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ABSTRACT. – This paper determines values of intersection exponents between packs of planar
Brownian motions in the half-plane and in the plane that were not derived in our first two
papers. For instance, it is proven that the exponentξ(3,3) describing the asymptotic decay of
the probability of non-intersection between two packs of three independent planar Brownian
motions each is(73−2

√
73)/12. More generally, the values ofξ(w1, . . . ,wk) andξ̃ (w′1, . . . ,w′k)

are determined for allk � 2, w1,w2 � 1, w3, . . . ,wk ∈ [0,∞) and allw′1, . . . ,w′k ∈ [0,∞).
The proof relies on the results derived in our first two papers and applies the same general
methods. We first find the two-sided exponents for the stochastic Loewner evolution processes in
a half-plane, from which the Brownian intersection exponents are determined via a universality
argument. 2002 Éditions scientifiques et médicales Elsevier SAS

RÉSUMÉ. – Nous déterminons dans cet article la valeur de certains exposants d’intersection
entre mouvements browniens plans, qui n’étaient pas obtenus dans nos deux premiers articles.
Par exemple, nous montrons que l’exposantξ(3,3) décrivant le comportement asymptotique de
la probabilité de non-intersection entre deux paquets de trois mouvements browniens vaut(73−
2
√

73)/12. Plus généralement, les valeurs deξ(w1, . . . ,wk) et ξ̃ (w′1, . . . ,w′k) sont déterminées
pour toutk � 2,w1,w2 � 1,w3, . . . ,wk � 0 etw′1, . . . ,w′k � 0.  2002 Éditions scientifiques et
médicales Elsevier SAS

1. Introduction

This paper is a follow-up to the papers [2,3], in which the exact values of many of the
intersection exponents between planar Brownian motions were determined. It is assumed
that the reader is familiar with the terminology and the results of [2,3], to which we also
refer for background (in particular, the link with critical exponents for other models,
such as critical percolation or self-avoiding walks in the plane) and a more complete
bibliography.
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wendelin.werner@math.u-psud.fr (W. Werner).
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Let us first very briefly recall the definition of these intersection exponents. Suppose
that k � 2, n1, . . . , nk � 1 are integers, and that(Bl,j )1�l�k,1�j�nl is a collection
of independent planar Brownian motions started from distinct points in a half-plane
H . Define thek packs of Brownian motionsBl (t) := ⋃nl

j=1B
l,j [0, t], l = 1,2, . . . , k.

Consider the following events:

E(t)= E(n1,...,nk)(t) :=
⋂

1�l<l′�k

{
Bl(t)∩Bl′(t)= ∅},

Ẽ(t)= Ẽ(n1,...,nk)(t) := E(n1,...,nl )(t)∩
k⋂
l=1

{
B
l(t)⊂H}

.

It is easy to see, using a subadditivity argument, that whent→∞,

P
[
E(t)

]≈ t−ξ/2, P
[
Ẽ(t)

]≈ t−ξ̃ /2,
for someξ = ξ(n1, . . . , nk) and ξ̃ = ξ(n1, . . . , nk), which are called the intersection
exponents betweenk packs of(n1, . . . , nk) Brownian motions in the plane and in the
half-plane, respectively. Here,f ≈ g means limt→∞ logf/ logg = 1.

There exists natural extensions ofξ and ξ̃ to non-integer values ofn1, . . . , nk. For
instance, one can define the exponentsξ(1,w) andξ̃ (1,w) for all w > 0 by the relations

E
[
P

[
E(1,1)(t) |B1(t)

]w]≈ t−ξ(1,w)/2,
E

[
P

[
Ẽ(1,1)(t) |B1(t)

]w]≈ t−ξ̃ (1,w)/2.
It is easy to see that these exponentsξ̃ (1,w) andξ(1,w) coincide with the previously
defined exponents whenw is a positive integer.

A second generalization are the two-sided exponentsξ̃ (w,1,w). One way to define
them is as follows: Suppose thatk = 3, n1 = n2 = n3 = 1, thatH is the upper half-
planeH = {x + iy: y > 0}, and that for alll ∈ {1,2,3}, Bl,1(0) = eilπ/4 and define
B̂l(t) = (0,eilπ/4] ∪ Bl,1[0, t] and the event̂E(t) that B̂l(t) for l = 1,2,3 are disjoint
subsets of the half-planeH . Loosely speaking, adding the segments(0,eilπ/4] ensures
that the three Brownian motions maintain their cyclic order around zero. Thenξ̃ (w,1,w)
is defined for allw > 0 by

E
[
P

[
Ê(t) |B2(t)

]w]≈ t−ξ̃ (w,1,w)/2.
These exponents̃ξ(w,1,w) coincide with the above definition whenw is an integer [5].

It has been shown in [5] that there exists a unique extension ofξ and ξ̃ to non-
integer values ofn1, . . . , nk that is symmetric in its arguments and satisfies the “cascade
relations” (for all 1< j < k − 1)

ξ(n1, . . . , nk) = ξ(n1, . . . , nj , ξ̃ (nj+1, . . . , nk)
)
,

ξ̃ (n1, . . . , nk) = ξ̃(n1, . . . , nj , ξ̃ (nj+1, . . . , nk)
)
.

(1.1)
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The extension of̃ξ is valid for all positiven1, . . . , nk while the extension ofξ also
requires that at least two of the arguments are greater or equal to 1.

A first consequence [5] of these cascade relations is that the value of all extended
exponentsξ andξ̃ (and in particular their values whenw1, . . . ,wk are positive integers)
can be expressed in terms of the functionsw �→ ξ(1,1,w), w �→ ξ̃ (1,w) andw �→
ξ̃ (w,1,w) defined for allw > 0.

A second consequence [5] is that the (extended) full-plane exponents are expressible
as a function of the half-plane exponents

ξ(w1,w2, . . . ,wk)= η( ξ̃ (w1,w2, . . . ,wk)
)
, (1.2)

provided thatw1,w2 � 1; however, the functionη was not determined in [5].
Set

U(x)=√
x + (1/24)−√

1/24.

In [2], we determined the functionw �→ ξ̃ (1/3,w), and using the cascade relations (1.1)
concluded that

ξ̃ (w1,w2, . . . ,wk)=U−1(U(w1)+U(w2)+ · · · +U(wk)) (1.3)

holds for all k � 2, all w1,w2, . . . ,wk−1 ∈ {p(p + 1)/6: p ∈ N}, and allwk > 0.
Equation (1.3) expands to

ξ̃ (w1, . . . ,wk)= (
√

24w1+ 1+√24w2+ 1+ · · · +√24wk + 1− (k − 1))2− 1

24
.

In [3], we showed thatξ(1,1) = 5/4, determined the functionw �→ ξ(1,1,1,w), and
concluded from the cascade relations and (1.3) that

∀x � 7 η(x)= (
√

24x + 1− 1)2− 4

48
. (1.4)

Combined with (1.3) and (1.2), this gives the value ofξ(w1, . . . ,wk) for a large
collection ofw1, . . . ,wk , but not for all of them.

In the present paper, we will prove the following results.

THEOREM 1.1. – The identity (1.3)holds for all k � 2 and for all w1, . . . ,wk � 0.

THEOREM 1.2. – The identity (1.4) holds for all x � ξ̃ (1,1)= 10/3, so that for all
k � 2, w1,w2 � 1 and w3, . . . ,wk � 0,

ξ(w1, . . . ,wk)= η ◦U−1(U(w1)+ · · · +U(wk))
= (
√

24w1+ 1+ · · · +√24wk + 1− k)2− 4

48
.

These two theorems determine almost all the Brownian intersection exponents. Those
which they do not give areξ(n,w) wheren ∈ N+ andw ∈ (0,1). It seems that the
universality argument, which is used to translate information aboutSLE6 exponents
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to Brownian exponents, cannot be extended to this range. Therefore, the techniques of
[2,3] and the present paper do not suffice.

To complete the picture, in the forthcoming paper [4], we determine these remaining
exponents by analytic continuation. There, it will be shown that for integersn � 1,
the mappingw �→ ξ(n,w) is real-analytic in(0,∞). Combining this with the above
theorems gives the value ofξ(n,w) for all positive w (i.e., removing thew � 1
condition), and gives the value of the disconnection exponentsξ(n,0) := limw↘0 ξ(n,w)

for all n ∈ N+. That is, (1.2) also holds whenk = 2,w1 ∈ N+ and 0� w2< 1 and (1.4)
holds for all x � 1. This will conclude the determination of all the two-dimensional
Brownian intersection exponents that have been defined.

The proof of Theorem 1.1 is very similar to the proofs we used to derive (1.3) and
(1.4) in [2,3]. A crucial role is played by the stochastic Loewner evolution process
with parameter 6 (SLE6) introduced in [7]. In the present paper, first the two-sided
exponents associated toSLEκ in a half-plane are computed. Then, via a universality
argument, the values of the Brownian half-plane exponentsξ̃ (1,w1,1,w2) are deduced.
This leads directly to Theorem 1.1 via the cascade relations satisfied byξ̃ . Theorem 1.2
also immediately follows by using the results derived in [3].

Following is a rough and somewhat imprecise comparison of the approach used
in the present paper in relation to those of [2] and [3]. In [2], we have studied the
expectation of the derivative to any powerw � 0 of a suitably normalized conformal
map onto the complement of a chordalSLEκ process crossing a rectangle from left to
right. The expectation was determined precisely. Its rate of decay as a function of the
width corresponds to the exponentξ̃ (1/3,w). The reason that 1/3 appears as the first
argument, rather than 1, is that theSLEκ process was permitted to touch one horizontal
edge.

In the present paper, we study the expectation of an expression of the form
f ′(x1)

w1f ′(x2)
w2, wheref is a suitably normalized conformal map. The pointsx1 andx2

at which these derivatives are computed are on the two sides of theSLEκ process, hence
the name of the paper. The explicit formula for the expectation is not calculated, however,
the decay rate as a function of the size of theSLEκ is determined, which suffices. The
decay rate corresponds to the exponentξ̃ (w1,1,w2). The calculation of the decay rate is
via an eigenvalue computation, as in [3].

In [3], the decay rate of expectation of a single derivative raised to an arbitrary power
w1> 0 was calculated for radialSLEκ .

2. Notations and terminology

The present paper builds on the results of our previous papers [2,3], and it will be
assumed that the reader is familiar with the terminology and tools used in these papers.
In particular, we refer to these two papers for definitions and properties of chordal
and radialSLE6, Brownian excursions in a domain, and their relation to Brownian
intersection exponents.

Let f and g be functions, and letl ∈ R or l = ∞. Say thatf (x) ∼ g(x) when
x → l, if f (x)/g(x)→ 1. Write f (x) ≈ g(x), if log f (x)/ logg(x)→ 1, and write
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f (x) � g(x), if f (x)/g(x) is bounded above and below by positive finite constants
whenx is sufficiently close tol.

For convenience, just as in [5,6,2,3], we will useπ -extremal distance, which is defined
asπ times the usual extremal distance or extremal length in a domain. Theπ -extremal
distance in a domainD between two setsA,A′ will be denoted�(A,A′;D). For more
information on extremal length, as well as other basic tools from complex analysis that
we shall use (Koebe 1/4 Theorem, Schwarz Lemma), see, for instance, [1].

3. Derivative SLEκ exponents

Let x ∈ (0,1), letκ > 0, letKt be the hulls of chordalSLEκ in H, from x to∞, and let
gt :H \Kt→H be the conformal maps normalized by the hydrodynamic normalization
limz→∞ gt (z)− z= 0. In other words, for allz ∈H, gt (z) is the solution of the ordinary
differential equation

∂tgt (z)= 2

gt(z)−Wt , g0(z)= z,
wheret �→Wt/κ is a standard real-valued Brownian motion started fromW0 = x. The
setH \Kt0 consists of allz ∈ H such thatt �→ gt (z) is well-defined at least up to time
t0. Then,(Kt, t � 0) is an increasing family of subsets ofH: For more details on the
definition of (Kt , t � 0), some of its properties such as scaling, conformal invariance,
see [7,2].

Let

T := inf
{
t > 0: {0,1} ∩Kt �= ∅}

denote the first time at which theSLEκ swallows 0 or 1, andT := ∞ if no such time
exists. For allt < T , let

ft(z) := gt (z)− gt (0)
gt (1)− gt (0)

be the conformal map fromH \ Kt onto the upper half-plane such thatft(0) = 0,
ft (1) = 1 andft(∞) = ∞. Note thatf ′t (∞) = (gt (1) − gt (0))−1 is decreasing and
continuous int for t < T . Let S := − lim t↗T logf ′t (∞). Perform a time-change as
follows: For alls ∈ [0, S), define

t (s) := inf
{
t ∈ [0, T ): f ′t (∞)� e−s

}
and the inverse map

s(t) := − logf ′t (∞)
for all t ∈ [0, T ). For all t < T define also

Ys(t)= Zt := Wt − gt (0)
gt (1)− gt (0) .

(ThisZt was already used in [2].) Loosely speaking,Ys andZt correspond to the image
(underft ) of the point whereKt grows at timet .
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For all s < S, also set

α(s) := − logf ′t (s)(0), β(s)=− logf ′t (s)(1).

For everyw1,w2> 0 and every smooth functionF : [0,1] → [0,1], let

hF (x, s)= hF (x, s,w1,w2) :=Ex
[
1{s<S}F(Ys)exp

(−w1α(s)−w2β(s)
)]
,

whereEx refers to expectation with respect to theSLEκ started atx; that is,W0= Z0=
Y0= x. In particular, writeh1 in caseF is the constant function 1. That is,

h1(x, s)= Ex
[
1{t (s)<T }f ′t (s)(0)

w1f ′t (s)(1)
w2

]
.

THEOREM 3.1. – For all w1,w2> 0 and κ > 0, there exists some c > 0 such that for
all x ∈ (0,1) and all s � 1

G(x)exp(−λs)� h1(x, s)� cG(x)exp(−λs),

where

λ = λκ(w1,w2)

:= (
√
(κ − 4)2+ 16κw1+

√
(κ − 4)2+ 16κw2+ κ)2− (8− κ)2

16κ
,

G(x) := xa1(1− x)a2, aj :=
κ − 4+

√
(4− κ)2+ 16wjκ

2κ
, j = 1,2.

Remark. – It can be shown that this theorem also holds whenw1= 0 and/orw2= 0,
but this will not be done here.

Proof. – This is a first eigenvalue computation, and the proof will follow quite closely
the proof of Lemma 3.2 in [3] (which is the corresponding result for radialSLEκ , but with
the derivative computed at only one point). A simple computation (using the definitions
of α, β, Y , gt ands(t)) shows that for alls < S,

dYs =
√
κYs(1− Ys)

2
dBs + (1− 2Ys)ds, (3.1)

whereB is a standard Brownian motion. Note also thatS is the first time at whichY hits
{0,1} (unlessS = T =∞), and that

∂sα(s)= 1/Ys, ∂sβ(s)= 1/(1− Ys). (3.2)

We first use this to prove that

hG(x, s)= exp(−λs)G(x). (3.3)
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LetX = [0,1] × [0,∞). Seth= hG and letĥ(x, s)= exp(−λs)G(x). Observe that

Qs := h(Ys, s0− s) exp
(−w1α(s)−w2β(s)

)
is a local martingale ons � s0. (For this, the choice ofG is not important.) Moreover,h
is smooth in(0,1)× (0,∞). Consequently, the ds term in Itô’s formula for dQs must
vanish; that is,

∂sh= (1− 2x)∂xh+ (1− x)x κ
4
∂2
xh−

(
w1

x
+ w2

1− x
)
h. (3.4)

It is immediate to verify that̂h satisfies this differential equation in the interior ofX. It
is also clear that̂h= h on ∂X.

In a moment, we shall see thath is continuous inX. Assuming this for now, an
easy application of the maximum principle givesh= ĥ. Indeed, letε > 0, and suppose
that there is some point(x0, s0) with h − ĥ � ε. Among all such points, choose one
with s0 minimal. Sinceh = ĥ on ∂X, (x0, s0) must be in the interior. By minimality
of s0, it follows that ∂sh(x0, s0) − ∂sĥ(x0, s0) � 0 and thath(x, s0) − ĥ(x, s0) has a
local maximum atx0. From the latter fact, we may deduce that∂x(h − ĥ) = 0 and
∂2
x (h − ĥ) � 0 at (x0, s0). However, these facts put together contradict (3.4), and we

may conclude thath� ĥ+ ε. The same argument shows thath� ĥ− ε. Sinceε > 0 was
arbitrary, it follows that̂h= h.

To establish (3.3), it therefore remains to prove the continuity ofh. Suppose thatY
starts atY0= x where 0< x < 2−n0−2 min{s0,1}, for some constantss0> 0 andn0 ∈N+.
Define the stopping timesν0= 0 and for alln� 0,

νn+1 := inf
{
s > νn: s = νn + Yνn or |Ys − Yνn |� Yνn/2

}
.

Note that for alln� n0− 1, 0< Yνn � 2nx, νn+1 � ∑n
j=0Yνj � 2n+1x, so thatνn0 � s0.

LetRn denote the event

Rn := {νn = νn−1+ Yνn}.
LetFn denote theσ -field generated by the eventsR1, . . . ,Rn. There is ac > 0 such that
for Ys < 1/2, the diffusion term in (3.1) is bounded below byc

√
Ys , and the drift term

is bounded by 1. Hence, it is not difficult (for instance, using Girsanov’s formula and
Doob’s inequality) to see that for alln � n0, the conditional probabilityP[Rn | Fn−1]
is bounded below by a positive constant, which does not depend onx andn. On the
eventRn, we haveα(νn)− α(νn−1)� 2/3, by (3.2). It follows easily thatα(s0) tends in
probability to∞ whenx↘ 0, and therefore (sincew1> 0) thath tends to zero asx↘ 0
(uniformly for s � s0). A similar argument shows thath→ 0 asx↗ 1. It is easy to verify
that for anyε > 0, h(x, s)→ G(x) ass→ 0 uniformly with respect tox ∈ (ε,1− ε).
It is also easy to check thath(x, s)→ 0 when(x, s)→ (0,0) or (x, s)→ (1,0) (note
thatG(0) =G(1) = 0). This shows thath is continuous inX and concludes the proof
of (3.3).

SinceG� 1, it is clear that for alls > 0 andx ∈ (0,1),
h1(x, s)� hG(x, s)= e−λsG(x). (3.5)
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It remains to prove that infx∈(0,1) infs�1hG(x, s)/h1(x, s) > 0. The Markov property at
times−1 shows that it suffices to establish this fors = 1. Since bothh1(·,1) andhG(·,1)
are positive and continuous on(0,1), it suffices to prove this whenx is close to 0 and
close to 1. By symmetry, it is enough to treat the case wherex is close to 0. Now assume
that 0< x � 1/2. For every positive integern, let

rn := inf
{
hG(x, s)/h1(x, s): x ∈ [

4−n,1/2
]
, s ∈ [

1− 2−n,1
]}
.

Assume 4−n � x < 4−n+1, 1− 2−n � s � 1, and let

τ := inf
{
s: Ys ∈ {

0,4−n+1}}
.

Note that (3.2) gives

Ex
[
e−w1α(2−n)1{τ>2−n}

]
� e−w12n−2

.

Sinceh1(x, s)� hG(x, s)� cxa1 for some constantc > 0 and all(x, s) as chosen above,
it follows that

Ex
[
e−w1α(s)−w2β(s)1{s<S,τ�2−n}

]
� (1− εn)Ex[e−w1α(s)−w2β(s)1{s<S}

]
,

whereεn := c−14na1e−w12n−2
. However, sinces − τ � 1− 2−n+1 on the event{τ � 2−n},

and since{s < S, τ � 2−n} ⊂ {Yτ = 4−n+1}, the strong Markov property gives

hG(x, s)� Ex
[
e−w1α(s)−w2β(s)G(Ys)1{s<S,τ�2−n}

]
=Ex

[
e−w1α(τ)−w2β(τ)hG

(
4−n+1, s − τ)1{τ�2−n,Yτ=4−n+1}

]
� rn−1Ex

[
e−w1α(τ)−w2β(τ)h1

(
4−n+1, s − τ)1{τ�2−n,Yτ=4−n+1}

]
= rn−1Ex

[
e−w1α(s)−w2β(s)1{s<S,τ�2−n}

]
� rn−1(1− εn)Ex[e−w1α(s)−w2β(s)1{s<S}

]
= rn−1(1− εn)h1(x, s).

That is,rn � (1− εn)rn−1. Since
∑
n εn <∞, this gives infn rn > 0, which completes the

proof. ✷
4. Extremal distance exponents

In the previous section, we derived estimates concerning the joint law of logf ′(0)
and logf ′(1) at the first time at whichf ′t (∞) = e−s . We now use this result to obtain
information concerning the law of the extremal distances at the first time at whichSLEκ
reaches distanceR. More precisely, letR � 1, and letVR denote the half disk

VR := {z ∈H: |z− 1/2|<R}.
LetAR denote the semi-circleH ∩ ∂VR. Let a ∈ (0,1), and consider chordalSLEκ in H

from a to∞. Let

τ = τR := inf{t : Kt ∩AR �= ∅},
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and set

K= KR :=
⋃
t<τ

Kt .

As before, letT be the first time that theSLEκ swallows 0 or 1. LetI1(t) := [0, a] \Kt
andI2(t) := [a,1] \Kt . On the eventτ < T , let L1(R) := �(I1(τ ), AR;H \ K) denote
theπ -extremal distance fromI1(τ ) to AR in H \ K (or in VR \ K since they are equal),
and letL2(R) := �(I2(τ ),AR;H \K). Let

H(a,R) := Ea
[
1{τ<T } exp

(−w1L1(R)−w2L2(R)
)]
.

THEOREM 4.1. – Let κ > 0, w1,w2 > 0, and let λ = λκ(w1,w2) be as in Theo-
rem 3.1. There is a constant c= c(κ,w1,w2) such that for all R > 2,

∀a ∈ (0,1) H(a,R)� cR−λ.

On the other hand, for all a0 ∈ (0,1/2), there is a c′ = c′(κ,w1,w2, a0) > 0 such that
for all R > 2

∀a ∈ [a0,1− a0] H(a,R)� c′R−λ.
Proof. – We use the notation of Section 3. Using scaling invariance and a monotonicity

argument, it is easy to see that for allR > 2 anda ∈ [a0,1− a0],
H(1/2, (R+ 1)/a0)�H(a,R)�H

(
1/2, (R − 1)/2

)
,

and hence it suffices to show thatH(1/2,R)�R−λ.
The Koebe 1/4 Theorem implies that ifF :D1 →D2 is a conformal transformation

with F(0)= 0 andrj := dist(0, ∂Dj) <∞, then

r2

4r1
� |F ′(0)|� 4r2

r1
. (4.1)

Applying the Koebe 1/4 Theorem again, using the estimate on|F ′(0)|, gives

r2

16r1
|z|� |F(z)|� 16r2

r1
|z|, |z|� r1

16
. (4.2)

We now assume thata = 1/2. Let

σR := t (logR)= sup
{
t < T : f ′t (∞) > 1/R

}
.

For t < T , let K̃t be the union of[0,1] with Kt and with the reflection ofKt about the
real axis. Observe thatft extends conformally to a mapft :C\K̃t→C\[0,1]. Applying
(4.1) toFt(z) := 1/ft(1/z) gives for allt < T ,

1

4
rad(K̃t )� F ′t (0)= f ′t (∞)−1 � 4rad(K̃t ), (4.3)
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where rad denotes the radius with respect to the origin, i.e., rad(A) := sup{|z|: z ∈ A}.
SinceR − (1/2)� rad(K̃τ )� R+ (1/2), this gives

τR/4−1/2 � σR � τ4R+1/2 (4.4)

for all R such thatσR < T .
If z ∈A64R, then (4.2) implies forR > 2

3� 64R − (1/2)
16(R + (1/2)) � |fτ (z)| = |Fτ (1/z)|−1 � 16(64R + (1/2))

R− (1/2) � 1999.

In particular,

fτ (A64R)⊂ V2000\ V2.

For all t < T , let L1(t) be the length of the image ofI1(t) underft , and letL2(t) be
the length of the image ofI2(t) underft . Recall thatZt = Ys(t), and note that∂t logf ′t (x)
is monotone decreasing inx whenft(x)� Zt , and monotone increasing forft(x)� Zt ,
because

∂t logf ′t (x)+ ∂t log
(
gt (1)− gt (0))= ∂t logg′t (x)=

∂x∂tgt (x)

g′t (x)

= −2

(gt (x)−Wt)2 =
−2

(ft(x)−Zt)2(gt (1)− gt (0))2 .

Therefore,f ′t (x) � f ′t (0) for x ∈ I1(t) andf ′t (x) � f ′t (1) for x ∈ I2(t). Consequently,
L1(t)� f ′t (0)/2 andL2(t)� f ′t (1)/2.

Conformal invariance implies that

�
(
A64R, I1(τ );H \KR

)= �(fτ (A64R), fτ (I1(τ ));H)
.

If I is any subinterval of[−1,2], then it is straightforward to show that

exp
(−�(A2, I ;H))� length(I )� exp

(−�(A2000, I ;H)).
Hence by comparison (providedτ < T ),

exp
(−�(A64R, I1(τ );H \KR)

)� L1(τ )� f ′τ (0)/2, (4.5)

and similarly forI2. Note that

L1(R)� �
(
A64R, I1(τR);H \KR

)
� �

(
A64R, I1(τ64R);H \K64R

)= L1(64R).

Hence,

E
[
1{τ64R<T } exp(−w1L1(64R)−w2L2(64R))

]
� c2R−λ

follows from Theorem 3.1, (4.4), and (4.5).



G.F. LAWLER ET AL. / Ann. I. H. Poincaré – PR 38 (2002) 109–123 119

For the other direction, sincef ′t is monotone decreasing on(−∞,1/2)\Kt , if τ < T ,
then

length
(
fτ ([−1,1/2] \K)

)
� f ′τ (0)

and

length
(
fτ ([1/2,2] \K)

)
� f ′τ (1).

Hence, whenτ < T ,

f ′τ (0)� length
(
fτ ([−1,1/2] \KR)

)
� exp

(−�(A64R, [−1,1/2];H \KR)
)

� exp
(−�(AR, [−1,1/2];H \KR)

)
,

and similarly for f ′τ (1). Scale invariance ofSLEκ tells us that the distribution of
�(AR, [−1,1/2];H \ KR) is the same as the distribution of�(AR/3, [0,1/2];H \ KR/3).
Combining this with Theorem 3.1 then readily shows that

E
[
1{τ<TR/3} exp(−w1L1(R/3)−w2L2(R/3))

]
� c3R−λ,

and completes the proof of Theorem 4.1.✷

5. The universality argument

LetµR denote the Brownian excursion measure in the domainVR, and letB denote an
excursion. (See [6,2,3] for the definition of the excursion measures on simply connected
domain and the link with the Brownian intersection exponents.) LetQB denote the event
that the initial pointB(0) of B is in (0,1/2), and the terminal point inAR . On this
event, letL be theπ -extremal distance from[0,B(0)] to AR in VR \ B, and letLB be
theπ -extremal distance from[B(0),1] to AR in VR \ B. Then for allw,w′ > 0, when
R→∞, ∫

QB

exp(−wL−w′LB)dµR(B)≈R−ξ̃ (w,1,w′).

Let φ = φB be the conformal map from the componentX = XB of VR \ B whose
boundary contains[B(0),1] to a semi-diskV

R̃(B)
such thatφ takes∂X ∩ [B(0),1] onto

[0,1] and takes∂X ∩AR ontoA
R̃(B)

. SetL̃B := logR̃(B). Note that whenR→∞,

L̃B = LB +O(1).

Hence, for allw,w′ > 0, whenR→∞,∫
QB

exp
(−wL−w′L̃B)

dµR(B)≈R−ξ̃ (w,1,w′).
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We will need a lemma saying that we can restrict ourselves to the case where
B(0) < 1/2 and the conformal mapφ does not push 1/2 too close to 0. More precisely,
let H denote the event thatQB holds andφ(1/2) ∈ [1/20,19/20].

LEMMA 5.1. – For all w,w′ � 0, as R→∞,∫
H

exp(−wL−w′LB)dµR(B)≈R−ξ̃ (w,1,w′). (5.1)

Proof. – Let M := {z ∈ H: |z − 1| � 9/10}, and letM be the eventB ∩ M = ∅.
We first show thatQB ∩ M ⊂ H. Indeed, extendφ to {z: z ∈ XB}, by Schwarz
reflection. Sinceφ(1) = 1 andφ(XB) ⊃ XB , it follows from the Schwarz Lemma that
φ(x) � x for all x ∈ [B(0),1]. In particularφ(1/2) � 1/2. Let ψ be the conformal
map from the disk{z: |z − 1| < 9/10} onto C \ (−∞,0] such thatψ(1) = 1 and
ψ ′(1) > 0. The Schwarz Lemma also shows thatφ(x) � ψ(x) for all x ∈ [1/10,1].
Sinceψ(z) = (10z − 1)2/(10z − 19)2, it follows that φ(1/2) � ψ(1/2) > 1/20. This
provesQB ∩M⊂H.

On the eventQB∩M, letL′B := �([B(0),1/10],AR;VR \(B∪M)) be theπ -extremal
distance from[B(0),1/10] to AR in VR \ (B ∪M). Let L′ be theπ -extremal distance
from [0,1/10] toAR in VR \M . It is clear that logR �L′ � logR+O(1). Consequently,
by the restriction property and conformal invariance for Brownian excursions, it follows
that ∫

M∩QB
exp(−wL−w′L′B)dµR(B)≈R−ξ̃ (w,1,w

′). (5.2)

Observe thatLB � L′B and that∫
QB

exp(−wL−w′LB)dµR(B)≈R−ξ̃ (w,1,w′). (5.3)

Since the left hand side of (5.1) is between the left hand sides of (5.2) and (5.3), the
lemma follows. ✷

Proof of Theorem (1.1). – Let µR denote the Brownian excursion measure in the
domainVR , and letB be an excursion. LetPR denote the law ofSLE6 in VR started
from 1/2, and letK be as in the previous section. LetQB be the event that the initial
point B(0) of B is in [0,1/2] and the terminal point is inAR , let QK be the event that
K⊂H ∪ [0,1], and letQ be the eventQK ∩QB ∩ {K ∩B = ∅}. OnQ let

L := �([0,B(0)],AR;VR \B)
,

LB := �([B(0),1],AR;VR \B)
,

LK := �([0,1/2],AR;VR \K
)
,

L
′ := �([B(0),1/2],AR;VR \ (K∪B)),

L′′ := �([1/2,1],AR;VR \K
)
.
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We determine the asymptotics asR→∞ of E[1Q exp(−wL−w′L′ −w′′L′′)] in two
different ways.

GivenB ∈QB , we may mapXB ontoVexp(L̃B)
byφ. By conformal invariance ofSLE6,

the restriction property ofSLE6 (see [2]) and Theorem 4.1, it follows that

E
[
exp(−w′L′ −w′′L′′) ∣∣ B]

� cexp
(−λ6(w

′,w′′)L̃B
)
.

Hence, ∫
QB

∫
QK

1Q exp(−wL−w′L′ −w′′L′′)dPR(K)dµR(B)

� c
∫
QB

exp
(−wL− λ6(w

′,w′′)LB
)
dµR(B)

≈R−ξ̃ (w,1,λ6(w
′,w′′)).

For the other direction, by Theorem 4.1 and by Lemma 5.1, we have∫
QB

∫
QK

1Q exp(−wL−w′L′ −w′′L′′)dPR(K)dµR(B)

�
∫
H

∫
QK

1Q exp(−wL−w′L′ −w′′L′′)dPR(K)dµR(B)

� c′
∫
H

exp(−wL)exp
(−λ6(w

′,w′′)L̃B
)

dµR(B)

≈R−ξ̃ (w,1,λ6(w
′w′′)).

We may therefore conclude that∫
QB

∫
QK

1Q exp(−wL−w′L′ −w′′L′′)dPR(K)dµR(B)≈R−ξ̃ (w,1,λ6(w
′,w′′)). (5.4)

On the other hand, by conformal invariance and the restriction property of the
Brownian excursions, givenK ∈QK, we have∫

1Q exp(−wL−w′L′)dµR(B)≈ exp
(−ξ̃ (w,1,w′)LK

)
.

Consequently, Theorem 4.1 gives∫
QK

∫
QB

1Q exp(−wL−w′L′ −w′′L′′)dµR(B)dPR(K)

≈
∫
QK

exp
(−ξ̃ (w,1,w′)LK −w′′L′′)dPR(K)

≈R−λ6(̃ξ(w,1,w′),w′′).
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Comparing with (5.4) gives

λ6
(
ξ̃ (w,1,w′),w′′

)= ξ̃(w,1, λ6(w
′,w′′)

)
. (5.5)

Definey(w′) := limw↘0λ6(w,w
′). First letw↘ 0 andw′ ↘ 0 in (5.5). Recall that

(w,w′) �→ ξ̃ (w,1,w′) is continuous at(0,0) (see e.g., [5]), so that for allw′′ � 0

λ6(1,w
′′)= ξ̃(1, y(w′′)), (5.6)

which shows that̃ξ(1, v)= λ6(1, y−1(v)) in the case wherev � 1 (we also derived this
result in [2]).

Noww↘ 0 andw′′ ↘ 0 in (5.5) gives

y
(
ξ̃ (1,w′)

)= ξ̃(1, y(w′)).
Combining this with (5.6) and the explicit expression forλ6 shows that for allv > 0

ξ̃ (1, v)= y−1(λ6(1, v)
)= y(v). (5.7)

Finally, lettingw′ ↘ 0 in (5.5) shows that̃ξ(w,1, y(w′′)) = λ6(ξ̃ (w,1),w′′), which
gives

ξ̃
(
w,1, ξ̃ (1,w′′)

)= λ6
(
y(w),w′′

)
.

The cascade relations (1.1) and (5.7) applied to the left hand side imply

ξ̃ (w,w′′)= y−1 ◦ y−1 ◦ λ6
(
y(w),w′′

)
.

Via further applications of the cascade relations, this leads to the explicit expression for
all ξ̃ (w1, . . . ,wk). ✷

Proof of Theorem 1.2. – By (1.2) and Theorem 1.1, it suffices to derive the value of
ξ(1,w,1,w) for all w > 0. This is a simple combination of Theorem 4.1, the relation
between radial and chordalSLE6 (see [3]), and the computation of exponents for radial
SLE6 (see [3]). The proof is essentially the same as in the final section of [3]. One has to
consider (for smallr > 0) a Brownian excursionB in the annulusAr = {z: r < |z|< 1}
and an independent radialSLE6 started at 1 (growing towards 0) stopped when it hits the
circle of radiusr , and the eventC that they both cross the annulus without intersecting
each other. DefineL andL′ to be the twoπ -extremal distances between the two circles in
each of the two connected components ofAr \ (B ∪K) that cross the annulus. The result
is derived by estimating the integral of exp(−wL− wL′) in two ways. First, fixingB
and applying Theorem 4.1 and [3, Lemma 5.5] gives the exponentξ(1, λ6(w,w)); this
is equal toξ(1, ξ̃ (w,1,w))= ξ(1,1,w,w) by Theorem 1.1. On the other hand, if we
first fix K and use the radialSLE6 exponents derived in [3] and the value ofξ̃ (w,1,w)
(from Theorem 1.1), we can compute explicitly the exponent. Since this is almost word
for word the same argument as in the final section of [3], we safely leave the details to
the reader. ✷
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The fact that (1.4) is valid for allx � ξ̃ (1,1) is also an immediate corollary of (1.4)
and the analyticity result from [4]. Consequently, Theorem 1.2 also follows from [4] and
Theorem 1.1.

REFERENCES

[1] Ahlfors L.V., Conformal Invariants, Topics in Geometric Function Theory, McGraw-Hill,
New York, 1973.

[2] Lawler G.F., Schramm O., Werner W., Values of Brownian intersection exponents I: Half-
plane exponents, Acta Mathematica (1999), to appear.

[3] Lawler G.F., Schramm O., Werner W., Values of Brownian intersection exponents II: Plane
exponents, Acta Mathematica (2000), to appear.

[4] Lawler G.F., Schramm O., Werner W., Analyticity of planar Brownian intersection exponents,
Acta Mathematica (2000), to appear.

[5] Lawler G.F., Werner W., Intersection exponents for planar Brownian motion, Ann. Probab. 27
(1999) 1601–1642.

[6] Lawler G.F., Werner W., Universality for conformally invariant intersection exponents,
J. European Math. Soc. 2 (2000) 291–328.

[7] Schramm O., Scaling limits of loop-erased random walks and uniform spanning trees, Israel
J. Math. 118 (2000) 221–228.


