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ABSTRACT. - We obtain sharp asymptotics for the first time a

"macroscopic" density fluctuation occurs in a system of independent
simple symmetric random walks on Zd. Also, we show the convergence
of the moments of the rescaled time by establishing tail estimates. @ 2000
Editions scientifiques et médicales Elsevier SAS
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RESUME. - Nous obtenons des estimees asymptotiques de la distribu-
tion du premier temps d’ apparition d’une fluctuation "macroscopique" en
densite pour un systeme de particules independantes sur Zd. Aussi, nous
obtenons la convergence des moments du temps renormalise en etablis-
sant des estimees de queue de sa distribution. @ 2000 Editions scienti-
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1. INTRODUCTION

We consider a system of independent, simple symmetric random walks
on the lattice 7ld. We assume that the system is in equilibrium, with a
density of particle p E (0, +00). We study the distribution of the first
time more than p’nd particles are present in a hypercube of volume nd
with p’ > p. Also, we obtain sharp asymptotics in the limit n - oo.
The problem of finding asymptotics for the first occurrence time of

a rare event for a Markov process has a history which traces back
to Harris [14]. His results, as well as more recent ones in [8,16,17],
are restricted to Markov chains satisfying strong recurrence properties
(Harris recurrence).
The related problem concerning the exit time from the basin of

attraction of a metastable state for certain particle systems [7,9,19-21 ],
has in part stimulated the study of occurrence time of rare events for
interacting particle systems. For non-conservative spin-flip dynamics the
problem is rather well understood in the case of attractive systems [ 18]
and systems whose equilibrium measure satisfies a logarithmic-Sobolev
inequality [2]. In both cases, the fast convergence to equilibrium implies
that the system performs several almost independent attempts before
reaching the rare event; this guarantees that the distribution of the first
occurrence time is close to exponential.
A subtler question is whether the quasi-exponentiality holds for

systems possessing a conservation law. Typically, we expect a positive
answer, even though the multiplicity of invariant measures prevents
ergodicity arguments to be exploited. In fact, in most interesting systems,
the time needed to "recover" from a large scale fluctuation is large, but
much smaller than the time needed for such fluctuation to occur. It is

therefore natural to conjecture that, after rescaling the time according to
the larger time scale, the system "looks like" an ergodic process.

So far, no general technique for translating this idea into rigorous
mathematics has been developed and analysis has proceeded case by
case. The first model to be studied was the zero-range process [ 11 ],
followed by the symmetric simple exclusion (SSEP) in one dimension
[12], the SSEP in any dimension [3] and the contact process [22]. For
these models a quite sharp result has been proved. Namely, that there is a
constant f3n such that Tn/03B2n converges to an exponential variable of mean
1, and f3n is estimated up to a constant.
A key technical argument in most of the cited studies is duality: when

we estimate the probability of an event At which depends on the state
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of the system at time t in a finite space region A C Z~, we need in
principle to control the evolution of the entire infinite system; when
duality holds, P (At ) is determined by a finite number of particles which
evolve backward in time according to the dual process.

Although we follow the strategy of [12] to prove convergence in

distribution, the absence of a simple dual process presented a major
difficulty. Moreover, unlike [11,12,3], we show convergence of the

moments of Tn /,8n to the moments of an exponential variable of mean
1, in dimension larger than two. For moments convergence, we follow an
approach of [ 1 ] which relies on an inequality of Varadhan [23].

2. MODEL AND MAIN RESULTS

We consider independent particles evolving as simple random walks
on Z~. Denote by 17t (i) the number of particles that occupy the site i at
time t. The process is a Markov process with generator

where r~i ~ ~ (k) = + 8kj - 8ki. The extremal invariant measures for
this process are the product measures, vp, whose marginals have Poisson
distribution with parameter p > 0 (see [10]). We denote by P~ the law of
17(t) started with and E~ the corresponding expectation.

For p and p’ > p given, we define the event

~ ,-.,,

Also, let Tn = 0: r~t E An ), and [x] = min{n E N: n > x}. Our
main results are

THEOREM 1. - Suppose 0  p  p’. There are positive constants
C, c, c’ and a sequence such that
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where ,Bn satisfies

THEOREM 2. - Suppose d > 3. Then, for every k > 1

The proof of Theorem 1 consists into three main steps: the lower
bound for Tn is treated in Section 3, the upper bound in Section 4 and
the independence property in Section 5. The proof is then completed in
Section 6. The proof of Theorem 2, given in Section 7, relies on uniform
estimates on the tails of the distribution of Tn /fIn. In Section 8 we list
some problems left open.

3. LOWER BOUND

We define

For any i ~ ~ n there is exactly one j ~ n, say ji , such that dist(i, ji ) =
1. For simplicity, we let l = [p’nd], and we will often drop subscripts n
or p. For 0  s  t let N (s , t ) be the number of particles that, in the time
interval (s, t), enter An while there are l - 1 particles in An . Note that
N (s , t ) can be written in the form

where J: is the process that counts the number of particles that move
from the site i to the site ji during time [0, r], and

where X (A) is the characteristic function of A.

PROPOSITION 1. - There is a constant a > 0 such that for every t > 0
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By using (3.1 ) and that ~ has intensity ~(~)/2J, we have

Now

and,

so that (3.2) follows at once. D

4. UPPER BOUND

A system of independent random walks can be realized as follows.
Suppose that for any site i E tld there is a sequence 1 of

independent Poisson processes of intensity 1. Processes associated to
different sites are independent. We call these processes clocks. If t is a
jump time for ni,k, then we say that the clock of level k at site i rings at
time t.

Suppose 17t (i) = r, i.e., there are r particles in i at time t. We imagine
that these particles occupy r different levels. These levels at site i are
called boxes and can be identified with pairs (i, k), i E ~d, k > 1. So
the event = r can be described by saying that the boxes (i, k),
1 x k x r, are occupied, while all other boxes at site i are empty.
We now describe the dynamics. Suppose the clock ni,k rings at time

t. If the box (i, k) is not occupied then nothing happens. Otherwise
the particle at (i, k) moves to the lowest unoccupied level of a site

j, randomly chosen with uniform probability among the 2d nearest
neighbors; also, the remaining particles in boxes (i, k’) for k’ > k move
back one level. It is easy to check that each particle evolves as a simple
random walk, independently of all others.
We define N(s, t) to be the number of times the clocks of level 1 in the

sites in a An ring within time s and t, while there are exactly l particles
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in An, i.e.,

We denote by 1/03B3n = = l).

PROPOSITION 2. - There are constants B, D > 0 such that, for all
n > 0, t > 0

Proof. - For any T > 0, (Tn  T) D { N (o, T) ) 1 } . Thus, Cauchy-
Schwarz inequality gives

which implies

Now, using (4.1) and the fact that ni, is a Poisson process of intensity 1,
we have

Therefore, all we need to show is that there are constants B, D > 0 such
that

First note that for any T > 0

where M; is a martingale. Therefore, using the inequality (a -f- b)2 
2(a2 + b2), we obtain
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Thus, by stationarity and Theorem 15 in [6], we get

Thus, it remains to show that there are constants B, D > 0 such that

We denote by Ok (t) the event that exactly k particles among those
which were in A at time zero, are at time t in We denote by Ik (t ) the
event that exactly k particles among those which were in A C at time zero,
are at time t in ~1. We have

where is the measure corresponding to l independent particles
uniformly distributed in A. Let qt be the probability that one particle
is outside A at time t, if at time 0 it is uniformly distributed in 11. Then,

Moreover, by reversibility,

Case 1: t > n4. In this case, for some M > 0,
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Thus, writing q for qt , we have

where the inequality

comes easily from 1 - q x Therefore, when tYn > n4

Case 2: t  n4. We define

Using an argument similar to [2], there is a constant f3 > 0 such that

Indeed, consider two independent random variables X, Y with P (X =

k) = ak and P ( Y = k) = bk. Then, for any 8 E R,
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By elementary calculus

uniformly for q E [0, 1]. Thus, for 03B8  0 small enough, the expression in
(4.6) is bounded by e-{3ndq for some ,8 > 0. Thus,

In the case d > 2, we have

for some k > 0. Indeed, define ~int = {i E A: dist(i, AC) = 1}. Now,
11n is a lower bound for the probability that a particle uniformly
distributed in lln, be in aintA c A at time zero. Consider now a particle
that is in aintA at time zero, and denote by xt its position at time t. Let i
be the first jump time for this particle. Clearly,

Moreover, by reflection

It follows that

and (4.7) follows. Thus, using that for t E [0,1], 1 - t/2,

for suitable y, À, C > 0. That completes the upper bound for d > 2.
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For the case d = 1, let X t (i ) be a random walk starting at i . Then,

Therefore, using the fact that, for some c > 0, 
n), we get

which completes the proof of the upper bound. D

5. THE INDEPENDENCE PROPERTY

PROPOSITION 3. - For any a > 0 small enough and s > ~Yn~
there are constants Ci, C2 > 0 such that

In view of {~V(0, t ) = t } C it is enough to

prove

sup P~(0,~+~))=0)-P~(0,~)=0)P’(N(0,y~)-0)~ I
t>o

By using Proposition 1 and the stationarity of the process started with v,
it is easy to see that (5.1 ) is implied by

where Dn = Intuitively, Dn is a time small compared to the

average time needed to see the fluctuations, but much longer than the time
needed for the particles in the vicinity of An to "mix".
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By using reversibility,

Thus, the l.h.s. of (5.2) is bounded above by

In order to give estimates for (5.3) we couple two systems of

independent random walks, driven by the same clocks
ni,k (t), i E Zd, k > 1. Suppose the clock ni,k rings at time t. If level k is
occupied by only one ~ or a 03BE -particle, the "unmatched" particle, say an
q-particle, chooses at random one nearest neighbor j, and moves to the
lowest level of j containing no q-particle. If level k is occupied by an q
and a ~ -particle, then the two "matched" particles move together to the
site j, and move to the lowest level containing no matched particles; if
there are unmatched particles at j, they have to move up by one level.
Finally, if level k is empty, then nothing happen. It is easy to see that both
qi and 03BEt evolve as systems of independent random walks.
We assume that ~o are distributed according to the equilibrium

measure v Q9 v. We denote by P "®" the joint law of (~, and by
P’~ ~ ~ the associated Markov family. Also, N~ and N~ denote the counting
processes associated with the processes ~u and 03B6u. We now note that

Let = 0, 1, ... } be the random times at which an ~-particle jumps
from some bonds of It may happen that N~ ( Dn , Yns) = 0 even
though there are more than l ~ -particles in An at time Dn. If we assume
that this is not the case, then N~ ( Dn , Yns) = 0 and 1,
imply that there is a tk such that has l particles in An, while 03B603C4-k
has less than l particles. Thus, the expression in (5.3) is bounded above
by
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By using the same martingale argument used in Proposition 2, the first
term in (5.5) can be bounded by

whereas the last term poses no problem. Thus, to prove (5 .1 ), it is

enough to prove that (5.6) is bounded by As exp( -Cnd). Or, that for
any u E [Dn, any i E 

Using Cauchy-Schwarz inequality, it is easily seen that it is enough to
show

The next two subsections are devoted to proving (5.8).

5.1. Notations

We let S = tld x (N B {OJ) denote the set of boxes. For its first

coordinate, jc(l) or x1, corresponds to a site on the lattice, while the
second is a level, for we think that particles on the same site fill different
levels. We denote by X (t, x) the position of the box occupied at time t by
an ~-particle starting on box x (which depends on {~(x),03BE(s), s  t } ) .
Implicitly, we assumed that x2. Thus, we will always write

{X (t, x) = y} instead of {~(~-i) ~ x2 and X (t, x) = y}. In what follows,
for r > 0 and i E we let B(i, r) = { j E Ii - 7! ~ ~ while, for

we let B(x, r) = {y E S: - r}.
Since different particles evolve independently, it is clear that for

.

where, P stands for 
We introduce S~ = { (xo, ... , E ~~}, and the shorthand

notation X (t, I) E An for I e Si to mean {X (t, xo), ..., X (t, xl_1)} E An
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if I = (xo, ..., xl_ 1 ) . Thus,

If in X (t, x) there is an unmatched q-particle, we say that X (t, x)
is a discrepancy, and write ~X (t, x) E Ct } . An important remark is that
the coupling of ~t and 03BEt we choosed does not create discrepancies, i.e.,
X (t, x) e Ct implies X (u, x) E Cu for all u  t.

5.2. Estimates

/

where L will be chosen later. We deal with the two summands (5.11 ) and
(5.12) separatly.

Summand (5.11). Consider the events, for 1  h  m

Axo, h = {h particles in xo(l) at time 0 end up in An at time ~}

= {h particles in B (xo ( I ) , L) B at time 0 end up in An
at time u ~ ,

CL,xo,m = ~ l - m particles in B (xo(I), at time 0 end up in An

at time u ~ .
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Note that the events Axo, h , B L,xo,m-h and C L,xo,m are independent, since
they refer to particles that start in disjoint sets of sites. Note that

Moreover

where An) is the probability that a random walk starting at
xo(l) is in An at time u. We have used the fact that there is a C > 0
such that Cnd for all i E Zd. Similarly

Moreover

Therefore, if L is large enough

where we used the facts that there is a constant C
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Finally, recalling that u > Dn > we choose L = with ,8
small enough, and we get

for suitable A, C > 0.

Summand (5.12). We show now that {X(7B xo) E CT } is almost indepen-
dent of {X(M, for T  u and I large enough. We introduce the
stopping times

We can think of coupled trajectories 3 n (qt, ~t) as a function of

§o, P) where P is the collection of time jumps on each site of Zd.
For simplicity, we let == (r~t (i ), ~t (i )) .

LEMMA 1. - Assume we are given ~ _ (r~t , ~t ) and y = (~t , §/) such
that ~o ( j ) = yo( j) for all j E B(xo(I), L) and that the jump times
in B(xo(I), L) for both ~ and y are the same. Also, assume that for
i E B(xo(I), L /2), and T > 0, we have ~T- (i ) ~ yT- (i ) . Then there
is an integer m  ~ B (xo ( 1 ) , and a sequence of time jumps in P,
tl 

(i) each ik is a jump time for a box (ik, lk) which is occupied by either
~ or y.

(ii) im L), ik| 1 for k = 0, ..., m, and io --_ i .

Proof. - Let il = inf~t : ~ By assumption il E (0, T).
Thus, there is i 1, a nearest neighbour of i such that (i 1 ) ~ ytl (i 1 ) .
Note that = Yo(i1), and thus one can proceed similarly to build

{ i , and i2 E (0, il), and by way of induction, one builds easily
distinct (I, i 1, ..., ik) and tl  t2  ...  tk as long as i k E B(xo( I) , L ) .
This insures that for some m # B (xo ( 1 ) , we must have im E
aB(xo, L). D

Now, we split a ~ (i.e. ~o, P)), into x == 
and y = Let BT be the

event that there is a sequence il  t2  ...  im , such that each tk is a

jump time for an occupied box (ik, lk), im E a B (xo ( 1 ), L), |ik+1 - ik| 1
for k = 0, ..., m, and i o == i . What Lemma 1 tells us is that for (x, y ) E



382 A. ASSELAH, P. DAI PRA / Ann. Inst. Henri Poincare 36 (2000) 367-393

where we have called 0 the trajectory with no particles in L)~
and no time jumps on the site of B (xo ( 1 ) , L)C. We call

Now, we are ready to give an estimate for (5.12). Assuming T  An :

Thus we are left to show that, for a suitable T,

and that the terms
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are all superexponentially small in nd . Take T = L 1/2. For (5.13) we have

By [5], Theorem 1, there is A such that

and (5.13) easily follows.
We now consider the terms in (5.14). In all cases, by using Schwarz

inequality, the fact that

and translation invariance, it is enough to show that the probabilities
T ) , T ) , P(BT, a > T ) are superexponentially small,

when xo = (0,1). We treat in the appendix the case of T ) .
For T ), we just observe that this quantity is bounded by the
probability that a simple random walk starting at the origin is outside
B (o, L) at time T, and use standard estimates.

For the term P (BT, a > T ), consider a sequence of times ri  r2 
...  im as in the definition of BT. The sites ..., im associated to
these times form a path joining ~B(0, L) to B (0, L /2) . Since, under the
condition a > T there are never more than 2nd particles in the sites i j
it follows that, for a given path, the probability of having a sequence of
jump times as above is bounded by

Moreover the number of paths of length m joining ~B(0, L) to B(0, L/2)
is bounded by C L d -1 (2d ) m . Therefore
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which completes the estimate.

6. PROOF OF THEOREM 1

Theorem 1 follows from Propositions 1, 2, 3 as in [ 12] . For the sake of
completeness we give here a sketch of the proof.

Let be any sequence such that

where the constant C2 is the one that appears in Proposition 3. Define ()n
by P (Tn > Ynrn) = Propositions 1 and 2 imply that

where a is the constant appearing in Proposition 1. In particular 9n - 0.
So, for n large, ~/2 ~ 1 - en , and (6.1 ) give

where last inequality uses the fact that rn > yn 1~2 > I) for
n large. Set an = We need to show that, for t > 0 and for some

positive constants B, B’

Note that (6.2) implies Theorem 1, by letting f3n = 03B3n/03B1n, and observing
that by choosing B’ small enough we may take B = 1 (indeed, the left
hand side is always less than 1 ).

Suppose, first, t = krn, with k a positive integer. We.apply inductively
Proposition 3
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and (6.2) follows. For a general t, one writes t = krn + vn with 
rn, and the argument above is easily modified (see [12]~ Section 5, for
details).

7. PROOF OF THEOREM 2

We begin by defining the Dirichlet form associated to the generator L
of the system of independent random walks:

whose domain can be obtained by closing the form restricted to bounded
local functions. Henceforth, the infimum is always taken over bounded
local functions.

LEMMA 2. - For all t > 0 we have

Proof - The proof is based on standard functional analytic arguments,
thus we only sketch it. Let be the system of independent random
walks in the stationary measure v, and define the killed process

where D is a "cemetery state" not belonging to It is easily shown
that is a Markov process on A~ U {D}. Moreover, its generator
i is such that if f : NZd ~ R is local and f(03BE) = 0 ~03BE E An (so that f
can be identified with a function on A~ U {D}), then L f = In

particular, i is self-adjoint on the Hilbert space Hn = { f E L 2 ( v ) : f = 0
on An } . Thus, letting f = ~(A~), we have
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where f is the spectral measure associated to Land f, and À is the
infimum of the spectrum of -L, i.e.

By Lemma 2, Theorem 2 follows from Theorem 1 and the following
result.

PROPOSITION 4. - For every n > 1 there exists a constant c > 0 such
that

The proof of Proposition 4 is divided into three lemmas. The first,
Lemma 3 is from [23].

LEMMA 3. - Let d > 3. There is a constant c > 0 such that for
every u E l2 (~d ) there is a sequence in ~d such that xo = 0,
Vi xi + 1 - xi| = 1, limi~~ xi = oo and

Let f be a real valued function on For i ~ j ~ Zd we let =

/(o-,??) and (7~/)(??) - where, for ?? ~ 

In the following lemma we extend to independent random walks an
inequality which for SSEP can be found in [23].
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LEMMA 4. - There is a constant c > 0 such that for all local

functions f

Proof - Let f be a given local function and let i E Z~ be outside the

range of f, i.e., does not depend on ~(0. It follows that

Now let ... , xk be elements of Zd such that xo = 0, xk = i ,
= 1. Clearly:

We also define a norm II . II on local functions by

Using (7.5)-(7.7) and the fact that v is a product measure, we get
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Note that

where we have used

Now, using (7.8), (7.9) and Lemma 3, choosing suitably the sequence
we get

As a consequence of Lemma 4, we can write

Now, let

Consider the a -field 7~ = or{~): ~ E and define
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It is easily seen that = for i E An. Thus, by using
Cauchy-Schwarz inequality, one checks that

It follows from (7.10), (7.11 ) and the fact that f = 0 on An implies f - 0
on An :

Therefore the following lemma completes the proof of Theorem 2.

LEMMA 5. -

Proof - Note first that the above statement is equivalent to

for some c > 0.

Now note that D is the Dirichlet form of N independent copies of the
N-valued Markov process generated by the operator

Note that M is reversible with respect to the Poisson measure of density
p (that we still denote by v ) . Now, M has a spectral gap in L 2 ( v ) . This is
equivalent to show that

for some c > 0, where (’,’) is the scalar product in L 2 ( v ) , and Varv(f) is
the variance of f under v. It is shown in [4] that (7.12) holds with c = p.
Now, the spectral gap of N independent copies of a given process is

the same as the one of a single copy. It follows that
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for all f : R, where v is now the product Poisson measure on 
Therefore, to complete the proof of the lemma, it is enough to show that

for all f such that J f 2 dv = 1 and f == 0 on An . Indeed, by Cauchy-
Schwarz inequality:

and therefore

8. OPEN PROBLEMS

The following problems, related to the ones considered in this paper,
are still unsolved.

( 1 ) We have not succeded in determining the exact asymptotics for f3n.
This amounts to compute the limit

We have not even shown that this limit exists.

(2) In Section 7 we have shown that, for d  3,

for some c > 0 independent of n. It is natural to ask whether a
uniform tail estimate of the form

holds for some c > 0. 
,

(3) The convergence of the moments of Tn in dimension d  2 remains
an open problem. For the symmetric simple exclusion process one
of us [ 1 ] has worked out the case d = 2.
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(4) A related problem is the study of quasi-stationary measures.

Suppose 1 is arbitrary but fixed. A probability measure /~
on NZd is said to be a quasi stationary measure if, for all A C 
measurable and t > 0

For existence results on quasi stationary measures see Keilath [ 15]
for finite Markov chains and [13] for certain Markov chains with
countable state space.
Besides the existence of quasi stationary measures for the model
studied in this paper, we would like to know if for each p > 0

there is a quasi stationary measure such that « vp, and if

pn - vp weakly as n - +00.

APPENDIX

LEMMA 6. - Let cr be the stopping time defined in Section 5, i. e.,

Then there are a, b > 0 such that

for T = = where y > 0 is a given sufficiently small positive
number.

Proof - First note that

It is easy to see that there is a constant a > 0 such that

Moreover, as in Proposition 1, define
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where J/ counts the number of particles that move from i to 0. Thus

which yields

and the conclusion follows. D
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