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ABSTRACT. – We consider a 2-dimensional spatially homogeneous Boltzmann equation
without cutoff, which we relate to a Poisson driven nonlinear S.D.E. We know from [8] that
this S.D.E. admits a solutionVt , and that for eacht > 0, the law ofVt admits a densityf (t, .).
This density satisfies the Boltzmann equation. We use here the stochastic calculus of variations
for Poisson functionals, in order to prove thatf does never vanish. 2001 Éditions scientifiques
et médicales Elsevier SAS
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RÉSUMÉ. – Nous considérons une équation de Boltzmann bidimensionnelle, spatialement
homogène sans cutoff. Nous associons à cette équation une équation différentielle stochastique
poissonnienne non linéaire. Nous savons par [8] que cette E.D.S. admet une solutionVt , et
que pour chaquet > 0, la loi deVt admet une densitéf (t, .). La fonctionf (t, v) obtenue
satisfait l’équation de Boltzmann. Nous utilisons ici le calcul des variations stochastiques pour
des fonctionnelles de mesures de Poisson, afin de prouver quef ne s’annule jamais. 2001
Éditions scientifiques et médicales Elsevier SAS

1. Introduction and statement of the main result

The 2-dimensional spatially homogeneous Boltzmann equation of Maxwellian mole-
cules deals with the densityf (t, v) of particles which have the speedv ∈ R

2 at the
instantt � 0 in a sufficiently dilute (2-dimensional) gas:

∂f

∂t
(t, v)=

∫
v∗∈R2

π∫
θ=−π

[
f (t, v′)f (t, v′

∗)− f (t, v)f (t, v∗)
]
β(θ) dθ dv∗, (1.1)
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where, ifRθ is the rotation of angleθ ,

v′ = v + v∗
2

+Rθ
(
v − v∗

2

)
; v′

∗ = v+ v∗
2

−Rθ
(
v − v∗

2

)
. (1.2)

The new speedsv′ andv′∗ are the velocities of two molecules which had the speedsv and
v∗, after a collision of angleθ . The “cross section”β is an even and positive function on
[−π,π ]\{0} which explodes at 0 as 1/|θ |s with s ∈]1,3[ in the case of interactions in
1/rα , with α > 2. Thus, the natural assumption (which we will suppose) is

π∫
0

θ2β(θ) dθ <∞. (1.3)

In this case, Eq. (1.1) is said to be without cutoff. The case with cutoff, namely when∫ π
0 β(θ) dθ <∞, has been much investigated by the analysts, and they have obtained

some existence, regularity and strict positivity results.
In this paper, we prove, by using the stochastic calculus of variations on the Poisson

space, a strict lowerbound for the solutionf of (1.1) built in [8], in the case where the
cross section sufficiently explodes.

To this aim, we use a probabilistic approach to the Boltzmann equations of
Maxwellian molecules first introduced by Tanaka [19], and more recently by Desvil-
lettes, Graham and Méléard [7,11] in the one dimensional case, see also [8] for the case
of Eq. (1.1). Indeed, we build a non classical Poisson driven S.D.E., of which we denote
by Vt the solution. This S.D.E. is related to Eq. (1.1) in the following sense: its proba-
bility flow L(Vt) is a measure solution of (1.1). In [8], the Malliavin calculus is used to
prove that for eacht > 0,L(Vt) admits a smooth densityf (t, v), which satisfies (1.1) in
a weak sense.

The strict positivity off seems to be unknown by the analysts in the case without
cutoff, and might be useful to justify computations in which the entropy appears. In
the case with cutoff, much more is known: Pulvirenti and Wennberg have proved a
Maxwellian lowerbound in [18]. Their method is based on the separation of the gain
and loss terms, which typically cannot be used in the present case.

Lowerbounds of the density for Wiener functionals have been worked out by Aida,
Kusuoka and Stroock [1], Ben Arous and Léandre [3], see also Bally and Pardoux [2].
In the case of Poisson functionals, the strict positivity of the density in small time has
been studied by Léandre [15], Ishikawa [12], and Picard [17].

The first result of strict positivity of the density for Poisson functionnals is due to
Léandre [16], who was considering simple jump processes with finite variations. In [10],
we have given a sufficient condition for the strict positivity in every time for one-
dimensional Poisson-driven S.D.E.s, and this approach does allow to deal almost only
with processes with infinite variations. In [9], we have applied this method to the Kac
equation without cutoff, which is a caricatural one-dimensional version of the Boltzmann
equation.

The strict positivity of the density for general 2-dimensional Poisson driven S.D.E.s
seems to be a very difficult problem, but in the case of the S.D.E. related to (1.1),
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the method works quite easily. The main differences between the one-dimensional
caricatural Kac equation and Eq. (1.1) are the following. First, we have to deal with
a determinant. We thus have to assume an additional condition on the support of the
initial distribution. Furthermore, we have to prove that for eacht > 0, the support of
f (t, .) contains that of the initial distribution. Another technical problem is that one
cannot solve explicitely Doléans–Dade equations with values inM2×2(R).

Let us now be precise. First, we define the solutions of (1.1) in the following (weak)
sense.

DEFINITION 1.1. – LetP0 be a probability onR2 that admits a moment of order 2.
A positive functionf on R

+ × R
2 is a solution of (1.1) with initial dataP0 if for every

test functionφ ∈ C2
b(R

2),

∫
v∈R2

f (t, v)φ(v) dv=
∫
v∈R2

φ(v)P0(dv)− b2
t∫

0

∫
v∈R2

∫
v∗∈R2

〈φ′(v), v− v∗〉dv∗dv ds

+
t∫

0

∫
v∈R2

∫
v∗∈R2

π∫
−π
f (s, v)f (s, v∗)

[
φ(v′)− φ(v)

− 〈φ′(v), v′ − v〉]β(θ) dθ dv∗ dv ds, (1.4)

whereφ′ denotes the gradient ofφ, where〈 . , . 〉 stands for the scalar product inR2,
wherev′ is defined by (1.2), and where

b=
π∫

−π
(1− cosθ)β(θ) dθ. (1.5)

In [8], one assumes that

Assumption(H):
1. The initial distributionP0 admits a moment of order 2, andβ satisfies (1.3),
2. β = β0+β1, whereβ1 is even and positive on[−π,π ]\{0}, and there existsk0> 0,
θ0 ∈]0, π [, andr ∈]1,3[ such thatβ0(θ)= k0

|θ |r 1[−θ0,θ0](θ),
3. P0 is not a Dirac mass.
Let us also consider the following random elements:

Notation 1.2. – Assume(H)-1. We denote byN a Poisson measure on[0,∞[×
[0,1] × [−π,π ], with intensity measure:

ν(dθ, dα, ds)= β(θ) dθ dα ds (1.6)

and by Ñ the associated compensated measure. We consider aR
2-valued random

variableV0 independent ofN , of which the law isP0. We will consider[0,1] as a
probability space, denote bydα the Lebesgue measure on[0,1], and denote byEα and
Lα the expectation and law on([0,1],B([0,1]), dα).
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If (H)-2 also holds, we suppose thatN = N0 + N1, whereN0 and N1 are two
independent Poisson measures on[0,∞[×[0,1] × [−π,π ], with intensity measures:

ν0(dθ, dα, ds)= β0(θ) dθ dα ds; ν1(dθ, dα, ds)= β1(θ) dθ dα ds. (1.7)

In this case, we also assume that our probability space is the canonical one associated
with the independent random elementsV0, N0, andN1:

(�,F, {Ft},P )
= (�′,F ′, {F ′},P ′)⊗ (�0,F0,

{
F0
t

}
,P 0)⊗ (�1,F1,

{
F1
t

}
,P 1). (1.8)

The following theorem is proved in [8] (Theorems 2.8 and 2.9).

THEOREM 1.3. – Assume(H)-1. There exists aR2-valued càdlàg adapted process
{Vt(ω)} on� and aR

2-valued process{Wt(α)} on [0,1] such that, if

A(θ)= 1

2

(
cosθ − 1 −sinθ

sinθ cosθ − 1

)
, (1.9)

then

Vt(ω)= V0(ω)+
t∫

0

1∫
0

π∫
−π
A(θ)

(
Vs−(ω)−Ws−(α))Ñ(ω, dθ dα ds)

− b
2

t∫
0

1∫
0

(
Vs−(ω)−Ws−(α))dα ds,

Lα(W)= L(V ); E
(

sup
[0,T ]

‖Vt‖2
)
<∞.




(1.10)

The obtained lawL(V )= Lα(W) is unique.

Finally, the main theorem of [8] (Theorem 3.1) is the following.

THEOREM 1.4. – Assume(H). Let(V ,W) be a solution of(1.10). Then for allt > 0,
the law ofVt admits a densityf (t, .) with respect to the Lebesgue measure onR

2.
The obtained functionf is a solution of the Boltzmann equation(1.1) in the sense of
Definition1.1.

It is also proved in [8] (Theorems 3.2 and 3.3) that under an additional assumption,
the solutionf is regular in the following sense: for eacht > 0, f (t, .) is inC∞(R2), and
f is continuous on]0,∞[×R

2.
Let us now give our assumption, which is more stringent than(H): we need a stronger

explosion of the cross section, and the support of the initial distribution has to be large
enough.

Assumption(SP):
1. The same as(H)-1,
2. The same as(H)-2, but withr ∈ [2,3[,
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3. For eachX0 ∈ R
2, there exist 0< ε < η <∞ such that

P0
({
X ∈ R

2/|Xx −Xx0 |< ε, |Xy −Xy0|> η
})
> 0, (1.11)

P0
({
X ∈ R

2/|Xy −Xy0 |< ε, |Xx −Xx0|> η
})
> 0. (1.12)

Our main result is the following:

THEOREM 1.5. – Assume(SP), and consider the solutionf in the sense of
Definition1.1 of Eq.(1.1) built in Theorem1.4. There exists a strictly positive function
g(t, v) on ]0,+∞[×R

2, continuous inv, such that for allt > 0, all φ ∈C+
b (R

2),

∫
R2

φ(v)f (t, v) dv �
∫
R2

φ(v)g(t, v) dv. (1.13)

In particular, if f is continuous inv, thenf is strictly positive on]0,+∞[×R
2.

Let us say a word about our assumptions.(SP)-1 is quite reasonable. Indeed, the
analysts almost always assume thatP0 admits a density (see, e.g., Desvillettes, [6]); the
assumption

∫ ‖v‖2P0(dv) <∞ means that the energy of the initial system is finite; and
(1.3) is physically natural.(SP)-2 means that the cross section contains a sufficiently
“large” and “regular” part, which will allow us to use the Malliavin calculus. Notice that
the fact thatr � 2 means that

∫ |θ |β(θ) dθ = ∞: we really need a strong explosion of
the cross section. Finally,(SP)-3 is a technical condition. Notice that(SP)-3 is satisfied
if suppP0 contains{(x,0), x � 0} ∪ {(0, y), y � 0}, or even{(n,0), n ∈ N} ∪ {(0, n),
n ∈ N}. If the support ofP0 is bounded, then the condition is not satisfied.

Finally, let us notice that in our proof, we check the following lemma:

LEMMA 1.6. – Assume(H)-1, and consider a solution(V ,W) of (1.10). Then for
eacht > 0,

suppP0 ⊂ suppL(Vt). (1.14)

The present work is organized as follows. In Section 2, we prove Lemma 1.6. In the
third section, we state a criterion of strict positivity of the density for Poisson functionals,
which we apply toVt in the next sections.

In the whole work, we will assume at least(H)-1, use Notation1.2, and consider a
solution (V ,W) of (1.10). We will always work on the time interval[0, T ], for some
T > 0 fixed. We will denote byK a constant of which the value may change from line to
line.

2. Conservation of the support

This section is dedicated to the proof of Lemma 1.6, which will be useful to prove
Theorem 1.5. We fixX0 ∈ suppP0 = suppP ◦ V −1

0 , ε > 0, andt > 0. We have to show
that

P
(‖Vt −X0‖ � ε

)
> 0. (2.1)
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The main idea of the proof is very simple: sinceV0 andN are independent, we can build
a subset of�, of positive probability, on whichV0 is nearX0 andN is very small. On
this subset,Vt will be nearV0, and thus nearX0.

Forp ∈ N
∗, we denote byNp the restrictionN |[0,T ]×[0,1]×{[−π,π]/[−1/p,1/p]}, which is a

finite Poisson measure. Then, we splitVt into

Vt = V0 +Apt +Bpt , (2.2)

where

Apt =
t∫

0

1∫
0

π∫
−π
A(θ)

(
Vs− −Ws−(α))Np(dθ dα ds) (2.3)

and, ifbp = ∫ 1/p
−1/p(1− cosθ)β(θ) dθ ,

Bpt =
t∫

0

1∫
0

1/p∫
−1/p

A(θ)
(
Vs− −Ws−(α))Ñ(dθ dα ds)

− bp
2

t∫
0

1∫
0

(
Vs− −Ws−(α))dα ds. (2.4)

We consider the set

�p = {‖V0 −X0‖< ε/2; Np ≡ 0
}

(2.5)

of which the probability is strictly positive (for eachp), since V0 and Np are
independent, sinceX0 ∈ suppP ◦ V −1

0 , and sinceNp is afinite Poisson measure.
It is clear from (2.2) and (2.5), since�p belongs toσ (V0,N

p), and thanks to
the Bienaymé–Tchebichev inequality applied to the conditional probability measure
P( . |σ (V0,N

p)), that

P(‖Vt −X0‖ � ε)� P
(‖V0 −X0‖ � ε/2; Apt = 0; ∥∥Bpt ∥∥� ε/2

)
� P

(
�p;

∥∥Bpt ∥∥� ε/2
)

�E
(
1�pP

(∥∥Bpt ∥∥� ε/2 | σ (V0,N
p
)))

�E
(

1�p

{
1− 4

ε2
E
(∥∥Bpt ∥∥2 | σ (V0,N

p
))})

. (2.6)

SinceN |[0,T ]×[0,1]×[−1/p,1/p] is independent ofV0 andNp, it clearly is a Poisson measure
under the conditional probability measureP( . |σ (V0,N

p)). Thus, using Burkholder’s
inequality, the facts thatEα(sup[0,T ] ‖Wt‖2) <∞, and‖A(θ)‖ �Kθ2, we see that

E
(∥∥Bpt ∥∥2 | σ (V0,N

p
))

�K
t∫

0

1∫
0

1/p∫
−1/p

θ2[E(‖Vs‖2 | σ (V0,N
p
))+ ‖Ws(α)‖2]β(θ) dθ dα ds
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+Kb2
p

t∫
0

1∫
0

[
E
(‖Vs‖2 | σ (V0,N

p
))+ ‖Ws(α)‖2]dα ds

� up
[
1+

t∫
0

E
(‖Vs‖2 | σ (V0,N

p
))
ds

]
, (2.7)

where the sequenceup decreases to 0 whenp goes to infinity. Furthermore, thanks
to (2.2) and the definition of�p,

1�p‖Vt‖ � 1�p
[‖X0‖ + ε+ ∥∥Bpt ∥∥] (2.8)

from which we deduce the existence of a constantK , not depending onp, such that

1�pE
(‖Vt‖2 | σ (V0,N

p
))

� 1�p

[
K +K

t∫
0

E
(‖Vs‖2 | σ (V0,N

p
))
ds

]
. (2.9)

Gronwall’s lemma allows us to conclude that

1�pE
(‖Vt‖2 | σ (V0,N

p
))

�K1�p . (2.10)

Finally, using (2.7), we obtain

1�pE
(∥∥Bpt ∥∥2 | σ (V0,N

p
))

�Kup1�p . (2.11)

Using (2.6), we see that

P(‖Vt −X0‖ � ε)�E
[
1�p
(
1−Kup/ε2)]� (1−Kup/ε2)P(�p). (2.12)

Recalling that for eachp, P(�p) > 0, and choosingp large enough, in order that
up � ε2/K , we deduce (2.1), and Lemma 1.6 follows.

3. A criterion of strict positivity

This section contains two parts. We first introduce some general notations and
definitions about Bismut’s approach of the Malliavin calculus on our Poisson space.
Then we adapt the criterion of strict positivity of Bally and Pardoux [2] (which deals
with the Wiener functionals) to our probability space.

In the following definition, we precise the perturbations we will use. We have already
introduced such a perturbation in [8], but we have to define here all the possible
perturbations.

DEFINITION 3.1. – A predictableR2-valued functionv(ω, s, θ, α) on�× [0, T ] ×
[−θ0, θ0] × [0,1] is said to be a “perturbation” if for all fixedω, s,α, v(ω, s, . , α) is C1
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on [−θ0, θ0], and if there exist some even positive (deterministic) functionsη andρ on
[−θ0, θ0] such that

‖v(s, θ, α)‖ � η(θ); ‖v′(s, θ, α)‖ � ρ(θ), (3.1)

η(θ)� |θ |
2

; η(−θ0)= η(θ0)= 0, (3.2)

if ξ(θ)= ρ(θ)+ r2r+2η(θ)

|θ | then‖ξ‖∞ � 1

2
andξ ∈L1(β0(θ) dθ). (3.3)

Notice that thanks to (3.3),η andρ are inL1 ∩L∞(β0(θ) dθ).
Consider now a fixed perturbationv. Forλ ∈ B(0,1) (this ball is that ofR2), we set

γ λ(s, θ, α)= θ + 〈λ, v(s, θ, α)〉, (3.4)

where〈, 〉 denotes the scalar product ofR
2. Thanks to (3.1), (3.2), and (3.3), it is easy

to check that for eachλ, s, α,ω, γ λ(s, . , α) is an increasing bijection from[−θ0, θ0]\{0}
into itself. Then we denote byNλ0 = γ λ(N0) the image measure ofN0 by γ λ: for any
Borel subsetA of [0, T ] × [−θ0, θ0] × [0,1],

Nλ0 (A)=
T∫

0

1∫
0

π∫
−π

1A
(
s, γ λ(s, θ, α),α

)
N0(dθ dα ds). (3.5)

We also define the shiftSλ on� by

V0 ◦ Sλ = V0; N0 ◦ Sλ =Nλ0 ; N1 ◦ Sλ =N1. (3.6)

We will need the following predictable function:

Y λ(s, θ, α)= β0(γ
λ(s, θ, α))

β0(θ)

(
1+ 〈λ, v′(s, θ, α)〉). (3.7)

Then it is easy to check that for allλ,

γ λ
(
Y λ.ν0

)= ν0. (3.8)

Indeed, for any Borel setA⊂ [0, T ] × [0,1] × [−π,π ],
γ λ
(
Y λ.ν0

)
(A)

=
T∫

0

1∫
0

π∫
−π

1A
(
s, α, γ λ(s, θ, α)

)
Y λ(s, θ, α)β0(θ) dθ dα ds

=
T∫

0

1∫
0

π∫
−π

1A
(
s, α, γ λ(s, θ, α)

)× ∂

∂θ
γ λ(s, θ, α)× β0

(
γ λ(s, θ, α)

)
dθ dα ds
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=
T∫

0

1∫
0

π∫
−π

1A(s, α, θ
′)β0(θ

′) dθ ′ dα ds

= ν0(A), (3.9)

where the last inequality comes from the substitutionθ ′ = γ λ(s, θ, α).
We will also need the following inequality: for allλ,µ ∈ B(0,1) (recall thatξ is

defined in (3.3)),

∣∣Y λ(s, θ, α)− Yµ(s, θ, α)∣∣� ‖λ−µ‖ × ξ(θ) (3.10)

which we now prove, using (3.1), (3.2), and (3.3).∣∣Y λ(s, θ, α)− Yµ(s, θ, α)∣∣
� β0(γ

λ(s, θ, α))

β0(θ)
× ‖λ−µ‖ × ‖v′(s, θ, α)‖

+ ∣∣1+ 〈µ,v′(s, θ, α)〉∣∣× |β0(γ
µ(s, θ, α))− β0(γ

λ(s, θ, α))|
β0(θ)

� ‖λ−µ‖ × ρ(θ)×
[
1+ |γ λ(s, θ, α)− θ | × sup[θ,γ λ(s,θ,α)] |β ′

0(φ)|
β0(θ)

]

+ 3

2
× |γ λ(s, θ, α)− γ µ(s, θ, α)| × sup[γ µ(s,θ,α),γ λ(s,θ,α)] |β ′

0(φ)|
β0(θ)

(we have used the fact thatρ � 1/2, which is obvious from (3.3)). But for allλ,µ, it is
easily checked that

sup
[γ µ(s,θ,α),γ λ(s,θ,α)]

|β ′
0(φ)| � sup

[|θ |−η(θ),|θ |+η(θ)]
|β ′

0(φ)| � k0r/
(|θ | − η(θ))r+1

� 2r+1rk0/|θ |r+1,

sinceη(θ)� |θ |/2. We finally obtain∣∣Y λ(s, θ, α)− Yµ(s, θ, α)∣∣
� ‖λ−µ‖ × ρ(θ)× [1+ r2r+1η(θ)/|θ |]+ 3

2
r2r+1‖λ−µ‖ × η(θ)/|θ |

� ‖λ−µ‖ ×
[
ρ(θ)+ r2r+1η(θ)

|θ | × (ρ(θ)+ 3/2)
]

� ‖λ−µ‖ × ξ(θ) (3.11)

and (3.10) is proved.
We also consider the following martingale

Mλ
t =

t∫
0

1∫
0

π∫
−π

(
Y λ(s, θ, α)− 1

)
Ñ0(dθ dα ds) (3.12)
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and its Doléans–Dade exponential (see Jacod and Shiryaev [14])

Gλt = E
(
Mλ
)
t
= eM

λ
t

∏
0�s�t

(
1+9Mλ

s

)
e−9Mλs . (3.13)

Since|Y λ−1| � ξ � 1/2, it is clear thatGλ is always strictly positive on[0, T ]. We now
setPλ = GλT .P . Using Eq. (3.8), and the Girsanov theorem for random measures (see
Jacod and Shiryaev [14], p. 157) one can show thatPλ ◦ (Sλ)−1 = P , i.e. that the law of
(V0,N

λ
0 ,N1) underPλ is the same as the one of(V0,N0,N1) underP .

Finally, it is quite easy, by using the explicit expression (3.13) ofGλ, to check the
following lemma.

LEMMA 3.2. – Let v be a perturbation, andGλ the associated exponential martin-
gale. Then for allt > 0, all ω ∈�, the mapλ �→Gλt (ω) is continuous onB(0,1).

We now give the criterion of strict positivity we will use.

THEOREM 3.3. – Let X be a R
2-valued random variable on�, and letX0 ∈ R

2.
Assume that there exists a sequencevn of perturbations such that, ifXn(λ) = X ◦ Sλn ,
then for alln, the map

λ �→Xn(λ) (3.14)

is a.s. twice differentiable onB(0,1). Assume that there existc > 0, δ > 0, andk <∞,
such that for allr > 0,

lim
n→∞P

(
<n(r)

)
> 0 (3.15)

where

<n(r)=
{

‖X−X0‖< r,
∣∣∣∣det

∂

∂λ
Xn(0)

∣∣∣∣� c,
sup

‖λ‖�δ

[∥∥∥∥ ∂∂λXn(λ)
∥∥∥∥+

∥∥∥∥ ∂2

∂λ2
Xn(λ)

∥∥∥∥
]

� k
}
. (3.16)

Then there exists a continuous functionθX0(.) :R
2 �→ R+, such thatθX0(X0) > 0, and

such that for allφ ∈ C+
b (R

2),

E
(
φ(X)

)
�
∫
R2

φ(y)θX0(y) dy. (3.17)

In order to prove this criterion, it suffices to copy the proof of Theorem 3.3 in [10]
or Theorem 2.3 in [9]. Let us just recall the 2-dimensional version of the uniform local
inverse theorem used in the proof, that can be found in Aida, Kusuoka and Stroock [1]:

LEMMA 3.4. – Let c > 0, δ > 0, andk <∞ be fixed. Consider the following set:

G = {g :R2 �→ R
2/|detg′(0)| � c, sup

|x|�δ
[‖g(x)‖ + ‖g′(x)‖ + ‖g′′(x)‖]� k}. (3.18)
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Then there existα > 0 and R > 0 such that for everyg ∈ G, there exists a
neighborhoodVg of 0 contained inB(0,R) such thatg is a diffeomorphism fromVg
toB(g(0), α).

We finally state a useful remark, of which the proof can be found in [10], Remark 3.5.

Remark3.5. – LetX be aR
2-valued random variable on�. Assume that for every

X0 ∈ suppP ◦X−1, the assumptions of Theorem 3.3 are satisfied. Then the law ofX is
bounded below by a measure admitting a strictly positive continuous density onR

2 with
respect to the Lebesgue measure onR

2.

From now on,T > 0 is fixed, and so isX0 ∈ R
2.

In the next section, we will consider a fixed perturbationvn, and we will compute
V nt (λ) and its derivatives for anyt ∈ [0, T ]. Section 5 is devoted to the explicit choice of
the sequencevn of perturbations. In Section 6, we will first prove that for someβ > 0,
someδ > 0, a.s.,

lim inf
n→∞

∣∣∣∣det
∂

∂λ
V nT (0)

∣∣∣∣� β1{‖VT −X0‖�δ}. (3.19)

Then we will check that for some constantK , for all n ∈ N, all λ ∈ B(0,1),
∥∥∥∥ ∂∂λV nT (λ)

∥∥∥∥+
∥∥∥∥ ∂2

∂λ2
V nT (λ)

∥∥∥∥�K. (3.20)

Finally, we will easily conclude.

4. Differentiability of the perturbed process

In this section, we consider a fixed perturbationvn. We computeV nt (λ)= Vt ◦ Sλn and
its derivatives with respect toλ. The rigorous proof of the differentiability of similar
processes can be found in [8] or [9].

In order to computeV nt (λ), it suffices to replace eachω by Sλn(ω), and to use the
definition ofSλn :

V nt (λ)=V0 +
t∫

0

1∫
0

π∫
−π
A(θ)

(
V ns−(λ)−Ws−(α)

)
Ñ(dθ dα ds)

− b
2

t∫
0

1∫
0

(
V ns−(λ)−Ws−(α)

)
dα ds (4.1)

+
t∫

0

1∫
0

π∫
−π

(
A
(
γ λn (s, θ, α)

)−A(θ))(V ns−(λ)−Ws−(α))N0(dθ dα ds).

We now introduce the following semi-martingale, with values inM2×2(R):

Knt (λ)=
t∫

0

1∫
0

π∫
−π
A(θ)Ñ(dθ dα ds)− b

2
I t
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+
t∫

0

1∫
0

π∫
−π

(
A
(
γ λn (s, θ, α)

)−A(θ))N0(dθ dα ds), (4.2)

whereI is the unit 2× 2 matrix. Differentiating (4.1), we obtain

∂

∂λ
V nt (λ)=

t∫
0

dKns (λ).
∂

∂λ
V ns−(λ)+

t∫
0

1∫
0

π∫
−π
A′(γ λn (s, θ, α))

× (V ns−(λ)−Ws−(α))vTn (s, θ, α)N0(dθ dα ds). (4.3)

We have used the notation(
a

b

)
( x y )=

(
ax ay

bx by

)
.

The 2× 2 matrix ∂
∂λ
V nt (λ) is given by

(
∂

∂λx
V nt (λ)

∂

∂λy
V nt (λ)

)
.

We thus see that∂
∂λ
V nt (λ) satisfies a linear S.D.E. We thus are able to compute its explicit

expression, which we now do.
First consider the Doléans–Dade exponentialE(Kn(λ)) defined as the solution of:

E
(
Kn(λ)

)
t
= I +

t∫
0

dKn(λ)s.E
(
Kn(λ)

)
s−. (4.4)

SinceI +9Kns (λ) is always invertible (use the explicit expression ofA(θ)), we know
from Jacod [13], thatE(Kn(λ)) is a.s. invertible for allt ∈ [0, T ].

Using the main result of Jacod, [13], we deduce that

∂

∂λ
V nt (λ)= E

(
Kn(λ)

)
t

t∫
0

1∫
0

π∫
−π

E
(
Kn(λ)

)−1
s−
(
I +9Kns (λ)

)−1
A′(γ λn (s, θ, α))

× (V ns−(λ)−Ws−(α))vTn (s, θ, α)N0(dθ dα ds)

= E
(
Kn(λ)

)
t

t∫
0

1∫
0

π∫
−π

E
(
Kn(λ)

)−1
s−
(
I +A(γ λn (s, θ, α)))−1

A′(γ λn (s, θ, α))

× (V ns−(λ)−Ws−(α))vTn (s, θ, α)N0(dθ dα ds). (4.5)

The last equality comes from the fact thatN0 andN1 are independent, thus they never
jump at the same time (a.s.), and henceI +9Kns (λ) is taken in account in the integral
againstN0 only when the jump9Kns (λ) comes fromN0.

Exactly in the same way, one can compute the second derivative:
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∂2

∂λ2
V nt (λ)= E

(
Kn(λ)

)
t

t∫
0

1∫
0

π∫
−π

E
(
Kn(λ)

)−1
s−
(
I +A(γ λn (s, θ, α)))−1

×
[
2A′(γ λn (s, θ, α)) ∂∂λV ns−(λ)+A′′(γ λn (s, θ, α)) (4.6)

× (V ns−(λ)−Ws−(α))vTn (s, θ, α)
]
vTn (s, θ, α)N0(dθ dα ds).

Here, ∂
2

∂λ2V
n
t (λ) is given by

(
∂

∂λx

∂

∂λ
V nt (λ)

∂

∂λy

∂

∂λ
V nt (λ)

)
,

and we have used the notation(
a b

c d

)
( x y )=

(
ax bx ay by

cx dx cy dy

)
.

We will frequently use the following lemma. Recall that ifM is a 2× 2 matrix, then
‖M‖op = sup‖X‖=1 ‖MX‖.

LEMMA 4.1. – For all 0 � s � t ,
∥∥E(Kn(λ))

t
E
(
Kn(λ)

)−1
s−
∥∥
op

� 1. (4.7)

To prove this lemma, we first solve the Doléans–Dade equation in a very simple case.

LEMMA 4.2. – LetU be aM2×2(R)-valued process that can be written as the finite
sum of its jumps: for some0 � T1< · · ·< Tk � T ,

Ut =
k∑
i=1

9UTi1{Ti�t}. (4.8)

Then

E(U)t =
k∏
i=1

(I +9UTi1{Ti�t}), (4.9)

where
∏k
i=1Ai =Ak.Ak−1 . . .A1.

Proof. –It is immediate. Since

E(U)t = I +
k∑
i=1

1{Ti�t}9UTi .E(U)Ti− (4.10)

it suffices to work recursively on the time intervals[Ti, Ti+1[. ✷
Proof of Lemma 4.1. – Let us denote byNε, Nε0 , andNε1 the restrictions to[0, T ] ×

[0,1] × {[−π,π ]/[−ε, ε]} of N , N0, and N1. We also setbε = ∫
{[−π,π]/[−ε,ε]}(1 −
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cosθ)β(θ) dθ . We denote byKn,εt (λ) the semi-martingale given by (4.2) with̃Nε, Nε0 ,
andbε instead ofÑ , N0, andb. A standard computation shows that

E
(

sup
t∈[0,T ]

∥∥E(Kn,ε(λ))
t
− E
(
Kn(λ)

)
t

∥∥2)−→
ε→0

0. (4.11)

Furthermore, splittingÑε(dθ dα ds) into Nε(dθ dα ds)− 1{|θ |∈[ε,π]}β(θ) dθ dα ds, one
can check that

Kn,εt (λ)=
t∫

0

1∫
0

π∫
−π
A
(
γ λn (s, θ, α)

)
Nε0(dθ dα ds)+

t∫
0

1∫
0

π∫
−π
A(θ)Nε1(dθ dα ds). (4.12)

ThusKn,εt (λ) satisfies the assumptions of Lemma 4.2. Thus, if 0� T1 � · · · � Tk denote
the successive times of its jumps, we know that

E
(
Kn,ε(λ)

)
t
=

k∏
i=1

(
I +9Kn,εTi (λ)1{Ti�t}

)
. (4.13)

Hence, if 0� s � t ,

E
(
Kn,ε(λ)

)
t
E
(
Kn,ε(λ)

)−1
s− =

k∏
i=1

(
I +9Kn,εTi (λ)1{s<Ti�t}

)
. (4.14)

But every jump ofKn,ε(λ) can be written asA(φ), for someφ ∈ [−π,π ]. One easily
checks that for allφ, ‖I +A(φ)‖op � 1. Thus it is clear that for allε > 0, all 0� s � t ,

∥∥E(Kn,ε(λ))
t
E
(
Kn,ε(λ)

)−1
s−
∥∥
op

� 1. (4.15)

From (4.11), we deduce that there exists a sequenceεk decreasing to 0 such that a.s.,

sup
t∈[0,T ]

∥∥E(Kn,εk (λ))
t
− E
(
Kn(λ)

)
t

∥∥−→
k→∞ 0. (4.16)

One easily concludes: a.s.,E(Kn,εk (λ))t goes toE(Kn(λ))t for all t ∈ [0, T ]. Thus a.s.,
for all 0 � s < t , E(Kn,εk (λ))t and E(Kn,εk (λ))−1

s− go to E(Kn(λ))t and E(Kn(λ))−1
s−

respectively, and henceE(Kn,εk (λ))t E(Kn,εk (λ))−1
s− go toE(Kn(λ))t E(Kn(λ))−1

s−. ✷
5. Choice of the sequence of perturbations

Our aim is now to choose a sequence of perturbations such that (3.19) and (3.20) are
satisfied. An easy computation, using (4.3), shows that

∂

∂λ
V nT (0)= −1

2
E(K)T

T∫
0

1∫
0

π∫
−π

E(K)−1
s−Jn(s, θ, α)N0(dθ dα ds), (5.1)
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whereK =Kn(0), which obviously does not depend onn, see (4.2) and (3.4), and where
the 2× 2 matrixJn(s, θ, α) is given by


vxn(s, θ, α)
[(
V
y
s− −Wy

s−(α)
)

+ f (θ)(V xs− −Wx
s−(α)

)] vyn(s, θ, α)
[(
V
y
s− −Wy

s−(α)
)

+ f (θ)(V xs− −Wx
s−(α)

)]
vxn(s, θ, α)

[−(V xs− −Wx
s−(α)

)
+ f (θ)(V ys− −Wy

s−(α)
)] vyn(s, θ, α)

[−(V xs− −Wx
s−(α)

)
+ f (θ)(V ys− −Wy

s−(α)
)]



(5.2)

where f (θ) = (1 + cosθ)−1 sinθ . The main idea for choosingvn is the following:
first, we will get rid of the random termsE(K)T andE(K)−1

s− , by using a localization
procedure atT , and by using the a.s. continuity ofE(K) atT . Then we will compute the
determinant of ∂

∂λ
V nT (0) in the most natural way: we will write it asad − bc. Then we

will choosevxn andvyn in such a way thatad is large butbc is small.
Let us now define rigorously our perturbation. First, we recall the following Lemma,

that can be found in [9]. This lemma uses the fact that in(SP)-2, r � 2, i.e. that∫ |θ |β(θ) dθ = ∞.

LEMMA 5.1. – Assume(SP)-1,2. One can build a sequenceφn of positive, even,C1

functions on[−θ0, θ0] such thatφn(−θ0)= φn(θ0)= 0, such thatφn(θ)� k|θ | ∧ (1/2)
for somek � 1/2, such that if

ξn(θ)= |φ′
n(θ)| + r2r+2φn(θ)

|θ | , (5.3)

then ξn ∈ L1(β0(θ) dθ) and ξn � 1/2, and such that there exists a sequencean,
decreasing to0 whenn tends to infinity, and satisfying

an

θ0∫
−θ0
φn(θ)β0(θ) dθ −→ ∞, (5.4)

an

θ0∫
−θ0

|θ |φn(θ)β0(θ) dθ −→ 0. (5.5)

Then we prove a lemma which uses assumption(SP)-3. For some 0< ε < η < k <∞,
we set

Hxs = {α ∈ [0,1]/∣∣Wx
s−(α)−Xx0

∣∣< ε,η < ∣∣Wy
s−(α)−Xy0

∣∣< k}, (5.6)

Hys = {α ∈ [0,1]/∣∣Wy
s−(α)−Xy0

∣∣< ε,η < ∣∣Wx
s−(α)−Xx0

∣∣< k}. (5.7)

LEMMA 5.2. – Assume(SP), and recall thatX0 ∈ R
2 is fixed. There existq > 0,

0< ε < η < k such that for alls ∈ [T /2, T ],

Pα
(
Hxs
)
� q; Pα

(
Hys
)
� q. (5.8)
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Proof. –First we consider the constants 0< ε < η associated withX0 by assumption
(SP)-3. It is clearly possible to choosek <∞ large enough, in such a way that

Pα
(
Hx0
)
> 0; Pα

(
Hy0
)
> 0. (5.9)

It is thus clear from Lemma 1.6 that for alls ∈ [0, T ],

Pα
(
Hxs
)
> 0; Pα

(
Hys
)
> 0. (5.10)

On the other hand, the mapt �→ L(Vt)=Lα(Wt) is weakly continuous, sinceV satisfies
a quite simple S.D.E. We also know from Theorem 1.4 that for allt > 0 (and thus for all
t ∈ [T /2, T ]), L(Vt) is absolutely continuous with respect to the Lebesgue measure on
R

2. SinceHxs (respectivelyHys ) can be written as{Ws− ∈Ox} (respectively{Ws− ∈Oy})
for some open subsetOx (respectivelyOy) of R

2, we deduce that the mapss �→ Pα(Hxs )
ands �→ Pα(Hys ) are continuous. Since continuous functions which never vanish on a
compact interval are bounded below by a strictly positive constantq > 0, one easily
concludes. ✷

We now are able to define our perturbation. First consider the processes on[T −an, T ]
(recall thatan andφn were defined in Lemma 5.1):

Zn,xt =
t∫

T−an

1∫
0

π∫
−π

1Hxs (α)φn(θ)N0(dθ dα ds), (5.11)

Zn,yt =
t∫

T−an

1∫
0

π∫
−π

1Hys (α)φn(θ)N0(dθ dα ds). (5.12)

We fix c > 0 (which will be chosen later), and we set

T xn = inf
{
t > T − an/Zn,xt � c

}
, (5.13)

T yn = inf
{
t > T − an/Zn,yt � c

}
. (5.14)

We now denote bysg(x) the sign ofx. The constantδ > 0 will be chosen later. We set

vxn(s, θ, α)= 1{‖Vs−−X0‖<δ}1[T−an,T xn ∧T ](s)1Hxs (α)sg
(
V
y
s− −Wy

s−(α)
)
φn(θ), (5.15)

vyn(s, θ, α)= −1{‖Vs−−X0‖<δ}1[T−an,T yn ∧T ](s)1Hys (α)sg
(
V xs− −Wx

s−(α)
)
φn(θ). (5.16)

For eachn, vn is a perturbation (see Definition 3.1), since it is predictable, and since it
satisfies (3.1), (3.2), and (3.3) thanks to Lemma 5.1.

The following lemma is the key of the proof.

LEMMA 5.3. – The following convergence holds

lim
n→∞P

(
T xn < T ; T yn < T

)= 1. (5.17)

Proof. –Let us just check the convergence forT xn .
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P
(
T xn < T

)=P (Zn,xT � c
)

� 1− ecE
(
e−Zn,x

T
)

� 1− ec exp

{
−

T∫
T−an

∫
Hxs

π∫
−π

(
1− e−φn(θ))β0(θ) dθ dα ds

}

� 1− ec exp

{
−an × q × 1

2

π∫
−π
φn(θ)β0(θ) dθ

}
(5.18)

which goes to 1 thanks to Eq. (5.4). We have used Lemma 5.2 and the fact that sinceφn
is smaller than 1/2, 1− e−φn � φn/2. ✷

6. Conclusion

We are now able to prove Theorem 1.5. We begin with the following proposition:

PROPOSITION 6.1. – Recall thatX0 ∈ R
2 is fixed. There exist some constantsδ > 0,

β > 0 such that a.s.,

lim inf
n→∞

∣∣∣∣det
∂

∂λ
V nT (0)

∣∣∣∣� β1{‖VT −X0‖<δ}. (6.1)

First recall that

∂

∂λ
V nT (0)= E(K)T

T∫
0

1∫
0

π∫
−π

E(K)−1
s−
(
I +A(θ))−1

A′(θ)

× (Vs− −Ws−(α))vTn (s, θ, α)N0(dθ dα ds), (6.2)

whereKt =Knt (0). First, we get rid of the random termsE(K)T andE(K)−1
s− .

LEMMA 6.2. –Consider

DnT =
T∫

0

1∫
0

π∫
−π

(
I +A(θ))−1

A′(θ)
(
Vs− −Ws−(α))vTn (s, θ, α)N0(dθ dα ds). (6.3)

Then a.s.,

lim inf
n→∞

∣∣∣∣det
∂

∂λ
V nT (0)

∣∣∣∣= lim inf
n→∞

∣∣detDnT
∣∣. (6.4)

Proof. –We just have to check that a.s., whenn goes to infinity,

∥∥∥∥ ∂∂λV nT (0)−DnT
∥∥∥∥−→ 0. (6.5)

First, it is clear that‖A′(θ)‖ �K . From (5.6), (5.7), and (5.15), (5.16), we deduce that

[‖Vs−‖ + ‖Ws−(α)‖]‖vn(s, θ, α)‖ �
[
2‖X0‖ + δ+ k]‖vn(s, θ, α)‖. (6.6)
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Thus∥∥∥∥ ∂∂λV nT (0)−DnT
∥∥∥∥�K sup

[T−an,T ]

∥∥E(K)T E(K)−1
s− − I∥∥

×
T∫

T−an

1∫
0

π∫
−π

[∣∣vxn(s, θ, α)∣∣+ ∣∣vyn(s, θ, α)∣∣]N0(dθ dα ds)

�K sup
[T−an,T ]

∥∥E(K)T E(K)−1
s− − I∥∥× [Zn,xT xn +Zn,y

T
y
n

]
�K(2c+ 1) sup

[T−an,T ]

∥∥E(K)T E(K)−1
s− − I∥∥ (6.7)

thanks to the definitions ofvn, Zn, and Tn. This term goes to 0, because the map
t �→ E(K)t is a.s. continuous atT . ✷

Proof of Proposition 6.1. – Thanks to the previous lemma, it suffices to check the
proposition withDnT instead of ∂

∂λ
V nT (0). First notice that

DnT = −1

2

t∫
0

1∫
0

π∫
−π
Jn(s, θ, α)N0(dθ dα ds), (6.8)

whereJn was defined by (5.2). Computing the determinant in the most simple way, we
write it of the form

detDnT = 1

4
× [Hn,xxT H

n,yy
T −Hn,xyT H

n,yx
T

]
. (6.9)

We want to prove thatHn,xxT andHn,yyT are large, and thatHn,xyT andHn,yxT are small.
First, we prove a lowerbound forHn,xxT = ∫ T0 ∫ 1

0

∫ π
−π J

xx
n (s, θ, α)N0(dθ dα ds). First,

we deduce from (5.6) and (5.15) that

J xxn (s, θ, α)�
(∣∣V ys− −Wy

s−(α)
∣∣− |f (θ)|∣∣V xs− −Wx

s−(α)
∣∣)

× 1Hxs (α)1‖Vs−−X0‖<δ1[T−an,T∧T xn ](s)φn(θ)
�
(
(η− δ)− |f (θ)|(ε+ δ))1Hxs (α)1‖Vs−−X0‖<δ
× 1[T−an,T∧T xn ](s)φn(θ). (6.10)

Furthermore,

|f (θ)| �
∣∣∣∣ sinθ

1+ cosθ

∣∣∣∣�
∣∣∣∣ θ

1+ cosθ0

∣∣∣∣�K|θ |.
We thus obtain

H
n,xx
T � (η− δ)

T∧T xn∫
T−an

1∫
0

π∫
−π

1{‖Vs−−X0‖<δ}1Hxs (α)φn(θ)N0(dθ dα ds)

−K(ε+ δ)
T∫

T−an

1∫
0

π∫
−π

|θ |φn(θ)N0(dθ dα ds)
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� (η− δ) inf[T−an,T ] 1{‖Vs−−X0‖<δ} ×Zn,xT∧T xn

−K
T∧T xn∫
T−an

1∫
0

π∫
−π

|θ |φn(θ)N0(dθ dα ds). (6.11)

Thanks to (5.5), the second term clearly goes to 0 a.s. On the other hand, we know from
Lemma 5.3 that

lim inf
n→∞ Z

n,x
T∧T xn � c. (6.12)

Since V is a.s. continuous atT , we deduce that inf[T−an,T ] 1{‖Vs−−X0‖<δ} goes to
1{‖VT−X0‖<δ}.

This way, we obtain a.s.,

lim inf Hn,xxT � (η− δ)× c× 1{‖VT −X0‖<δ}. (6.13)

The same lowerbound holds for lim infn→∞H
n,yy
T .

We now computeHn,xyT = ∫ T0 ∫ 1
0

∫ π
−π J

xy
n (s, θ, α)N0(dθ dα ds). Thanks to the defini-

tion of vxn andHxs ,
J xyn (s, θ, α)�

(
(ε+ δ)+ |f (θ)|(k + δ))1Hxs (α)
× 1‖Vs−−X0‖<δ1[T−an,T∧T xn ](s)φn(θ). (6.14)

Hence,

H
n,xy
T � sup

[T−an,T ]
1{‖Vs−−X0‖<δ} × (ε+ δ)Zn,xT∧T xn

+K
T∫

T−an

1∫
0

π∫
−π

|θ |φn(θ)N0(dθ dα ds). (6.15)

The second term goes to 0 a.s., thanks to (5.5). The definitions ofZn,x andT xn , and the
fact thatφn � 1/2 yield thatZn,xT∧T xn � c+ 1/2. Finally, using the a.s. continuity ofV at
T , we deduce that a.s.,

lim sup
n→∞

∣∣Hn,xyT

∣∣� (ε+ δ)(c+ 1/2)1{‖VT−X0‖<δ}. (6.16)

The same upperbound holds for lim supn→∞ |Hn,yxT |.
We finally deduce from (6.9) that

lim inf
n→∞

∣∣detDnT
∣∣� [c2(η− δ)2 − (c+ 1/2)2(ε+ δ)2]1{‖VT −X0‖<δ}. (6.17)

Thus Proposition 6.1 will be proved if we exhibitδ > 0 andc > 0 such thatc(η− δ) >
(c+ 1/2)(ε+ δ). Since 0< ε < η, this is clearly possible: choose

δ = η− ε
3

; c= η+ 2ε

η− ε . (6.18)

The first part of our criterion is satisfied.✷
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We still have to check the following result.

PROPOSITION 6.3. – There exists a constantK <∞ such that for alln,

P

(
sup

‖λ‖�1

{∥∥∥∥ ∂∂λV nT (λ)
∥∥∥∥+

∥∥∥∥ ∂2

∂λ2
V nT (λ)

∥∥∥∥
}

�K
)

= 1. (6.19)

Proof. –First, we prove a Lipschitz property (inλ) for V nt (λ). SettingUnt (λ,µ) =
V nt (λ)− V nt (µ),

Unt (λ,µ)=
t∫

0

dKns (λ).U
n
s−(λ,µ)+

t∫
0

1∫
0

π∫
−π

[
A
(
γ λn (s, θ, α)

)−A(γ µn (s, θ, α))]

× [V ns−(µ)−Ws−(α)]N0(dθ dα ds). (6.20)

Thus, using again the result of Jacod [13],

Unt (λ,µ)= E
(
Kn(λ)

)
t

t∫
0

1∫
0

π∫
−π

E
(
Kn(λ)

)−1
s−
(
I +A(γ λn (s, θ, α)))−1

× [A(γ λn (s, θ, α))−A(γ µn (s, θ, α))]
× [V ns−(µ)−Ws−(α)]N0(dθ dα ds). (6.21)

But, since |γ λn (s, θ, α)| � θ0 < π , it is clear that‖(I + A(γ λn (s, θ, α)))−1‖ � K .
Furthermore, one easily checks that

∥∥A(γ λn (s, θ, α))−A(γ µn (s, θ, α))∥∥�K‖λ−µ‖ × ‖vn(s, θ, α)‖. (6.22)

Using also Lemma 4.1, we deduce that

∥∥Unt (λ,µ)∥∥�K‖λ−µ‖
t∫

0

1∫
0

π∫
−π

[∥∥V ns−(µ)∥∥+ ‖Ws−(α)‖]
× ‖vn(s, θ, α)‖N0(dθ dα ds). (6.23)

In particular, ifµ= 0,

‖V nt (λ)‖ � ‖Vt‖ +KY, (6.24)

where

Y =
T∫

0

1∫
0

π∫
−π

[‖Vs−‖ + ‖Ws−(α)‖]× ‖vn(s, θ, α)‖N0(dθ dα ds)

� [2‖X0‖ + δ + k] × (Zn,xT xn +Zn,y
T
y
n

)
� [2‖X0‖ + δ + k] × (2c+ 1)�K. (6.25)

We have used the definitions ofvn, Zn, Tn, andHs .
Let us now turn to the first derivative. We use expression (4.5). Using the same

arguments as above, and inequalities (6.24) and (6.25),
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∥∥∥∥ ∂∂λV nt (λ)
∥∥∥∥�K

T∫
0

1∫
0

π∫
−π

(∥∥V ns−(λ)∥∥+ ‖Ws−(α)‖)‖vn(s, θ, α)‖N0(dθ dα ds)

�K
T∫

0

1∫
0

π∫
−π

(‖Vs−‖ + Y + ‖Ws−(α)‖)‖vn(s, θ, α)‖N0(dθ dα ds)

�K × (Zn,xT xn +Zn,y
T
y
n

)
�K. (6.26)

Exactly in the same way, one can check that for some constantK , for all λ, t , n,

∥∥∥∥ ∂2

∂λ2
V nt (λ)

∥∥∥∥�K. (6.27)

We thus have proved Proposition 6.3.✷
We are now able to conclude.

Proof of Theorem 1.5. – We have fixedX0 ∈ R
2, and we have found a sequence of

perturbations such that, for someβ > 0, δ > 0,K <∞,

a.s., lim inf
n→∞

∣∣∣∣det
∂

∂λ
V nT (0)

∣∣∣∣� β1{‖VT −X0‖�δ}, (6.28)

∀n ∈ N
∗, P

(
sup

‖λ‖�1

{∥∥∥∥ ∂∂λV nT (λ)
∥∥∥∥+

∥∥∥∥ ∂2

∂λ2
V nT (λ)

∥∥∥∥
}

�K
)

= 1, (6.29)

from which we easily deduce, for allr > 0,

lim inf
n
P

(
‖VT −X0‖ � r;

∣∣∣∣det
∂

∂λ
V nT (0)

∣∣∣∣� β/2;

sup
‖λ‖�1

{∥∥∥∥ ∂∂λV nT (λ)
∥∥∥∥+

∥∥∥∥ ∂2

∂λ2
V nT (λ)

∥∥∥∥
}

�K
)

� P(‖VT −X0‖ � r ∧ δ).
(6.30)

It is thus clear that everyX0 in the support ofL(VT ) satisfies the assumptions of
Theorem 3.3. Applying Remark 3.5 drives immediately to the conclusion.✷
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