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ABSTRACT. - We establish a weak convergence theorem for empirical
processes of stationary and associated random variables having the
uniform marginal distribution. To carry out the proof, we develop
a tightness criterion for the empirical process constructed from any
stationary sequence fulfilling a suitable moment inequality. We apply the
result to stationary non mixing moving average sequences with positive
coefficients. Based on this class of linear processes, we compare mixing
and association. © 2000 Editions scientifiques et medicales Elsevier SAS
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RESUME. - Nous montrons le TLC empirique pour des suites stricte-
ment stationnaires, associees et distribuées suivant la loi uniforme. Nous
donnons, en particulier, un critere assurant la tension du processus em-
pirique construit a partir d’une suite stationnaire verifiant une inegalite
de moments convenable. Nous appliquons notre resultat aux processus
lineaires non melangeant a coefficients positifs. En se basant sur cette
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classe de processus lineaires, nous comparons le melange et l’associa-
tion. @ 2000 Editions scientifiques et medicales Elsevier SAS

1. INTRODUCTION, NOTATIONS AND PREVIOUS RESULTS

Let be a stationary sequence of random variables (r.v’s) on a
probability space (~2, P). Let F be the common distribution function
of The empirical distribution function Fn of is

defined as:

The empirical process Gn based on the observations Xi, ... , Xn is

defined by:

Let D[2014oo, +oo] be the space of cadlag functions on [ - oo , having
finite limits at Suppose that D[-oo, is equipped with the
Skorohod topology. The usual Empirical Central Limit Theorem (ECLT)
gives conditions under which the empirical process {Gn (x), x E R}
converges in distribution, as a random element of D[-oo, +oo], to a
Gaussian process G with zero mean and covariance

The proof of such theorem requires two steps:
Step 7. Establish the convergence of finite-dimensional distributions.

Step 2. Establish the tightness property.
In general, it remains to prove step 2 since step 1 follows from a

suitable central limit theorem, usually well known.
For the sake of simplicity, we suppose in the sequel that the marginal

distribution function F is continuous on R. This restriction allows to

suppose that the marginal law is Ll ( [o, 1 ] ) : the uniform law over [0,1]
(cf. Billingsley [2]).
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The purpose of this paper is to study the convergence of the empirical
process for associated sequences. Let us recall that is a sequence
of associated r. v’s if for every finite subcollection Xi1, ..., Xin and every
pair of coordinatewise non decreasing functions h, k : M" - R

whenever the covariance is defined. This definition was introduced by
Esary et al. [7], mainly for the sake of applications in reliability and
statistics.

Let us briefly recall what is known about this problem.
Assume that Xo has a bounded density f. Up to now, the fi-di

convergence of Gn was proved only under the summability condi-
tion Xn)  oo (cf. Yu [15]). Hence the condition

Cov(Xi, X n ) = (9(~~) seems to be necessary for the empirical central
limit theorem.

Yu [15] was the first to prove an ECLT for stationary associated
sequences. He supposed that

Next Shao and Yu [ 13] weakened condition (3). Their condition ensuring
the ECLT was:

Since Xo has a bounded density f, the convergence of Gn holds under a
condition on the covariance of the original r.v’s:

as it can be seen by writing

The convergence of the empirical process, Gn , is also known to hold
for sequences satisfying some conditions of weak dependence
called mixing. Let us recall the mixing coefficients and the mixing as-
sumptions yielding the convergence of the empirical E
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As a measure of dependence, Volkonskii and Rozanov [ 14] introduced
the f)-mixing coefficients, defined for any two a -algebras A and B by

where the sup is taken over all pairs of finite partitions Ai and B j of
Q such that Ai E A for each i and B j for each j. The ,8-mixing
coefficients of the strictly stationary sequence are defined, for
each n e N, by

The sequence is said to be ,8-mixing or absolutely regular (a.r.)
if the mixing coefficients ,8n tend to 0, as n tends to oo.

For ,8-mixing sequences, the convergence of Gn follows, as a particular
case in Doukhan et al. [6], if

Recall that the fi-di convergence of Gn needs the mixing condition
 oo. Hence condition (8) is nearly optimal.

It is interesting to compare mixing and association. We note first that an
important property of associated random variables is that noncorrelation
implies independence (see e.g. Newman [9]); the only alternative frame
for this to hold is the Gaussian one. This means that one may hope that
dependence will appear in this case only through the covariance structure,
and also justifies the study of such processes: indeed a covariance is

much easier to compute than a mixing coefficient. Unfortunately, a main
inconvenience of mixing is that there are only few mixing models for
which the mixing coefficients can be explicitly evaluated. Examples of
such models are linear processes, that we intend to focus on in this paper.

Suppose E := (Ei, i G Z) is a stationary sequence of independent r.v’s
fulfilling = 0, a) :=  oo. Let a := be a sequence
of real numbers such that ar  oo. Then the random sequence

(Xk, 
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is well defined, strictly stationary and EXf  oo. In the sequel, we denote
by ,G2 (a, ~) the class of linear sequences, defined by (9) and by ,G2 (a, ~)
the subset of ,C2 (a, ~) for which ai = 0 for i  0.

If the distribution of £0 has an absolutely continuous density in ILl,
then the linear sequence (Xk, k E Z) in ,C2 (a, ~) is a.r. with

for some constant K,

as soon as  oo (cf. Pham and Tran [ 12]).
Up to our knowledge, there are no conditions yielding the mixing prop-

erty for non-causal linear sequences of the set ,C2 (a, ~) (cf. Doukhan [5]
for a survey of literature about this question).
We note also that association and mixing define two distinct but not

disjoint classes of processes; as it is shown by the following examples
taken from the class ,C2 (a , ~ ) .

Associated but not mixing sequences. The following example is well
known.

Suppose £ == E Z) is i.i.d. with = 1) = = 0) = 1 /2.
Let a = (2*~, ~ ~ 1). Then the linear process (Xk) E L2 (a, ~) so defined
is associated (cf. (P2) and (P4) of Esary et al. [7]). However (Xk) fails
to be mixing, since 1 /4 (cf. Bradley [3] and the references therein).
Moreover, Xi has the uniform on [0, 1 ] marginal law, and, for n E N,

which decreases exponentially fast to 0. Hence, Yu’s [15] result yields
the convergence of the empirical process Gn constructed from this

sequence (Xk).
Associated and mixing sequences. Suppose that the requirement of

Theorem 2.1 in Pham and Tran [ 12] holds. Suppose moreover that ak > 0
for all k e N. Then the linear process (Xk) E ,C2 (a, ~) so defined, is at the
same time associated and ,8-mixing.
Mixing but not associated sequences. Suppose that the sequence

a = (ak, k E N) satisfies 0 and ai = 0 for all x ~ 2. Then
Xn = is not associated since Cov(Xn, = aoalaJ  0
(which is in contradiction with the definition of association). However
the sequence (Xn) is mixing, since it is m-dependent.

Another example of classes that make the difference between mixing
and association is the Gaussian one. Indeed Gaussian processes are
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associated if and only if their covariance function is positive (cf.
Pitt [ 11 ] ) .

Let us now come back to the main purpose of this paper, which is the

study of the convergence of the empirical process under association.
In the following section, we give the main result. Our condition

yielding the ECLT under association requires b > 4 which improves
on condition (4) (cf. Theorem 1 below). We apply the result to linear

sequences and we discuss the results known in this area (cf. Corollary 1
and the remarks below). In particular, we compare the results obtained
when the linear processes are viewed as associated sequences or as

mixing r.v’s. In section three, we prove the results and we emphasise
the necessity to have b > 4, of course with the method that we propose.
An outline of the proofs is the following. By adapting an approach of

Andrews and Pollard [ 1 ], we approximate Gn by an empirical process
indexed by suitable regular functions that belong to a finite class of
functions. Hence to prove the tightness property, it remains to control

some moment of the oscillation of the empirical process indexed by
those suitable regular functions. This will be done using a Rosenthal
moment inequality for regular functions of associated r.v’s proved in
Shao and Yu [13]. The tightness property then holds if we estimate

the variance quantities that come from Rosenthal’s inequality. Those
variance estimates differ from the estimates given in Shao and Yu [13]
(cf. Lemma 2 below). Hence, to carry out the proof of the tightness
property, we develop a general criterion yielding the tightness of the

empirical process constructed from any stationary sequence fulfilling a
suitable moment inequality (cf. Proposition 1 ).

Finally, the paper is concluded with an appendix dedicated to Proposi-
tion 1.

2. MAIN RESULT AND APPLICATION

THEOREM 1. - Let be a stationary associated sequence with
continuous marginal distribution F. Assume that, for n E N*,

Then
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where Gn (.) is defined by (1) and G is the zero-mean Gaussian process
with covariance defined by (2).
The above theorem applied to the sequences in ,C2 (a, £)

yields:
COROLLARY 1. - Let be a stationary sequence that belongs

to the set ,C2 (a, E). Suppose that ai > 0 for each i in Z. Suppose moreover
that the law of Xi has a bounded density. If, for n E N*,

then the conclusion of Theorem 1 holds.

Proof of Corollary 1. - It suffices to note that the linear sequence is
associated (since 0 for each i E Z) and that

Remark. - Let E ~2 (a , E ) . Suppose that ak = 
( 1 ) If satisfies the requirement of Theorem 2.1 in Pham and

Tran [12], then the sequence (Xi)iEZ is f)-mixing if a > 5/2 and the
coefficients ,8n fulfil ~’y~5/3-2a/3. Hence condition (8) is satisfied only
ifa > 4.

(2) Suppose now that the requirement of Corollary 1 holds. Then

r(~) ~ cn-a and the convergence of Gn holds if a > 4.
Hence association or mixing require the same condition on the decay

of (ak) for the ECLT. However, the association property follows as soon
as the coefficients ak are positive, while the /?-mixing property requires
some additional conditions on the law of ~o’

An immediate consequence of Corollary 1 is the following:
COROLLARY 2. - Let (Xi)iEZ be a stationary sequence in ,C2 (a, ~)

fulfilling condition ( 11 ). Suppose that a j 0 for each j E Z and that

Suppose moreover that, for some 8 > 0 and for any u E R

Then the conclusion of Theorem 1 holds for the sequence 
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Proof of Corollary 2. - Note that conditions ( 12) and ( 13) guarantee
the existence of a bounded density for Xo (cf. Giraitis and Surgailis [8]).
Those conditions, together with ( 11 ), yield then Corollary 1, which in
turns implies Corollary 2. D

3. PROOF OF THE MAIN RESULT

As we have already noticed in Section 1, the proof of Theorem 1

requires two steps. The proof of the first step follows from the CLT for

weakly associated random vectors of Burton et al. [4], we recall that it

requires b > 3.
In order to prove the stochastic equicontinuity, we adapt Andrews and

Pollard’s [ 1 ] approach for mixing sequences to the context of associated

sequences.
In the following subsection, we give a criterion ensuring the stochastic

equicontinuity property for empirical processes indexed by a class of
functions F. This criterion will be available for any stationary sequence
fulfilling a suitable moment inequality. Next (cf. Section 3.2), we

apply the stochastic equicontinuity criterion to the empirical process Gn
(defined by ( 1 )) when the observations are stationary and associated.

3.1. A general tightness criterion

Let be a stationary sequence of r.v’s. Let .~’ be a class

of real-valued functions uniformly bounded by 1. Suppose that .~’ is

equipped with the seminorm p ( f ) == Ilf(X1)112 denotes the norm

of a random variable Z). The empirical process Gn indexed

by the class of functions .~’ is defined by:

Hence the usual empirical process Gn on [0,1] defined by ( 1 ) is the

process Gn indexed by the class:

Let, for 8 > 0, F(8) be the set of real-valued functions uniformly
bounded by 1 such that their first derivatives are uniformly bounded

by 1 /~ . We adapt the following definition of the bracketing number in
order to make the proofs as easy as possible.
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DEFINITION 1. - The bracketing number .lV(8) _ .lV(8, F) is the

smallest value of N for which there exist functions fl, ..., fN in .~(8)
such that for each f in .~ there exists i, j for which f  fj and
E( fj - f; ) (X~)  C8, for a positive constant C that depends only on the
sequence 

For each let be the finite subclass with cardinality
Nk :=.IU(2-k, F) defined by :_ ..., .fNk ).

We introduce the following assumption.

ASSUMPTION ,A(r). - For any real numbers r > 2, ~.c > 0, there exists
a positive constant C,.,u for which the following moment inequality holds
for any functions fk, gk in .~k

where Sn (f ) _ .f (X O + ... ° + f(Xn) and p (.f ) = II .f (X O II z.

As it will be seen in the sequel, associated sequences fulfill Assump-
tion A(r).
The following proposition gives a maximal inequality for an arbitrary

stationary sequence fulfilling Assumption A(r). This maximal inequality
yields the tightness of the empirical process indexed by a suitable class of
functions 0. Let us note that the forthcoming maximal inequality requires
conditions on the integrability of the bracketing numbers introduced in
Definition 1.

PROPOSITION 1. - Let be a stationary sequence of r.v’s that
satisfies Assumption A(r), for r > 2,  > 0. Let F be a class of real-
valued functions uniformly bounded by 1, whose bracketing numbers (see
Definition 1 ) satisfy

for the same r and for a sequence (an) that decreases to 0 at infinity. Then
for each ~ > 0 and 8 > 0 there exists an integer m depending only on s,
r and on the bracketing number N(. , for which
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where Nm = N(2, m, F).

Hence the stochastic equicontinuity follows from (18), if we choose
8 > 0 such that

Let us note that the first condition on the bracketing number (see
conditions ( 17)) requires r > 4 (recall that (an ) decreases to 0 at infinity).

In the following subsection, we prove Theorem 1 (Proposition 1 is

proved in Appendix A).

3.2. Proof of Theorem 1

To prove Theorem 1, we apply Proposition 1 with 0 as defined by (15).
Let us precise, in such a case, the approximating class Fk and the
bracketing numbers N (x, F) (cf. Definition 1 ).

For some k E N, we denote by Tk the covering set of [0,1] defined by

For each tk in Tk, we define the step function ftk by:

Let Fk be the set of all those functions ftk whenever tk runs over
the covering set Tk. The class previously defined, approximates ~’
(defined in (15)). Certainly, for each ft in ~":

square brackets denoting the integer part, as usual. The correspondence
between .~’ and T (respectively Fk and Tk) implies that A~(jc,~") ==
O(I/x) (respectively Fk and Tk have the same cardinality: 2~). Conse-
quently, the integral condition on the covering number stated in Propo-
sition 1 is satisfied as soon as r > 4, while the first condition needs
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r > 5 + 2p (see conditions ( 17)). Therefore, in order to prove the tight-
ness property, we will first check Assumption A(r) for some r > 5. We
make use of the following lemma.

LEMMA 1 (Shao and Yu [13]). - Let r > 2. Let f be a real valued
function bounded by 1 with bounded first derivative. Suppose that

is a sequence of stationary and associated r v’s such that, for
n E N*,

Then, for any ~r, > 0 there exists some positive constant k, independent
of the function f for which

Inequality (20) is known as Rosenthal’s inequality. The term

inequality (20) is replaced, for independent sequences, by
(cf. Petrov [10]). This difference will affect the conditions

yielding the convergence of the empirical process.
Define for some fixed s, and for a and h in [0, 1], the step function fa,h

by:

Clearly the function fa,h depends on s, we will write it fs ,a,h in any
confusing situation.
We recall that our purpose is to check Assumption ~4(r), that means

that the functions ftk of the approximating subset Fk satisfy the moment
inequality (16).

For this, let tk and tk be two arbitrary real numbers in the covering
set Tk. Consider the functions defined as in ( 19).
We assume without loss of generality that tk  t[ , hence tk - 2-k  tk #

tk - 2-k  tk. Therefore is one of the functions fa,h previously
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defined, with s : = si = tk, a = ai = 2-k and h : = h 1 = tk - tk - 2-k . We
note that if h # 0 then necessarily a x h.
Now suppose that condition ( 10) holds. Let v = b - 4 and r = 5 + 

for some JL G ]0, v / 3 [ . Lemma 1 yields:

where Cr is a positive constant that does not depend on the class F.
Hence Assumption A(r) holds if we control the covariance quantity of

the last inequality. This is the purpose of the forthcoming lemma.

LEMMA 2. - Let (Xn)n~Z be a stationary associated sequence of
uni, f ’orm- [o, 1 ] random variables. Assume that there exists a positive
constant K such that, for r E N*,

Then, there exists a positive constant C depending only on K and b for
which

where the functions are previously defined with 0 ~ a  h or h = 0
and a > 0.

Before proving Lemma 2, we continue the proof of Theorem 1.
Inequality (21 ), together with Lemma 2, yields:

Therefore Assumption A(r) holds. Proposition 1 yields then:

where the functions ft, fs are in the set ,~’ defined by ( 15), ~ and £ are
arbitrary positive real-numbers, m is a fixed real-number depending only
on r, E and on the covering number N(. , ~").
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We now evaluate the moment quantity IIGn(t) - Some

elementary estimations (cf. also (5.27) of Shao and Yu [13]) yield:

The above inequality, together with (24) and Lemma 2, implies :

Therefore, we obtain, noting that r > 4 + and taking the limit in the
last inequality,

m is fixed, we can therefore choose 8 in such a way that £.

3.2.1. Proof of Lemma 2

The proof of this lemma needs the following preparatory lemma.

LEMMA 3. - Let (X 1, X2) be a vector of associated r. v’s with the

uniform-[0, 1 ] marginal law. Let fa, h be the function previously defined.
If h = 0, a ~ 0, then:

Suppose now that h ~ 0, 0 ~ a  h. Then the following inequalities hold:
(1) Ifa ) X2), (Cov(X1, X2)/h)1~~), then

(2) If a  min(Cov1/4(X1, X2), (Cov(X1, X~,)/h)1~3), then

and moreover,
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Proof of Lemma 3. - The proof of this lemma uses repeatedly the fol-
lowing covariance inequality. For a stationary associated vector (Xi, X2)

We suppose first that ~~0,0~~~ and we consider the following
cases.

Case 7. Suppose that a > min(Cov1/4(X1, X2), (Cov(X1, X2) / h) 1/3),
then (27) yields:

Hence (25) of Lemma 3 follows, by noting that

Case 2. Suppose now that

A bound for ,fa,h (X 2O
If b = X2 ) , then the condition on a yields a  b. Hence

~ ~ ,f b, h ~ and
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(The last inequalities are obtained using the fact that hand

that + 2b . ) Hence we obtain (recall that a C h ) :

Now, we bound min(Cov1/2(X1, X2) + hCov1/4(X1, X2), h) by
. h if h2  Cov(X1, X2),
. 2hCov1/4(X1, X2) h4,
. 2Cov1/2(X 1, X2) otherwise.

With these estimates, the last part of Lemma 3 follows.

A bound for fa,h(X2))
If Cov(X1, X2) > h4/8, then the covariance inequality (26) is obvi-

ously satisfied:

We suppose now Cov(Xi,X2)  h4 / 8 and we consider, for some

b G [a, h/2[, the function gb :== £+b,b,h-2b. Clearly, 0 ~ gb  
h - 2b  Egb(X1) and 1/&#x26;. Hence:

Now let b :_ (Cov(Xi, XZ)/h)~~-~. This b satisfies a ~ b  h/2. Hence
the last inequality yields:
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The proof of Lemma 3 is complete if we bound 
To this end we consider again two cases.

(1) If a > Cov1/4(X1, X2), then obviously

(2) Suppose now that a  Cov1/4(X1, X2) ==: b, then 0  fa,0  fb,o
and

Hence

and

Let us now conclude. We denote by I the set of all positive integers i  n
for which

Let J be its complement in {1,...,~}. Clearly



563S. LOUHICHI / Ann. Inst. Henri Poincare 36 (2000) 547-567

The last sum in the last inequality is bounded, using Lemma 3, by:

In order to bound the first sum, we denote by:

. Using Lemma 3 and assumption (22), we obtain:

Lemma 2 is so proved.
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APPENDIX A

A.I. Proof of Proposition 1

Throughout the proof we use the following maximal inequality due to
Pisier (cf. Andrews et al. [ 1]): for random variables Zi,..., ZN,

The proof is done in three steps.



564 S. LOUHICHI / Ann. Inst. Henri Poincare 36 (2000) 547-567

Step 7. We first show that there exists a sequence in such that

Gn ( f’) is approximated by Gn ( fky>) for a suitable choice of the sequence
k = k(n), i.e.

CLAIM 1. - There exists a sequence k(n) that diverges at infinity for
which

In order to prove Claim 1, let f be in F. Invoking the definition of
bracketing numbers, one may find some functions fk, gk in Fk for which

f’  gk, p2 (gk - fk) # C2-k . On the one hand

(the two last inequalities are obtained since f # gk and E(gk - fk) #
C2-k). On the other hand

The maximum in the last inequality, is considered over the functions fk in
Fk (not over the functions (gk, fk) in Fk x Indeed gk is well defined
given fk and f : assume Fk to be enumerated, then gk is the first function
satisfying

Hence inequality (A.2), together with (A.1 ), yields

So that, Assumption A(r) and inequality (A.4) imply
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(here and in the sequel Cr is a positive constant independent of the
family that may be different from line to line). The second term on
the right hand side of (A.5) tends to 0 at infinity if k = k(n) satisfies
2k =  / an and if conditions ( 17) of Proposition 1 are fulfilled.

Step 2. The second step is to prove, via a chaining argument, that
for fixed m and n large enough, Gn ( fk(n)) is uniformly approximated
by Gn ( fm). That is:

CLAIM 2. - For a fixed 8 > 0, there exists some mEN such that for n
large enough, one has

Since ken) diverges at infinity, we deduce that m  ken) for n large
enough. Hence

The functions fi appearing in the last sum are defined inductively as
follows. Given fi in 5i, we define the function fi-i 1 from 5i-1 1 that

approximate the function fi in the sense:

From the above construction, we deduce that

Inequalities (A.6), (A.7) and (A.I), together with Assumption A(r),
yield:
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the last inequality is obtained since the sequence is nondecreasing.
Now, using conditions (17), the second term on the right hand side

of the last inequality is small than ~/2 for n large enough (since
2k~n~ = The first term on the right hand side is bounded by

x-3~4.I~l~r (x, dx, which is smaller than £ /2 for an appropriate
fixed m.

Step 3. Now, starting from Claims 1 and 2 and arguing exactly as in
Andrews and Pollard [ 1 ] (see their paragraph ’comparison of pairs’ ), we
obtain
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