder of this proof we fixQ x < 1 ande > 0. Since we already know
from Lemma 1 thaiy* are bounded of0, 1], we can also fixr, y, z € [0, 1] such that

x=ay+ (1—a)z, (4.22)

and

YO Zay T+ Q- y () —e. (4.23)

Necessarilyr > 0,y < x, or o < 1,z < x. For the sake of argument we assume that
a > 0andy < x < 1. Sincey* is continuous ori0, 1) (by virtue of Lemma 1), we can
further choose’ > y such that even

Y Z oy () + L - o)y (2) — 2. (4.24)

We now apply (4.12) witw andm replaced byfan] and[(1 — a)n], respectively, and
with y andz replaced byfan1y” and[(1 — «)n]z, respectively. This gives for large

P{Ryi24r(anl+1d—am]) = [an]y + [(L—a)nlz — r(fan] + [(1 —a)n])}
> P{Rian)+ -] +r(fan]+[A-am)
> [an]y + [ —a)nlz —r([an] + [(1—a)n])}
> e e HA=nD p LR 1 > [anly' } P{Ria—am > (1 —a)nlz}
> g e+ pat (VL P{AT (@)
> explo(n) —anyt(y) — (1—an)y~(z)] (by (2.3) and (4.10))
> exp[o(n) — ny*(x) — 2ne]. (4.25)
Now, for a given largée, find n such that
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n+24+r(fan]+[(1—a)n]) <L
<n+1424+r(fJar+D]+ A —-a)(n+1)]). (4.26)

By virtue of (4.11) we then have

n+2+r(fan]+[(L—a)n]) <€<n+3+r([an] 4+ [(L—a)n]) + 2.
Hence, for large,

tx =L(ay + (1—a)z) < [anly + [ —a)nlz —r([an] + [ —a)n]).

Consequently, by the monotonicity properties”AiR, > z},
P{R; > tx} = P{Ryi24r(fanl+11—a)n])
> [anly + [(L—a)nlz—r([an] + [(L—a)n])}.
Together with (4.25) this implies

-1 1

lim supT log P{R; > tx} <lim supE [n(Y*(x) + 2¢) + o(n)],
{— 00 {—00

wheren is determined as a function @fby (4.26). In particular, the latter relation,

together with (4.10), shows that litvin = 1. Finally, this implies (4.20) and (4.19),

sincee > 0 was arbitrary. O

5. Another upper bound for P{R, > nx}

In this section we derive an alternative to the upper bound HoR, > nx} of
Lemma 3. This bound will be used only in the case when the distributioX bhs
an exponentially bounded tail, that is when (1.13) holds.xFe1{0, 1) we define

p+(X) - 0<0£<£?£1,z<x0 [C“[’_F(y) + (l B CY)O'(Z)] '
ay+(1—a)z=x (5 l)
p-(x)= Ogagli’f)]il’zqo [y~ (y) + (1= a)o (2)]
ay+(1—a)z=x
and
YE) =min{p* ). p~ ()} (5.2)

LEMMA 7.— Assume thaf2.23) holds and thaty™ > 0 and x~ > 0. Finally, let
x <1. Then

liminf -1 log P{R, > nx} > ¢¥*(x). (5.3)
n—-oo n

Proof. —Analogously to the proof of Lemma 3 we introduce times at which the sample
path of{S,} achieves its maximum and minimum. More precisely, we let
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Fig. 2. lllustration of the location of, «’, » andz;.

k =max{i <n: §; =max0, Sy, S2, ..., Sy} },
Ar=min{i > 0: S; =min{0, S, S5, ..., Sy} }.

For the sake of argument we consider the daséex; the case. > « is similar. If A <«
we also introduce

/

K'=max{i >«k: S; =min{S,, Sei1, ..., Su}}
For the time being we make the extra assumption
O<x"<oo and O< ™ <oo. (5.4)

We remind the reader of (4.21). This implies tha{R, > nx} > exp(—c4n) for some
constant, < oo. Since we assumeg™ > 0, we can find a constang < oo such that

P{R, >nx} <2P{R, >nx,|X;| <csn,1<i <n}. (5.5)

We shall estimate the right hand side in two pieces:
(i) P{R,>nx, |Xi|<csn,1<i<n, S, <0},
(i) P{R,=nx, |X;|<csn,1<i<n, S,>0}.

For the time being we shall work on the first piece. For this estimate we first define
n=maxi: «k <i<«', S >0}

(see Fig. 2). We note first thef, = max0, S,...,S,} > 0, while S, < S, <0 in
case (i). Thus, the set on the right in this definition is non-empty, sotthat well
defined. If r; = «’, then 0< §;, = S < S, <0, and henceS, = 0. But P{R, >
nx, S, = 0} = P{C,(x)}. If x > xo this vanishes for large:, and if x < xg, then
liminf(—1/n)log P{C,(x)} > o (x—) > ¥*(x) (compare the lines before (5.24) below).
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We may therefore ignore the caSg= 0 and restrict ourselves o< «’, and S;, < 0.
We next show that we may assurfig = 0 at a “small cost in probability”. Specifically
we shall prove (5.17) below, which corresponds to takihg= 0 and evensS,, = 0,
where 1, is defined in (5.11). If{X; 11| < csn and S;; > 0 > S, 441, then we must
have 0< S, < ¢sn and 0> S;, 41 > —csn. There must therefore exist a constagt
(independent of) and integerg;, s, ¢, r; such that

0< p1,p2<cesn, O0<s<t<n,

(5.6)
0<ri<s, 0<rn<n—s, ri+r=nx,
and such that
P{R, >nx, |X;| <csn, 1<i<
T1=35, Sy = Pp1, Sr1+1=—P2, k' =t,
R[O, s—l]:rl, Rls,n—1]=r,, S, <0}
P{R,>nx, S, <0, |X;| <csn, 1<i <n}. (5.7)

(n + l)6

(Note that we can takes = [c5]~2.) If the event in the left hand side here occurs, then
X1, ..., X, are such that

Ry =ry, Ss = p1, Xs+1=—pP1— P2,

J n

> Xi<-p1, s+1<j<t, Z X;< ) X;<-p1. (6.8)
i=s+1 i=s+1 i=s+1

Rls,n—1]=r, I Xp| <csn, 1< h<n.

Thus, by virtue of (4.4) (with positive and negative interchanged) and the definition of
x~, the left hand side of (5.7) is at most

P{R; =r1, Ss = p1} P{X;41=—p1— p2}

J n
P{ZX,-gpz,s+2<j ZX Z X; < po,

i=s+2 i=s+2 i=s+42
Rlis+1n—-112r,—1, | X3 <csn, s +2<h < }

< ex‘p1+0(p1)p{RS+g_(p1) >, Ss+g—(p1) — O}E—X_[P1+P2+0(P1+P2)]

xP{ZX P2, s+2<j< ZX ZX P2

i=s+42 i=s+2 i=s+42
Ris+1n-11>r—1, |Xh|QC5n,s+2§h<n}. (5.9)

Finally, by (4.3) (again with positive and negative interchanged), the left hand side
of (5.7) is bounded by
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eo(”)P{Rerg*(m) 2711 Ssrg-(pp) = O}
X P{Sg’(Pz) =—pac128=2—pr—c,0<i < g_(PZ)}

J
P{ingpzfors+2 Jj< tZX ZX P2,

i=s+2 i=s+2 i=s+2
Rls+1,n—1>r—1, |Xh|<05n,5+2<h<n}

< eo(n)P{RHg‘(m) > 11, Sytg-(pp = 0}
X P{Sg-(py =—P2, Sp<c1, 0<h < g™ (p2),

Si<0,8 (p)<j<g (p2)+1—s—1

Se=(po+1-s-1 < Sg-(pp4n—s—1 < 0,

Ry (ppytn—s—1=12—1, |X;| <csn Vv (p2+ 2c1) < 2c5n,

1<i<g (p)+n—s—1}. (5.10)
Here and in the rest of this proof is such thatz~*o(n) — 0 asn — oo, uniformly
in the p;, r;, s, t andu (some of these will only be chosen below). However, the precise

value of the ¢n) expressions may vary from one appearance to another. To handle the
last probability in the right hand side here, we introduce

mln{l i Sg (p2)+n—s— 1} (511)

Note thatr, < g7 (p2) +t — s — 1 if the event in the last probability occurs. Arguing
as above one now decomposes the sample path Q., S;-(p,)1n—s—1 iNto the piece
0, 81, ..., 85,1, the jumpX.,, and the piece.,, ..., Sg-(py+n—s—1. ONE can now find
integersu, ps, pa, 3, r4 Such that

O0<ps pa<2csn, u<g (p2)+t—s—1<n+g (p2)
r3<u, ra<n—s—1-tn+g (p)<n—s—u+g (p2), (5.12)
r3t+r4>r2—2,

and such that the last probability in (5.10) is at most

eo(n)P{q;Si;Su—ps,Oéigu,RM:m} ( )
5.13

Xe_xi(mﬂwP{Rg’(p2)+n—s—u—2 > 14, Sg-(pp)tn—s—u-2= Pa}.

Here we fixed some random variables as follows- 1 =u, S;,—1 — Sg-(pp)+n—s-1 =

p3, X, = —p3 — pa, and consequenthyS,- () 4n—s-1 — Sz, = pa, R0, 72 — 2] =

r3, R[12, g7 (p2) +n —s — 2] = r4. By using (4.4) once more we see that (5.13) is at
most

eWP{c1 >8>S, —ps, 0<i<u,R,=r3} (5.19)
5.14

xe* p3P{Rg_(p2)+g_(p4)+n—s—u—2 = Iy, Sg_(p2)+g_(p4)+n—s—u—2 = 0}
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Further, by (4.3) we can write

e <@ P{Sutg(pe) = Su=—pa.

(5.15)
128 —8=2—ps—c, u<i<u+g (p3)}.

By putting together a sample pakh, ..., X, for which the first event in (5.14) occurs
and a sample pattX, .1, ..., X,4,-(ps fOr which the event in the right hand side
of (5.15) occurs, we see that (5.14) is bounded by

eo(n)P{ch 2 8i 2 Sutg-(py) — €1, 0<i Su+ g7 (p3), Rusvg—(pg) 2 }

(5.16)
X P{Rg_(p2)+g_(p4)+n—s—u—2 2 I, Sg_(p2)+g_(p4)+n—s—u—2 = 0}
Combining (5.5)—(5.16) we finally obtain that
P{R,>nx, S, <0, |X;| <csn, 1<i<n}
< eo(n)P{RHg’(m) 21, Ss+g*(p1) = 0} (5.17)
X P{zcl =8 > Su-',—g—(pg) —c1, 0<i<u+g (p3), Ru+g (p3) = 1’3}
X P{Rg_(p2)+g_(p4)+n—s—u—2 2 I, Sg_(p2)+g_(p4)+n—s—u—2 = 0}
Now leta > 1 be such thaP{X = —a} > 0. Asin (2.12), if
{212 8i 2 Sutg-(p — €1, 0< i Su+ 8 (P3), Rurg—(po) >3}
occurs, then we can insert2steps of value-a in front of X4,..., X, ,-(p; andc;
such steps at the end. If the original path took stéps .., X, ;,-(»s), then the new path
takes steps-a, —a, ..., —a (2cy times), X1, ..., Xute-(py)» —a@, —a, ..., —a (cy timey).

Clearly the partial sums of this extended path of length ¢~ (p3) + 3c; lie between 0
and the last sum, and therefore this extended path I|A§+g (pa)+3c, 13/ (U + 87 (p3) +
3c1)). In other words

P{ch 2 Si 2 Su+g*(p3) — (1, 0 < l u +g (p3) Ru+g (p3) = }’3}

<[P{X = —a}]_gclP{A‘ (5.18)

e (rt3a (u +g (Ps) + 3Cl> }

<a@k@%—@+g1nﬂ+&ﬂw‘<

u+g- (P3) + 3C1>:|
(by (2.13) and (2.4)). We defing y andz by

a:ﬁ/\l, y=E ifux0, y=0 ifu=0,
n u
= i n—u£0, =0 ifn—u=0.

n—u
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Note that these quantities dependmn, s, ¢, p; andr;, but we do not indicate this in
our notation. Then the right hand side of (5.18) is bounded above by

explo(n) —any~(y +0(1))],

where the ¢1) here (in the argument of~) and later ¢1) terms in this proof tend
to 0 asn — oo, uniformly in u, s, ¢, and in thep;, r;. Indeed, we know that/—(-)
is increasing and bounded on<0r < 1 by —logp~ (compare (2.11)). Moreover,
g (p)=o0(p)=o0(n) for p <n, andrz < u <n+ g (p2), so thatu = an + o(n)
(see (5.12)).
On the other hand, the product of the first and third probability in the right hand side
of (5.17) is, by virtue of (2.26), at most

(n +0()) P{Rssg-(p+g— (o) +~ (pay+n—s—u—2 > 1+ 14— 1, (5.19)
SS+g’(p1)+g’(pz)+g*(p4)+n—s—u—2 = 0}-
To estimate this define

G~ ()= {n[1+ max g~ (p]}"%
P<2csn

Note that ast — oo,

G‘(n)_)0 and g (p)+ & (p2) + & (pa)

G (n)—»>o0, —— — 0.
n G~ (n)

Now let 0< 1 < xo and let M, be as in the lines following (2.34). b —u — 2
=1 —a)n+0(1n) > G (n), then the expression in (5.19) is at most

(n+0(n)) P{Ca-ant+om (z +0(1)} <explo(n) — (L —a)no,(z+ o(1))],
by virtue of (2.35) and the factthat +r; <n —u + g~ (p2) (see (5.6) and (5.12)). The
final estimate here for (5.19) remains valid even i¥> oo through a subsequence for
whichn —u — 2 < G~ (n), for then we can simply estimate the probability in (5.19) by
1< explo(n) — (1 — a)no,(2)],
provided we take @) > 2G~ (n)o,(1). We conclude that for large

—logP{R, >nx, |X;|<csn, 1<i<n, S, <0}
>o(n) +any~ (y+0(1) + (1 — a)no,(z +0(1)).

Before we take the limit over we replacey~ by its left continuous modification

Vo) =limy =y —e).
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Since we already knew thgt~ is continuous o0, 1) (and in fact on(—oo, 1) as one
easily checks)y~ is continuous o0, 1] and

Yo =y (y fory<l and ¢y (D <y (D).
Similarly we introduce

lim, 00(z—¢) if z<xo,
o0 if 7> xo.

GC(Z) = {

For the same reasons as in the preceding lings) = o (z) for z < xo.
It follows from our estimates for (5.18) and (5.19) that for each fixedp< xq

-1
liminf —log P{R, > nx, |X;| <csn, 1<i<n, S, <0}
e (5.20)

> inflay.(y) + (1—a)o,(2)],
where the inf is over
O<w,y,z<l, ay+(Q-a)zz2x—1.

The last inequality here comes fromx = u + o(n) and uy = r3, whenceany >
r3 — nn/3 for largen (see (5.12)), and similarlyl — a)nz > r; + r4 — nn/3 (note that
ri+r, <n—u+0(n)by(5.6)and (5.12)), and finally; +rz3+rs > ri+ro—2>nx—2
(see (5.12) and (5.6)).

The inequality (5.20) is close to what we want in (5.3). In order to complete the
estimate of piece i) we shall now show that fox 1

o , _ B S o= (x). .
iminf i ey - (v) + (1 —a)o,(2)] = p~ (x) (5.21)
ay+(l—a)z2x—n
(The definition ofp~ (x) is given in (5.1).) To see this, let,, y,, z, be such that fop | 0
along a suitable segence we have
[y ¥ () + (1= )0 (2)]
= liminf i - leve )+ A= @)oy @), (5.22)
ay+(l—a)z2x—n

and such that, y, + (1—«,)z, = x —n. By going over to a subsequence we may assume
that (o, y,, 2,) = (a0, Yo, z0) for somewyg, yo, zo With agyo + (1 —cp)zo = x. Sinceyr
is continuous ori0, 1] we havew, ¥ (y,) = oo (yo). Similarly, the monotonicity of
o and the definition of, show that

Iimii(pf(l —ay)0y,(2y) = (1= ag)o(20).
n
Thus, the liminf in the left hand side of (5.21) is at least

aoy, (yo) + (1 — ap)o.(20), (5.23)
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for some 0< «o, yo, zo < 1 with agyg + (1 — ag)zg = x. We can and shall even assume
thatopyo + (1 — g)zo = x because) ando, are nondecreasing (compare (3.39)). We
complete the proof by showing that the expression (5.23) is at least as large as the rigl
hand side of (5.21). A number of cases have to be distinguished.

If ¢g <1 andzg > xo, then (5.23) equalso and (5.21) certainly holds.

If ¢p=1, then we must havey = agyo + (1 — ag)zo = x. Then (5.23) is at least

. k k+1 1
v oo =vew=jim {2y () 4 o0,

by the continuity ofy~ on [0, 1). Note also that we provedy > O in the lines
following (2.23). This is at least as large as the right hand side of (5.21), so that (5.21]
again holds.

If zo < xo and yg < 1, then the continuity ofyy~ and o on [0,1) and [0, xo),
respectively, shows that (5.23) equals

aoy~ (yo) + (1 — ao)o (z0),

which again is at least as large as the right hand side of (5.21).
If zo < x0, yo=1, ag < 1, then we use that (5.23) is at least

. 1-
kILmoo{aol//_ (1 — kom) + (1—ag)o (zo + %) }

Thus (5.21) again holds.
We still need to verify (5.21) whesag < 1, zg = xo. If ag < 1, 20 = x0 < yo, then (5.23)
equals

i 1\ 1 1 1 1
kLmoo{<ao+ %)‘[’ (yo— %(yo—xo)> + ( —op— %>0<X0— %(yo—xO)>},

which again implies (5.21).
IfO <ag <1,z0=2x0= Yo, then 1> x = agyo + (1 — ag)zo = yo and therefore (5.23)

equals
. 1-
k"_)moo{aoi/f_ (yo + ka0> + (1 —ag)o (Xo - %) }

Finally, if ag =0, zg = xg, thenzg = xo = x and O< xg = x < 1. In this case (5.23)
equals

GC X == - X — —0o |l xXxp— ——— .
0= e k ok k T kk—1)
This proves (5.21) in all cases and hence

-1
liminf —log P{R, >nx, |X;|<csn, 1<i<n, S, <0} > p~ (x), (5.24)
n—oo n

under (5.4).
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Essentially the same argument takes care of piece ii), that iB{Bf > nx, | X;| <
csn,1<i <n, S, > 0}. This will lead to

-1
IImInf—IogP{RHEnx 1Xi| <esn,1<i<n, S, >0} =p"(x) (5.25)
n—-oo n
(see (5.1) for the definition gi*(x)). We only need a small change in the definitions of
71 andt,. This time they have to be chosen[in «] instead of in«, «’]. The definitions
for this case should be

rp=maxXi: L <i<«k,S; <0},
and on the everftr; = s, S;11 = p2},

= mln{l S; > Sg*(p2)+n—s—1}-

We leave the details to the reader. (5.24), (5.25) and (5.5) together imply (5.3).

So far we have worked under the extra assumption (5.4). To illustrate the small
changes needed when this fails, let us assumexthat co. We can no longer use (4.3)
and (4.4) (or rather their analogues with positive and negative interchanged). Howeve
if x~ =00, thenP{X; < —n} goes to 0 faster than exponentiallysinThus there exists
a functionk(n) which iso(n) and such that

P{R, >nx} <2P{R, >nx, csn > X; > —k(n),1<i <n}.

In other words, we may replace the restrictipt;| < csn in (5.5)—(5.10) bycsn >

X; > —k(n). Now, if we want to estimate the analogue of the first piece, that is,
P{Rn >nx, csn > X; > —k(n),1<i <n, S, <0}, we definer; as before, and note
thatif X; > —k(n) for 1 <i < n,then necessaril), > —k(n), i =1, 2, so that we may
take 0< p1, p2 < k(n) in (5.6) and 0< p3, ps < 2k(n) in (5.13)—(5.18). Instead of (4.3)
and (4.4) we can now use (4.9) and the trivial estima®¢X,,1 = —p1 — p»} <1,
P{X, = —p3— ps} < 1. We can then take~ (p) = m~ p and replace (5.7)—(5.10) with
the estimate

P{R,>nx, csn 2 X; > —k(n),1<i<n,1y=s, Sy, = p1,
Sut1=—p2, k' =1t,R[0,s — 1] =r1, R[s,n— 1 =r,, S, <0}
<[e2l P P2P{Ryym—py =71, Sepm—py =0}

X P{Snrp2=—Pz, Sp<c1, O<h<m™ pa,
<O, mp<j<m pr+t—s5s—1,
Sm—p2+z s—1 < Sm-ppin—s-1 <0, Ryp—ppyn—s—1 =272 —1,
csn =X = —k(n),1<i<m py+n—s—1}.

The later estimates can be changed similarly and we end up with (5.24) as before. Not
that finiteness of¢™ plays no role in estimatingd®{R, > nx, csn > X; > —k(n), 1 <

i <n, S, <0}, and similarly, the finiteness of ~ is not needed to estimat®{R, >

nx, k(n) > X; > —csn, 1 <i < n, S, > 0}. Therefore (5.3) holds (under (2.23)) as
soonasytx~ >0. O
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6. Lower bound for P{R, > nx} in case (1.13)

We shall show in the next lemma, that under (1.13) the right hand side of (5.3) is alsc
an upper bound for limsyp, . (—1/n) log P{R, > nx}.

LEMMA 8. — Assume tha < x < 1 and that(1.13)and (2.23)hold. Then

lim sup_—1 log P{R, > nx} < ¥*(x). (6.1)

n— 00 n

Proof. —The right hand side of (6.1) is finite becaug&(x) is bounded by mify*(x),
Vv~ (x)} (see (5.2) for the definition ofs*). Hence, for ally > O there exista, €
[0, 1], y, <1, z, < xo such that

apyy + (1 —ay)z; =x

and

a, () + L—ay)o(z,) <+, (6.2)

or the last inequality holds witki-* replaced byy ~. For the sake of argument assume
that (6.2) holds for a certaimn. It will suffice to show that for each suah

lim S,up_—l log P{R, > nx} < a,¥ " (y;) + (L —a,)o(z,). (6.3)

n—o00 n

If «, =1, theny, = x and (6.3) certainly holds, because the left hand side here is at most
Yt (x) by (2.3). For the remainder of this proof we therefore may restrict ourselves to
a, < 1.

Now fix az € (z,, xo) and let 0< r < ¢ =the period off S,,}. Then combine a cylinder
pathsSi, S, ..., Spe,n1+- fOr which

R[O, Tayn] +r — 1] = (Jayn] +1)yy
and o< Si < S(ann‘\—i-r’ 1<i< f%fﬂ +r,
with a circuit Sge, 45 - - - » S, for which
R([[oayn] +r,n—1] > (n — [ayn] —r)z
n p

and Z X; =0, Z X; 20, Joyn]+r+1<p<n.

i=[ayn]+r+1 i=[aynl+r+1

In order for such a circuit to exist we must taksuch that — [«,n] —r is divisible by
It is easy to see (compare the argument for (2.26)) that the combinedypath, S, will
have

R, > R0, [ayn] +r — 1] + R[[ayn] +r,n—1] —1
Z ([ayn]+r)y,+ 0 —[ayn] —r)z — 1.

Sincew, < 1 andz > z,, the right hand side here is, for largegreater tham|«,y, +
(1— ay)zy] =nx. It follows that
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P{R, > nx}
> P{Riom+r = ([ayn] +1)yy, 0<Si < Spoymiar, 1< < Tayn] 41}
X P{Ry_jayn1—r = (n — Joyn] —r)z,
Su—tayn1—r =0, §, >0, 0< p<n—[ayn] —r}
> P{A, i, O }n = Tayn] =17 P{Cy_om ()} (by (2.25))
It therefore follows from (2.3) and (2.20) that

lim Sup%l log P{R, > nx} < anw+(y,,) + A —ayo(2).

n—oo

(6.3) now follows by letting: |, z,, because (-) is continuous at, < xg. O

7. Proof of Theorem 1
The limitlim,_ .. (—=1)/nlog P{R, > n} exists because
P{Ryym 2 n+m} < P{R, Zn}P{R, = m}.

lim, . «(=1)/nlog P{R, > nx} also exists ifP{X < 0} =0 (or P{X > 0} =0). Indeed
in this caseP{R, > nx} = P{A}(x)} (or P{A, (x)}, respectively), so that (1.2) is a
consequence of (2.6) and (2.8). Thus we may assume that (2.23) applies. If (1.12) hold
then Lemma 6 proves (1.2) with equal toy* defined in (3.1). We therefore only have
left the case & x < 1 under the assumptions (1.13) and (2.23). In this situation (1.2)
holds by virtue of Lemmas 7 and 8, this time withequal toy* defined in (5.2).

It remains to prove the properties (1.3)—(1.7). We first prove (1.6) as a separate lemmz

LEMMA 9. — Under the assumptions of Theorenx — ¥ (x) is continuous on
[0, 1]. This function is also convex(f.12)holds.

Proof. —Let us first assume that (2.23) holds. Then, as we saw in Lemmé& ;) <
oo for 0 < x < 1, andy* are nondecreasing, bounded and convex[@ri] and
continuous ori0, 1). Clearly v* (which is defined in (3.1)) is then also nondecreasing
and bounded ofD, 1]. To show that/* is convex, letxy, x5, ¥ € [0, 1] and let

(a1, y1,21) € L(x1), (a2, y2,22) € L(x2), (7.1)

whereL (x) = {(«, y, z) € [0, 113 ay + (1 —a)z = x}. Then, by the definition of* and
the convexity ofyr*,
Vi (yxi+ A —y)x2)
=v*(yaryr + A —plazy +y(L—az+ (1 — y)(1— az)z2)

< 1- n ya1y1+(1—y)a2y2)
< [yar+ A —y)as]y ( vart (1— )

yl—a)z+1—-y)1- 062)Z2>

1— 1-y)2- -
+yd—a)+Q-y)1-ar)]y ( yl—a)+A—y)A—ay)
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Syary () + A=)y () +yQ—a)y (z0) + A —y) A — a2)¥ ™ (22).
Now taking the inf over, oz, y1, yo, 71, z» Satisfying (7.1) gives

U (yxi+ A —y)x2) <yy™(x) + (L= )™ (x2).

Thus if (2.23) holds, them * is convex on0, 1]. If P{X <0} =0 (but P{X > 0} > 0),
thenyr~(x) = oo andy*(x) = ¥ (x) for all x € [0, 1]. By Lemma 1,y* is still convex
and bounded ofD, 1] in this case. A similar argument applies whefX > 0} = 0.

Essentially the same argument proves itatand p~ defined in (5.1) are convex and
bounded on0, 1) if (2.23) holds. (Note thap* < ¢*.)

Sincey* and p* are also nondecreasing we conclude from their convexity that all
these functions are continuous i) 1) when (2.23) holds. We already proved the same
property foryy* whenP{X > 0} > 0 and foryy~ whenP{X < 0} > 0. Butyr equalsy-*
ory* oryf =min{p*, p~} (see (5.2)), depending on whichB{ X > 0} andP{X < 0}
is strictly positive, and on which of (1.12) or (1.13) holds. One easily checks from the
above that in all cases— ¥ (x) is bounded o010, 1] and continuous ofD, 1). We also
haveyr (x) = ¥*(x) convex on[0, 1] if (1.12) holds. Finally, the proof thak (x) is also
continuous ak = 1 is the same as for (1.14) in [4].0

Proof of the properties (1.3)—(1.5) and (L. AAIll but (1.7) are proven in exactly the
same way as the corresponding results in Theorem 1 of [4]. If (1.12) holds, then we eve
know from the preceding lemma thetis convex on0, 1] and (1.7) is then immediate
from (1.4) as in [4]. Thus here we only have to prove (1.7) under (1.13). We may also
assume that there exist integet® > 1 such thatP{X = —a}P{X =b} > 0 (i.e., (2.23)
holds), for if this fails, theny equalsy™ or ¥~ and themy is convex again. Thus we
are in the situation wherg = * (see Lemmas 7 and 8). Unfortunately we only have a
somewhat circuitous proof of (1.7) in this case.

To show thaty is indeed strictly increasing o, 1] we are first going to compute
¥*(0). We distinguish the following two subcases:AX = 0 and ii) EX # 0 (recall
that we are now assuming (1.13), so tlkdtX| > r} — 0 exponentially fast im, so that
X has all moments). In case i) the random walk is recurrent, thatdg). Moreover, by
the strong law of large numbers,/k — 0 a.s. Therefore, there exists a functip)
such thaty(n)/n — 0 and such that

1
P{m<aXISi| <qn)} > > (7.2)

If |S;] <g(n) for 0<i < n, then we can insei(n) stepsb beforeX; and also g(n)
stepsb after X,,. The resulting path of length + 3¢(n) will have all its partial sums
between 0 and,,,3,(,) and will therefore lie inAj;rsq(n)(O). Thus

- 1
P{Af 3w O} > SIPIX = b3 ™, (7.3)

and consequentlyy*(0) = 0. The same argument can be used to shiow0) = 0
and o (0) = 0. Hencep*(0) = 0 and alsoy*(0) = 0. On the other hand, by (1.4),



Y. HAMANA, H. KESTEN/ Ann. I. H. Poincaré — PR 38 (2002) 17-58 53

Y¥(x) = ¥(x) > 0 for x > 0. As before withyr, this shows that the convex functions
p* are both strictly increasing opr, 1) = [0, 1). Since the minimum of two strictly
increasing functions is strictly increasing, this implies (1.7) in subcase i).

We turn to subcase ii). For the sake of argument we assumeifiat 0. We claim
that then

YT(x)=0 forO<x <. (7.4)

Indeed, it is immediate from the strong law of large numbers thajfygif}. is almost
surely finite if EX > 0. By reversing the random walk this shows that dfsex.<, (Sx —
S, :n =1} is a tight family. Thus, there exists a constapsuch that

1
P{—c7< Sk < S+ c7, l<k<n}>§

foralln > 1. SinceR,/n — 7 a.s. (see [7] and [8, pp. 38—40]) this shows thatfer
andn sufficiently large

Al

P{R,>nx,—c7 <S¢ <S,+c7, 1<k<n} >

(7.4) follows from this as in the argument for (7.3) or (5.18).
On the other hand,

=1
Y ()= Ilim —IlogP{0= S, > S,, 1<k <n}
n—oo n

-1
> lim —log P{S, <0} > 0. (7.5)

n—oo n

All but the last inequality here are obvious. The last inequality follows from standard
large deviation estimates (see Cramér’s theorem in [2, Section 2.2.1], or (7.9) below)
Unfortunately we need to go into more detail about the Cramér transform in order to
show that in fact the first inequality in (7.5) is an equality in the present situation, that
is,

-1
¥~ (0) = lim —log P{S, < 0}. (7.6)
n—oo n
To prove this we set

PN =E{e*} = /e“ dF (x),
R

where F is the distribution function ofY, and if ®(1) < oo, then we also define the
distribution

e dF (x)

A —
dF*(x) = 0
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In view of (1.13)® (1) < oo on some intervall which contains 0 in its interior. Od
the expectation of™*, that is,

1 X
mR/xe’\ dF (x),

is continuous and strictly increasingin(provided we allow the valuesco and—oo at
the right and left hand endpoint, respectively,Jgf Thus there either is a unique value
of Ag € J such that this expectation &g is 0, or J has a finite left endpoint where the
expectation off* is still finite but strictly positive. In the latter case we takgequal
to the left endpoint of/. Note thatE X > 0 implies that—oo < Ao < 0. In any case we
defineF* as F*o and letX*, X}, i >1, be iid. random variables with distributidfy.
We also takeS; =0 andS! = >""_; X7. Itis easy to see that

P{S,=r, IS <q, 0<k<n}
=e O] P{Si =1, IS;1<q, 0<k<n}, (7.7)

and hence

P{ISi| <q,0<k<n} =>e ™MD P{ISfI<q, 0<k<n}. (7.8)
In particular, by takingy = oo in (7.7),

P{S, <0} <> e [D()]".
r<0

Thus

lim _—1IogP{S <0} > —log®(ro). (7.9)

n—oo

In the other direction we clalm that there exists a funcgom) with ¢g(n)/n — 0 and
for which

lim }IogP{lSﬂéq(n), 0<k<n}=0. (7.10)
n—-oonp
Once this is proved, with the help of (7.8), the same argument as used for (7.3) will yield
0)=lim ————logP{A . . (0
W ( 361 ) g { +3q( )( }
A
—log®(Xo) — lim = IogP{lSk qn), 0<k<n}+ I| M
n—0o0 n
—log @ (Ao,

which, together with (7.5) and (7.9), proves the desired (7.6). Nowg Xf* = 0O,

then (7.10) follows from the strong law of large numbers as in (7.2). The remaining
possibility is that O< EX* < oo and A is the left endpoint of/. That means that

® (1) = oo for all A < Ag, whence

-1
liminf —log P{X* = —n} =0.

n—-oo n
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Thus, by Lemma 4 with positive and negative interchanged, appli&d ti follows that
there exists a functiog~(p) and a constant; such thatg~(p)/p — 0 and agp — oo,

P{S; y=—P. a1=28>-p—c1, 0<i<g (p)} =P, (7.11)
Finally, we can build a path which satisfigs;| < g(n), 0 < k < n}, by putting together
roughlyn/(g~(p) + p/EX*) pieces which go dowmn-p units ing~(p) steps to end in
[—p, —p/2], and then go back up {®, p/2] in at most 4/E X* steps along which the
path has standard weak law of large humbers behavior. The details are as follows. Fe
k > 0 we definer; by 7o =0 and

Tl = mf{z >1+ g_(p): S,' — S-[k_;,_gf(p) € [0, g:| }, k> 0.

Let 1 be the smallest integer satsfisying> n. Then we have that

n
4 =
ws b {g‘(p) + p/(4EX*)w

if p/AEX") < tuy1— T — g (p) <2p/EX* occurs for all 0< k < £(n). Therefore we
obtain for 2» + ¢1 < g(n) that

P{IS{I<q(n), 0<k<n}
P{Srk+g ) =8, =—p, 0<k<p—-1,
n<L®n), [S;1<2p+c1, OKh<n}
{S:Hg (»— S5 =—p, 0<k<Ltn) —1,
P - 2p .
2Ex ST TT T8 (p)<m,0<]<z(n),
151 <2p +c1, Oghén}.

Note that |fS*+g o €l —p/2] and 187 e (m+i — Stre-(p —LEX*I < p/8 for
0<i<tyu—tu—g (p), thenp/(4EX*) 1 — T — g (p) <2p/EX*. Therefore,
the rlght hand side of the previous inequality is at least

P{ka+g (») S;Fk =D

—iEX*| < % 0<i<T1i—t—g (p),

—p—ca<S§s,— S* e, u<h<nu+g (p)forall0<k <t(n)}.

— S*

|S w%+g~(p)

T%+8~ (p)+i

Consequently we have that

P{IS{1<qm),0<k<n} > [P{Sg m=—DPc1=8>=-p—c1, 0<i<g (p)}
xP{lS*—zEXl <P o<ic pH .
8 EX*
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The second factor in square brackets here tends tptaso, by the strong law of large
numbers (or even just the weak law of large numbers). Thus we can take(@ny (n)
such thatp(n), g(n) — o0, g(n)/n — 0 andp(n) < g(n)/4 to obtain

1
liminf =log P{|S;{| < q(n), 0<k <n}
n—oo n
o 1
> liminf
p=>o0 g=(p)+ p/(AEX¥)
xlogP{S;-,y=—p. c1=28 >-p—ec1, 0<i<g (p)}
=0
(by (7.11)). This proves (7.10), and hence (7.6), wizgh > 0.

Recall that? is the period of the random walls,}. By the definition of{S;}, this is
also the period ofS;}. A small variation on the last argument shows that even

1
lim — log P{S*, =0} =
A, g 109 P 155, =01 =0,
and hence, by (7.7),
o(0) = lim _—l?llogP{Sn,g=0}=—Iog®(k0)=1ﬁ‘(0). (7.12)
n—>oo n

(This is more or less contained in Cramér’s theorem and probably well known.)
Our next task is to show that

Y () =¥ (0) —rox >y (0) forO<x<1. (7.13)

Fortunately, this is almost immediate from (7.7). Indeed, # 8, > S, for L < k < n,
then only the integers ifS,, —1] are possible foS,, 1 < k < n — 1. Therefore, if also
R, > nx, then it must be the case thafS, + 1 > nx. Therefore, by (7.7) witly = oo,

P{A; (O} < P(S, < —nx+ 1L <[®00I Y e,
r<—nx+1

and (7.13) follows (recall thaty < 0).

It would simplify our proof if we could also show (x) > o (0) for 0 < x < xo, but we
do not know how to do this in general. Let us summarize what we already know. In the
case wheny is equal toy?,

vix)=0 forO<x<m and y*(x)>0 form <x<1 (7.14)
(see (1.3) and (1.4)). But from the definitionwf given in (5.2) we see that®(x) > 0
implies p*(x) > 0 andp~(x) > 0. In particular, this holds for > 7. Together with the

convexity of p™ andp™(0) = min{y*(0), o (0)} = 0 this implies

pT is strictly increasing oifiz, 1). (7.15)
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Similarly, the convexity ofiy —, together with (7.13), shows that
Y~ is strictly increasing ofi0, 1]. (7.16)

Further, from the definition gb~ and the fact thaty~ ando are nondecreasing, we see
that p~ is nondecreasing ana (x) > p~(0) = min{yr~(0), ¢ (0)} = o (0). Moreover,
the fact thaty — is strictly increasing shows that (x) > p~(0) = o (0) for x > xo. The
convexity of p~ then shows thap~ is strictly increasing offixg, 1). In fact, we can say
more. Let

X1:=SUPz < xo: 0(z2) =a(0)}.
We claim that even
p~ is strictly increasing ofixy, 1). (7.17)

In view of the preceding statement we only have to prove this i xo. By continuity of
o on[0, xg) we haves (x1) = ¢ (0) in that case. Then, if = ay + (1 —a)z > x1, it must
bethecasethat >0,y 2 x>x, v (M >¢Yv (0O =00 ora<1,z>x1,0() >
o (x1). In either casep™ (x) > p~(0) = 0 (0) for x > x;, so that (7.17) indeed follows.
Again, since the minimum of two strictly increasing functions is strictly increasing, it
follows thaty is strictly increasing offix; Vv 7, 1). Of course, this also makess strictly
increasing ofix; Vv =, 1], sincey is nondecreasing. W > x1, this proves (1.7), so we
may assumer < x; from now on.

Finally, let

xp =inf{x <x1: pT(x) =0 (x)} (7.18)

if the set on the right here is nonempty. We know from (7.4), (7.5) and (7.12) that
0(0) > 0= p™(0). Thus if the set on the right in (7.18) is empty, theh(x) < o (x) =
o (0) < p~(x) for x < x4, and hence

Yix) =min{pt(x), p~(x)} = pT(x) forx <xi. (7.19)

But then v is strictly increasing orir, x1], by (7.15), as well as oifxy, 1], by the
preceding lines. In this case (1.7) holds. We therefore only have to consider the cas
whenx, < x1.

We conclude our proof of (1.7) by showing that < x; is impossible. To see this,
recall thato (0) > 0 by (7.12) and (7.5). As in (7.19) we have

Vi) =pT(x) forx <xy.

Moreover, by continuity ofy* and the convex functiong®™ on [0,1) and of o on
[0, xo) we must havey®(x2) = pt(x2) = o(x2) > 0 if x» < x1 < xo. In this case
we would have alsa, > 7 by (7.14), andp™(x) > p*(x2) = o (0) for any x > xp,
by (7.15). But the definition op™ implies thatp™ (x) < o (x) for x < xg, and hence
o(x) = pt(x) > pT(x2) =0 (x2) =0 (0) for x, < x < x1. This contradicts the definition
of x.
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