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ABSTRACT. — This paper determines values of intersection exponents between packs of plana

Brownian motions in the half-plane and in the plane that were not derived in our first two
papers. For instance, it is proven that the expo§€dt3) describing the asymptotic decay of
the probability of non-intersection between two packs of three independent planar Browniar
motions each i§73—2+/73)/12. More generally, the values &fws, . . ., wy) and& (wj, ..., w})
are determined for alt > 2, wy, w2 > 1, wa, ..., wi € [0,00) and allwj, ..., w; € [0, 00).
The proof relies on the results derived in our first two papers and applies the same gener:
methods. We first find the two-sided exponents for the stochastic Loewner evolution processes |
a half-plane, from which the Brownian intersection exponents are determined via a universality
argumentn 2002 Editions scientifiques et médicales Elsevier SAS

RESUME. — Nous déterminons dans cet article la valeur de certains exposants d’intersectiol
entre mouvements browniens plans, qui n'étaient pas obtenus dans nos deux premiers article
Par exemple, nous montrons que I'exposaBt 3) décrivant le comportement asymptotique de
la probabilité de non-intersection entre deux paquets de trois mouvements brownigir8vaut
24/73)/12. Plus généralement, les valeursédes, . . ., wy) eté(w/l, ..., wy) sont déterminées
pour toutk > 2, w1, w2 > 1, w3, ..., wy = 0etw), ..., w; >0.02002 Editions scientifiques et
médicales Elsevier SAS

1. Introduction

This paper is a follow-up to the papers [2,3], in which the exact values of many of the
intersection exponents between planar Brownian motions were determined. Itis assume
that the reader is familiar with the terminology and the results of [2,3], to which we also
refer for background (in particular, the link with critical exponents for other models,
such as critical percolation or self-avoiding walks in the plane) and a more complete
bibliography.

E-mail addresses: jose@math.duke.edu (G.F. Lawler), schramm@Microsoft.com (O. Schramm),
wendelin.werner@math.u-psud.fr (W. Werner).
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Let us first very briefly recall the definition of these intersection exponents. Suppose
that k > 2, ny,...,n, > 1 are integers, and th&tBl’j)lglgk’lgjgnl is a collection
of independent planar Brownian motions started from distinct points in a half-plane
H. Define thek packs of Brownian motion'(¢) := U}_; B"/[0,7], [ =1,2,... .k
Consider the following events:

EO)=Eppnp® = [ {B'O)NB" (1) =0},

1I<I<l'<k

=1

It is easy to see, using a subadditivity argument, that whenco,
PlED] ~1~52,  PIEW) ~ 1572,

for some¢& = &(ny, ..., n) and € = £(ny, ..., ng), Which are called the intersection
exponents betweeh packs of(ny, ..., n;) Brownian motions in the plane and in the
half-plane, respectively. Herg,~ g means lim_, .. log f/logg = 1.

There exists natural extensions pfand& to non-integer values of, ..., ny. For
instance, one can define the exponérifs w) andg(l, w) for all w > 0 by the relations

E[P[Eaxn(®) | %10)]’”} ~opELw)/2,
E[P[g(l,l)(t) | %10)]’”} o p—EAw)/2.

It is easy to see that these exponents, w) and&(1, w) coincide with the previously
defined exponents when is a positive integer.

A second generalization are the two-sided exponéfis 1, w). One way to define
them is as follows: Suppose thiat= 3, n; = n, = nz =1, that H is the upper half-
planeH = {x +iy: y > 0}, and that for alll € {1,2,3}, B"*(0) = €/* and define
Bl (1) = (0, d"™/41U B'1[0, 1] and the even£ (¢) thatB!(¢) for [ = 1, 2, 3 are disjoint
subsets of the half-pland . Loosely speaking, adding the segmeffise’™/#] ensures
that the three Brownian motions maintain their cyclic order around zero.dherl, w)
is defined for alkw > O by

E[P[E®) | B2(1)]"] ~ f—Ew.Lw)/2

These exponents(w, 1, w) coincide with the above definition whenis an integer [5].

It has been shown in [5] that there exists a unique extensich afd & to non-
integer values of,, ..., n; that is symmetric in its arguments and satisfies the “cascade
relations” (forall 1< j <k —1)

Eny,...,m) = E(ny, ... ,nj, E(mjpa, ... mp), wL.1)

g(nl,...,nk) = g(nl,...,nj,g(njﬂ,...,nk)).
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The extension oE is valid for all positiveny, ...,n;, while the extension of also
requires that at least two of the arguments are greater or equal to 1.

A first consequence [5] of these cascade relations is that the value of all extende
exponents andé (and in particular their values wheuy, . .., w; are positive integers)
can be expressed in terms of the functions— £(1, 1, w), w — (1, w) andw
&(w, 1, w) defined for allw > 0.

A second consequence [5] is that the (extended) full-plane exponents are expressib
as a function of the half-plane exponents

E(wa, w, ..., w) =0 (& (w1, wa, ..., wp)), (1.2)

provided thatw,, w, > 1; however, the function was not determined in [5].
Set

Ux) =+/x+ (1/24) — /1/24.

In [2], we determined the functiom — £ (1/3, w), and using the cascade relations (1.1)
concluded that

E(wy, wa, ..., w) = U "N U (wy) + U(wp) + -+ U(wy)) (1.3)

holds for allk > 2, all wy, wy,...,wi_1 € {p(p +1)/6: p € N}, and all w; > 0.
Equation (1.3) expands to

(V28w + 1+ V28w, + 1+ -+ V24w +1— (k—1)* -1
24 ‘

In [3], we showed that (1, 1) = 5/4, determined the functiow — £(1, 1,1, w), and
concluded from the cascade relations and (1.3) that

(V24 +1-1°-4
48 '

E(wy, ..., wy) =

Vx2>7 nx)=

(1.4)

Combined with (1.3) and (1.2), this gives the value &tfv4, ..., w;) for a large
collection ofws1, ..., wy, but not for all of them.
In the present paper, we will prove the following results.

THEOREM 1.1. — Theidentity (1.3) holds for all Xk > 2 and for all wy, ..., w, > 0.

THEOREM 1.2. — The identity (1.4) holds for all x > £(1, 1) = 10/3, so that for all
k=>2, wl,w2>1andw3,...,wk20,

E(wi, ..., w) =no U (Uwy) + -+ U(wy))

(V2w + 1+ + V28w +1-k)? -4
= 18 .
These two theorems determine almost all the Brownian intersection exponents. Thos
which they do not give aré(n, w) wheren € N, andw € (0, 1). It seems that the
universality argument, which is used to translate information alsh@d; exponents
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to Brownian exponents, cannot be extended to this range. Therefore, the techniques
[2,3] and the present paper do not suffice.

To complete the picture, in the forthcoming paper [4], we determine these remaining
exponents by analytic continuation. There, it will be shown that for integersl,
the mappingw — &(n, w) is real-analytic in(0, co). Combining this with the above
theorems gives the value d&f(n, w) for all positive w (i.e., removing thew > 1
condition), and gives the value of the disconnection exporignts) := lim,~ o &(n, w)
forall n e N,. That s, (1.2) also holds wheén= 2, w1 € N, and 0< w, < 1 and (1.4)
holds for allx > 1. This will conclude the determination of all the two-dimensional
Brownian intersection exponents that have been defined.

The proof of Theorem 1.1 is very similar to the proofs we used to derive (1.3) and
(1.4) in [2,3]. A crucial role is played by the stochastic Loewner evolution process
with parameter 6 $ Eg) introduced in [7]. In the present paper, first the two-sided
exponents associated #.E, in a half-plane are computed. Then, via a universality
argument, the values of the Brownian half-plane exponémswl, 1, wy) are deduced.
This leads directly to Theorem 1.1 via the cascade relations satisfiedTheorem 1.2
also immediately follows by using the results derived in [3].

Following is a rough and somewhat imprecise comparison of the approach usec
in the present paper in relation to those of [2] and [3]. In [2], we have studied the
expectation of the derivative to any power> 0 of a suitably normalized conformal
map onto the complement of a chord&lE, process crossing a rectangle from left to
right. The expectation was determined precisely. Its rate of decay as a function of the
width corresponds to the exponentl/3, w). The reason that/B appears as the first
argument, rather than 1, is that tBeE, process was permitted to touch one horizontal
edge.

In the present paper, we study the expectation of an expression of the form
f(x)™ f'(x2)*2, where f is a suitably normalized conformal map. The poittgndx,
at which these derivatives are computed are on the two sides S8ELEyeprocess, hence
the name of the paper. The explicit formula for the expectation is not calculated, however
the decay rate as a function of the size of 8u€, is determined, which suffices. The
decay rate corresponds to the exporigniy, 1, w,). The calculation of the decay rate is
via an eigenvalue computation, as in [3].

In [3], the decay rate of expectation of a single derivative raised to an arbitrary power
w1 > 0 was calculated for radi&LE, .

2. Notations and terminology

The present paper builds on the results of our previous papers [2,3], and it will be
assumed that the reader is familiar with the terminology and tools used in these paper
In particular, we refer to these two papers for definitions and properties of chordal
and radial9_Eg, Brownian excursions in a domain, and their relation to Brownian
intersection exponents.

Let f and g be functions, and let € R or [ = co. Say thatf(x) ~ g(x) when
x =1, if f(x)/g(x) —> 1. Write f(x) ~ g(x), if log f(x)/logg(x) — 1, and write
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fx) < gx), if f(x)/g(x) is bounded above and below by positive finite constants
whenx is sufficiently close ta.

For convenience, just asin [5,6,2,3], we will useextremal distance, which is defined
asn times the usual extremal distance or extremal length in a domainz Iddremal
distance in a domai between two setd, A’ will be denotedi¢(A, A’; D). For more
information on extremal length, as well as other basic tools from complex analysis tha
we shall use (Koebe/# Theorem, Schwarz Lemma), see, for instance, [1].

3. Derivative SLE, exponents

Letx € (0, 1), letk > 0, letK; be the hulls of chordelLE,, in H, from x to oo, and let
g:-H\ K, — H be the conformal maps normalized by the hydrodynamic normalization
lim,_ - g:(z) —z=0. In other words, for alt € H, g,(z) is the solution of the ordinary
differential equation

0,8:(2) = go(z) =z,

8&(2) — Wt,
wheretr — W, is a standard real-valued Brownian motion started fidg= x. The
setH \ K,, consists of alk € H such that — g,(z) is well-defined at least up to time
to. Then,(K,,t > 0) is an increasing family of subsets . For more details on the
definition of (K;, t > 0), some of its properties such as scaling, conformal invariance,
see [7,2].
Let
T :=inf{r>0:{0,1}NK, #0}

denote the first time at which tH&LE, swallows 0 or 1, and” := oo if no such time
exists. Foralk < T, let

fi(2) = g(2) — (0

g (1) — g0

be the conformal map froni \ K, onto the upper half-plane such th#t0) = 0,
fi(1) =1 and f;(co0) = oo. Note that f/(c0) = (g,/(1) — 2:(0)~1 is decreasing and
continuous inz for t < T. Let S := —lim, »7log f/(c0). Perform a time-change as
follows: For alls € [0, S), define

t(s):=inf{r [0, T): f/(c0) <€}

and the inverse map
s(t) := —log f/(c0)
forallz € [0, T). For allt < T define also
W; —g:(0)
Yin=2; = ————.
07T (D) = g(0)

(This Z, was already used in [2].) Loosely speaking,and Z; correspond to the image
(under f;) of the point wherek; grows at timer.
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Foralls < S, also set
a(s) :=—log f/,(0), B(s) = —log f/, (D).
For everyw,, w, > 0 and every smooth functiof : [0, 1] — [0, 1], let
hp(x,s) =hp(x,s, wi, wo) :=E, [1;.5 F (¥;) exp(—wia(s) — w2B(s))],

whereE, refers to expectation with respect to ek, started afx; that is, Wy = Zy =
Yo = x. In particular, writeh; in caseF is the constant function 1. That is,

ha(x, s) = E; [Lio)<1) f1 6 (O™ £ (D"2].

THEOREM 3.1. — For all w1, ws > 0 and «k > 0, there exists some ¢ > 0 such that for
alxe@O,Dandals>1

G(x)exp(—is) < hi(x,s) < cG(x) exp(—Ais),

where

b= Ay (w1, wo)
_ (Ve =42+ 16cwi + V(K — 4 + 16cwz +4)* — (8 — x)?
o 16¢ ’

=4+ /(4= k)2 + 16w;x
= 5 ,

Remark. — It can be shown that this theorem also holds whgnr= 0 and/orw, = 0,
but this will not be done here.

G(x) :=x“1(1—x)%, aj: j=12

Proof. — This is a first eigenvalue computation, and the proof will follow quite closely
the proof of Lemma 3.2 in [3] (which is the corresponding result for radidd, , but with
the derivative computed at only one point). A simple computation (using the definitions
ofa, 8,7, g ands(¢)) shows that for alk < S,

Y,(1-Y;
ar, =[S ds (@ - 2v) d, (3.1)

whereB is a standard Brownian motion. Note also tlias the first time at whicly hits
{0, 1} (unlessS =T = o0), and that

dsa(s) =1/Y, aB(s) =1/(1—Yy). (3.2)
We first use this to prove that

hg(x,s) =exp(—As)G(x). (3.3)
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Let X = [0, 1] x [0, 0o). Seth = hg and leth(x, s) = exp(—is)G (x). Observe that

Qs :=h(Y,, 50— s) exp(—wia(s) — waB(s))

is a local martingale om < 5. (For this, the choice of; is not important.) Moreover,
is smooth in(0, 1) x (0, o0). Consequently, thesdterm in 1t6’s formula for @, must
vanish; that is,

dsh = (1 — 20)8:h + (1 — x)x =92 — <ﬂ+ 2 )h. (3.4)
4 X 1—x

It is immediate to verify that satisfies this differential equation in the interior Xf It
is also clear that = ondX.

In a moment, we shall see thatis continuous inX. Assuming this for now, an
easy application of the maximum principle givies= h. Indeed, let: > 0, and suppose
that there is some poirtto, so) With 7 — h>e. Among all such points, choose one
with so minimal. Sinceh = honaX, , (xo0, 50) must be in the interior. By minimality
of sq, it follows that o,/ (xg, sg) — 0 h(xo, so) = 0 and thath(x, sg) — h(x sg) has a
local maximum atxo. From the latter fact, we may deduce thgth — h) =0 and
32(h — h) <0 at (xo, so) However, these facts put together contradict (3.4), and we
may conclude tha < & '+ ¢. The same argument shows that h —¢. Sinces > 0 was
arbitrary, it follows thath = h.

To establish (3.3), it therefore remains to prove the continuity.dduppose thar
starts afry = x where O< x < 27"°~?min(so, 1}, for some constants > 0 andng € N,
Define the stopping times, = 0 and for allz > 0,

Vppr:=inf{s >v,: s=v,+ Y, or|¥Y,—Y,|>Y,/2}.

Note that for alln <ng—1,0<Y,, <2"'x, v,41 < Z oYy,
Let R, denote the event

, < 2'*1x, so thatv,, < so.

Rn = {Vn =Vp_1+ Yv,,}-

Let F, denote ther -field generated by the everi&, ..., R,. Thereis a > 0 such that
for Y, < 1/2, the diffusion term in (3.1) is bounded below by'Y;, and the drift term
is bounded by 1. Hence, it is not difficult (for instance, using Girsanov’'s formula and
Doob’s inequality) to see that for all < ng, the conditional probabilityP[R,, | F,,_1]
is bounded below by a positive constant, which does not dependamd~n. On the
eventR,, we havex (v,) — a(v,_1) > 2/3, by (3.2). It follows easily thak (sp) tends in
probability tooo whenx N\ 0, and therefore (since; > 0) thath tends to zero as \ 0
(uniformly fors > so). A similar argument shows that— 0 asx 7 1. Itis easy to verify
that for anye > 0, h(x, s) — G(x) ass — 0 uniformly with respect toc € (¢, 1 — ¢).
It is also easy to check that(x, s) — 0 when(x, s) — (0,0) or (x,s) — (1,0) (note
that G(0) = G(1) = 0). This shows thak is continuous inX and concludes the proof
of (3.3).

SinceG < 1, itis clear that for alk > 0 andx € (0, 1),

hi(x,s) > hg(x,s) =€ G(x). (3.5)



116 G.F. LAWLER ET AL./ Ann. I. H. Poincaré — PR 38 (2002) 109-123

It remains to prove that inf 1) inf;>1/46(x, s)/ hi(x,s) > 0. The Markov property at
times — 1 shows that it suffices to establish this foe 1. Since bothh, (-, 1) andhg(-, 1)
are positive and continuous @f, 1), it suffices to prove this when is close to 0 and
close to 1. By symmetry, it is enough to treat the case whéselose to 0. Now assume
that O< x < 1/2. For every positive integer, let

rpi=inf{hg(x,s)/h1(x,s): x € [47",1/2],s € [1—27",1]}.
Assume 4" < x <41 127" < s< 1, and let
T:=inf{s: ¥, € {0,471},
Note that (3.2) gives
Ex [e—wla(z—”)l{r>2_n}} g e—w12"—2.
Sincehq(x, s) = hg(x,s) = cx® for some constant > 0 and all(x, s) as chosen above,
it follows that
Ex [e—wla(s)—wzﬁ(s) 1{S<S,r<2—”}] = (1 - Sn)Ex [e_ww(S)_wz'g(S)l{s<S}] s
wheres, := c~14"1e~v12' 2 However, since — 7 > 1 — 27"+ on the evenfr < 27"},
and sincgs < S, T < 27"} C {Y, = 47"*1}, the strong Markov property gives
h(x,s) > E [e" O POG (V) o5 r <o)
—E, [e—wla(r)—wzﬁ(r)hG (4—n+1’ 5 — r)l{r<2_",Y,:4_"+l}}
2 rn_lEx [e_wla(r)_wZﬂ(r)hl(4_n+l, S — T) 1{T<2—n’y1=47n+1}]
= rn—lEx [e—wla(s)—wzﬁ(s) 1{S<S,r<2—”}]
= rn—l(l - gn)Ex [e—wlot(s)—wzﬁ(s)1{S<S}]
= rn—l(l - gn)hl(xv S).

Thatis,r, > (1—¢,)r,_1. Since)_, &, < oo, this gives inf r, > 0, which completes the
proof. O

4. Extremal distance exponents

In the previous section, we derived estimates concerning the joint law gf (Oy
and logf’(1) at the first time at whicly; (co) = €. We now use this result to obtain
information concerning the law of the extremal distances at the first time at \&@hgh
reaches distanck. More precisely, leR > 1, and letV; denote the half disk

Ve :={zeH: |z—1/2| < R}.

Let A denote the semi-circlElN dVx. Leta € (0, 1), and consider chord&LE, in H
froma to oo. Let

T=1g:=inf{t: K, N Ag # 0},



G.F. LAWLER ET AL./ Ann. I. H. Poincaré — PR 38 (2002) 109-123 117

and set
R=%fr:=J K.

1<t

As before, letT’ be the first time that theLE, swallows 0 or 1. Let/y(¢) := [0, a] \ K,
and/(t) :=[a,1] \ K,. Onthe event < T, let £1(R) := £(I1(1), Ag;H \ &) denote
the r-extremal distance fronfy(7) to Az in H \ K (or in Vi \ R since they are equal),
and let£o(R) := £(Ix(7), Ag; H\ R). Let

H(a, R) =E, [l{r<T} exp(—w1£1(R) — wzgz(R))} .

THEOREM 4.1.— Let k > 0, wy, wo > 0, and let A = A, (w1, wy) be as in Theo-
rem 3.1 Thereisaconstant ¢ = c(«, wq, wy) such that for all R > 2,

Yae(0,1) H(a,R)<cR™.
On the other hand, for all aq € (0,1/2), thereisa ¢’ = ¢/(x, w1, wy, ag) > 0 such that
forall R > 2
Ya €lag,1—ag]l H(a,R)>cR™.
Proof. — We use the notation of Section 3. Using scaling invariance and a monotonicity
argument, it is easy to see that for &l 2 anda € [ag, 1 — ao],
H(1/2,(R+1)/ap) < H(a,R)< H(1/2,(R—-1)/2),

and hence it suffices to show that(1/2, R) < R~*.
The Koebe 14 Theorem implies that it': D; — D, is a conformal transformation
with F(0) =0 andr; :=dist(0, 9D;) < oo, then

4
2 PO < 2. (4.1)
4?‘1 r1
Applying the Koebe 14 Theorem again, using the estimate|#0)|, gives
16r
2 <IF@OIS 20, Jal < (4.2)

16r4 ri 16
We now assume that=1/2. Let
og:=t(logR) =sup{r < T: f/(c0) > 1/R}.
Fort < T, let K, be the union of0, 1] with K, and with the reflection ok, about the

real axis. Observe that extends conformally to a map: C\ K, — C\ [0, 1]. Applying
(4.1)toF,(z) :==1/f;(1/z) gives forallr < T,

%rad(i,) < F/(0) = f/(00) "t < 4radK)), (4.3)



118 G.F. LAWLER ET AL./ Ann. I. H. Poincaré — PR 38 (2002) 109-123

where rad denotes the radius with respect to the origin, i.e(Adae= sup(|z|: z € A}.
SinceR — (1/2) <rad(K;) < R + (1/2), this gives

TR/4-1/2 S OR < T4R+1/2 (4.4)

for all R such thaby < T.
If z € Aear, then (4.2) implies foR > 2

64R — (1/2)
~16(R + (1/2))

16(64R + (1/2))
R—(1/2)

<Ifi@l=1FQ/2)t < <1999

In particular,

fr(Asar) C Vaooo\ Vo.

Forallt < T, let L,1(r) be the length of the image @f(¢) under f;, and letL,(z) be
the length of the image ab(7) under f,. Recall thatZ, = Y, and note thas, log f/ (x)
is monotone decreasing inwhen f; (x) < Z,, and monotone increasing fgr(x) > Z;,
because

/ / 0x0,8:(x)
0 log /() + 8, 1og(g, (1) — g, (0)) =, log g, (+) = g%;g
t
. -2 _ -2
@)= W)2 T (/i) = Z)*(&i(D) — g(0)?
Therefore, f/ (x) < f/(0) for x € I1(¢) and f/(x) < f/(1) for x € I(¢). Consequently,

Li(t) < f/(0)/2 andLy(t) < f/(1)/2.
Conformal invariance implies that

€(Asar, I1(v); H\ Rg) = £(f:(Asar), f-(I1(1)); H).
If I is any subinterval of—1, 2], then it is straightforward to show that
exp(—£(Az, I; H)) < length(I) < exp(—£(Azo00 1; H)).
Hence by comparison (provided< T),
exp(—L(Aear, [1(7); H\ Rr)) < La(7) < £/(0)/2, (4.5)
and similarly forl,. Note that
L£1(R) < €(Asar, I1(tr); H\ Rg) < €(Asar, I1(Tear); H \ Rear) = £1(64R).

Hence,
E [1{T64R<T} exp(—w1£1(64R) — w2£2(64R))] < CzR_)L
follows from Theorem 3.1, (4.4), and (4.5).
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For the other direction, sincg’ is monotone decreasing ¢roo, 1/2)\ K,,if t < T,
then
length(f; (I-1,1/2] \ 8)) > £/(0)
and

length(f;([1/2.2]1\ ®)) > f;(D).
Hence, wherr < T,

f1(0) <length(f: (-1, 1/2] \ Rg))
=< exp(—£(Aear, [—1, 1/2]; H\ Kg))
<exp(—L(Ag, [—1,1/2]; H\ 8g)),
and similarly for f/(1). Scale invariance oBLE, tells us that the distribution of

C(Ag,[—1,1/2]; H \ K) is the same as the distribution 6fA /3, [0, 1/2]; H \ Rg/3).
Combining this with Theorem 3.1 then readily shows that

E [ <7 5) €XP(—w1£1(R/3) — w2L2(R/3))] > c3R7%,

and completes the proof of Theorem 4.10

5. Theuniversality argument

Let uz denote the Brownian excursion measure in the dorifairand letB denote an
excursion. (See [6,2,3] for the definition of the excursion measures on simply connecte
domain and the link with the Brownian intersection exponents.)gtlenote the event
that the initial pointB(0) of B is in (0,1/2), and the terminal point iMz. On this
event, letg be ther-extremal distance frorfD, B(0)] to Az in Vi \ B, and lety be
the -extremal distance frorB(0), 1] to Ag in Vi \ B. Then for allw, w’ > 0, when
R — o0,

/ exp(—wL — w'Lp) dug(B) ~ R—Fg(w,l,w’).
Qp
Let ¢ = ¢ be the conformal map from the component= X of Vi \ B whose

boundary containgB(0), 1] to a semi-diska;(B) such thaip takeso X N [B(0), 1] onto

[0, 1] and takesH X N A onto AE(B)- Setfp :=log R(B). Note that whernR — oo,

£p=2L5+00).

Hence, for allw, w’ > 0, whenR — oo,

/ eXp(—lU)3 — w/EB) dMR(B) ~ R—fg(w,l,w’).
QB
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We will need a lemma saying that we can restrict ourselves to the case where
B(0) < 1/2 and the conformal mag does not push /2 too close to 0. More precisely,
let H denote the event th&@; holds andp(1/2) € [1/20, 19/20].

LEMMA 5.1.—For all w,w’ >0, as R — oo,

/ exp(—wE — w'Lp) dug(B) ~ R-EWL0), (5.1)
H

Proof. —Let M :={z € H: |z — 1| < 9/10}, and let M be the eventB N M = @.
We first show thatQz N M C H. Indeed, extendp to {z. z € X}, by Schwarz
reflection. Sincep(1) =1 and¢(X3) D X3, it follows from the Schwarz Lemma that
¢(x) < x for all x € [B(0),1]. In particular¢(1/2) < 1/2. Let  be the conformal
map from the disk{z: |z — 1| < 9/10} onto C \ (—o0, 0] such thaty/(1) = 1 and
Y¥'(1) > 0. The Schwarz Lemma also shows tlggic) > v (x) for all x € [1/10, 1].
Since vy (z) = (10z; — 1)?/(10z — 19)?, it follows that ¢ (1/2) > ¥(1/2) > 1/20. This
provesQz N M C H.

Onthe evenz N M, let £, :=€([B(0), 1/10], Ag; Vg \ (BUM)) be ther -extremal
distance fron{B(0),1/10] to Az in Vz \ (B U M). Let L’ be therr-extremal distance
from [0, 1/10]to Ag in Vx\ M. Itis clear that logk < L’ < log R +0O(1). Consequently,
by the restriction property and conformal invariance for Brownian excursions, it follows
that

/ exp(—wL — w'Ly) dug(B) ~ REwLu), (5.2)
MNQp
Observe that ; < £ and that

/ exp(—wE — w'Lp) dug(B) ~ R—E@L0), (5.3)
Op

Since the left hand side of (5.1) is between the left hand sides of (5.2) and (5.3), the
lemma follows. O

Proof of Theorem (1.1). —Let uz denote the Brownian excursion measure in the
domain Vg, and letB be an excursion. LeP; denote the law oBLEg in V; started
from 1/2, and let] be as in the previous section. L& be the event that the initial
point B(0) of B is in [0, 1/2] and the terminal point is i, let @« be the event that
KACHUIO, 1], and letQ be the evenRz N QO N{AN B =@}. On O let

=¢([0, B(O)], Ag; Vg \ B),
L :E([B(O),l],AR; Vr\ B),
L£a:=£([0,1/2], Ag; Vg \ R),
£ :=¢([B(0),1/2], Ag; V& \ (RU B)),
£ :=0([1/2,1], Ag; Vi \ R).
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We determine the asymptotics &— oo of E[1g exp(—wL — w'& — w”£")] in two
different ways.

GivenB € Qg, we may mapX g onto Vexp(EB) by ¢. By conformal invariance dfLEg,

the restriction property diLEg (see [2]) and Theorem 4.1, it follows that
E[exp(—w'L — w"g") | B] < cexp(—is(w’, w”)EB).
Hence,

/ / loexp(—we —w'e —w"L") dPg(R) dug(B)
Qp Qs

<c / exp(—wL — As(w’, w") £p) dug(B)
)]

~ R—E(w,l,ke(zu’,zu”))

For the other direction, by Theorem 4.1 and by Lemma 5.1, we have

/ / loexp(—we —w'e — w" L") dPg(R) dug (B)

Qp Qa
> / / loexp(—we — w'e —w" L") dPg(K) dug(B)
H Qg
> c//exp(—w,ﬁ) exp(—is(w’, w”)EB) dug(B)
H

A R—Ew.Lasw'w’))
We may therefore conclude that
/ / Loexp—we — w'e — w"S") dP(R) diug (B) ~ R-EW-1Is w) (5 4)
Qp Qg
On the other hand, by conformal invariance and the restriction property of the

Brownian excursions, giveR € Qg, we have

/ loexp(—we — w'L) dugr(B) ~ exp(—g(w, 1L w)Lq).
Consequently, Theorem 4.1 gives
/ / Loexp—we — w'e — w'e") dug(B) dPx(R)
Qa Q5

~ / exp(—&(w, 1, w) L5 — w” L") dPR(R)
Qg

~ R—Ag(?(w,l,w’),zy”)
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Comparing with (5.4) gives
re(E(w, 1, w), w") =&(w, 1, re(w', w")). (5.5)

Define y(w’) := lim,~oAs(w, w’). First letw \ 0 andw’ N\ 0 in (5.5). Recall that
(w, w’) = &(w, 1, w’) is continuous a0, 0) (see e.g., [5]), so that for all” > 0

re(Lw”) =&(1, y(w")), (5.6)

which shows thaE(l, v) = As(1, y"1(v)) in the case where > 1 (we also derived this
result in [2]).
Now w N\, 0 andw” N\ 0 in (5.5) gives

Y(ELw)) =E(L yw)).
Combining this with (5.6) and the explicit expression fgrshows that for alb > 0
E(Lv) =y (re(L, ) = y(v). (5.7)

Finally, letting w’ N\, 0 in (5.5) shows tha (w, 1, y(w")) = Ae(£(w, 1), w”), which
gives

E(w, LEL w") =he(y(w), w").
The cascade relations (1.1) and (5.7) applied to the left hand side imply

Ew,w") =y oy org(yw), w").

Via further applications of the cascade relations, this leads to the explicit expression fo

all E(wq, ..., wy). O

Proof of Theorem 1.2. —By (1.2) and Theorem 1.1, it suffices to derive the value of
£(1, w, 1, w) for all w> 0. This is a simple combination of Theorem 4.1, the relation
between radial and chord8lEg (see [3]), and the computation of exponents for radial
9 E; (see [3]). The proof is essentially the same as in the final section of [3]. One has tc
consider (for small > 0) a Brownian excursiol in the annulusA, = {z: r < |z| < 1}
and an independent radiglLEg started at 1 (growing towards 0) stopped when it hits the
circle of radiusr, and the event that they both cross the annulus without intersecting
each other. Defing and £’ to be the twor -extremal distances between the two circles in
each of the two connected componentsgipf (B U &) that cross the annulus. The result
is derived by estimating the integral of eéxpw £ — w£’) in two ways. First, fixingB
and applying Theorem 4.1 and [3, Lemma 5.5] gives the expafidnt.es(w, w)); this
is equal to& (1, & (w, 1, w)) = &(1,1, w, w) by Theorem 1.1. On the other hand, if we
first fix & and use the radidEg exponents derived in [3] and the value&fw, 1, w)

(from Theorem 1.1), we can compute explicitly the exponent. Since this is almost word
for word the same argument as in the final section of [3], we safely leave the details tc
the reader. O
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The fact that (1.4) is valid for alt > £(1, 1) is also an immediate corollary of (1.4)
and the analyticity result from [4]. Consequently, Theorem 1.2 also follows from [4] and
Theorem 1.1.
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