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ABSTRACT. - Using the existence of density processes, we derive a
new class of stochastic partial differential equations for a collection of

interacting measure-valued diffusions based on two orthogonal martin-

gale measures. @ 2000 Editions scientifiques et médicales Elsevier SAS
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RESUME. - Nous introduisons une nouvelle classe d’équations aux de-
rivees partielles stochastiques, engendrées par deux mesures martingales
orthogonales, pour caractériser une famille de diffusions a valeurs me-
sures avec interactions, en exploitant 1’ existence de densités. @ 2000 Edi-
tions scientifiques et médicales Elsevier SAS
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1. INTRODUCTION

Interacting branching measure-valued diffusions (IBMDs) were intro-
duced and characterized by Wang [ 16,17] in order to model and study
the behavior of one-dimensional super-Brownian motion in a random
medium. In Wang [16], it is shown that, when the diffusion coefficient
for the medium is smooth enough, these IBMDs either have discrete sup-
port or have densities, according to whether or not the differential part
of the associated generator is a singular operator. In the latter case, these
IBMDs can also be viewed as those superprocesses associated with some

of the branching-free interacting diffusion systems of McKean-Vlasov
type studied by Kotelenez [11-13] and by Dawson and Vaillancourt [2].

In the present paper, we derive a new class of stochastic partial
differential equations (SPDEs) for the density processes associated with
IBMDs, when these densities do exist. In order to state this result

precisely, we need the following notation.
We denote by the space of all bounded Borel measurable func-

tions from ? into itself; C(R) c B(R) , its subspace of all bounded con-
tinuous functions; ê(IR) C its subspace of continuous functions
which vanish at (infinity) point a ; c C(R), its subspace of all
twice differentiable functions which vanish at a, together with both their
first and second derivatives; C ê2(IR), the space of infinitely differ-
entiable functions which, together with all their derivatives, are rapidly
decreasing at infinity. We write ~’ (x ) or for the derivative of

4&#x3E; E is the Schwartz space of tempered distributions and
the Polish space of all bounded Radon measures on R, with the

topology of vague convergence. We denote by ( . , .) : S(R) x Sf (IR) ~ R
the usual duality between and (and, by extension, that be-
tween B(R) and The variational derivative of F : 

at  in direction z e ? is given (when it exists) by

Finally, L 2(IR) is the usual Lebesgue space of square-integrable func-
tions.

The IBMDs of interest are all the solutions to the martingale problems
associated with operators of the form A + B, with
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and

where, for some given g E we define the convolution

and, for convenience, we let Pt = p (o) + £2 &#x3E; 0 and cr2 &#x3E; 0.

These martingale problems were introduced and studied by Wang
[ 16,17] . Let us first summarize in Theorem 1.1, three of his results which
are relevant here, namely Theorem 2.1 from Wang [ 16] and Theorems 6.4
and 7.2 from Wang [ 17] .

THEOREM 1.1. - Let 03B3, 03C32 and ~ be positive constants and let

g E n satisfy g (-x) = g (x) for all x E I~ and be such that
p E C2 holds. The martingale problem for operator A + B described
above, started at some measure po E with compact support, is

well-posed. If we write its unique solution as (Q , 0, then the

process has a density ~ L1

At the present time, no information is available about the regularity
in (t, x) of the density other than joint measurability. This was
established in Wang [ 16], along with the identity

which is used in the proof of the following, our main result.

THEOREM 1.2. - Let y, 0-2 and ~ be positive constants and let

g E n C (IIg) satisfy g(-x) = g(x) for all x E II~ and be such that
p E holds. Let (Q , be the IBMD which is the solution
to the well-posed martingale problem in Theorem 1.1 above. There exist
two orthogonal (hence independent) S’ (R)-valued cylindrical Brownian
motions Vt and Wt defined on an extended probability space (Q , 0, 
of the original space (D, Z, such that for every c~ E 
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holds for every t ~ 0, -almost surely.
The derivation of this SPDE runs roughly as follows: we first derive

a Quasi-SPDE for the sequence of empirical measure-valued processes
associated with the generating, finite particle systems, by way of the
strong construction of a copy of the whole sequence on a common

probability space; we then prove the tightness and LP-convergence of
each term in the Quasi-SPDE; finally the solution to the SPDE of
Theorem 1.2 emerges from the Quasi-SPDE by letting the size of the
system grow to infinity.
The special case of Theorem 1.2 obtained by assuming g - 0 was

the subject of a seminal paper of Konno and Shiga [10], where the
independence of motion of the particles at every level allowed them to use
a representation theorem for individual martingale measures. As one sees
upon glancing at Eq. ( 1.3), the strong dependence between the motion of
the various particles (even amongst the infinite system) gives rise to not
one but two martingale measures, which turn out to be orthogonal to each
other. The original approach of Konno and Shiga is therefore not directly
applicable here.
Our derivation is analogous to that in Kotelenez [ 12,13], where the

sources of motion for all the finite systems involved are a (deterministic)
free force field and a highly correlated random environment. In the

present paper, however, serious mathematical difficulties are introduced
by allowing the particles to execute branching Brownian motions,
independently of one another, given the state of the random environment
- there is no force field here. The explicit construction provided in
Section 2 gets us around these difficulties; the rest of the argument
relies crucially on a decomposition theorem for orthogonal martingale
measures. This approach for the derivation of the SPDE for empirical
measure-valued processes is inspired in part by the pioneering work
of Walsh [15] and extends some of his results to systems of highly
dependent particles.
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2. PROOFS

The proof of the main result Theorem 1.2 is achieved by way of a
series of lemmata. Let us begin by building explicitly a version of the
model for IBMDs discussed in Wang [17]. The evolution of the particle
system in between branching times takes the form of a strong solution to
the following stochastic evolution equation.
LEMMA 2.1. - Given s ~ 0, let n ê (IR) satisfy g(-x) _

g(x) for all x E R and be such that p E holds. Let W be a

cylindrical Brownian motion and {Ba} a countable collection ofstandard
one-dimensional Brownian motions, built on a common probability space
(Q , 0, JF) and independent of each other. Then the following system of
stochastic integral equations

has a unique strong solution with continuous paths, for every countable
collection of starting points f .zo } c R.

Proof - The usual method of successive approximations works here
- see Wang [17] or Kotelenez [ 12,13] for more details. 0

Since the strong solution of (2.4) only depends on the initial state
zg, the process B" = {B~: ~ ~ 0} and a common W, we denote it by
z" = x(zg, t) for some measurable real-valued mapping x (omitting
W in the notation as it is selected and fixed once and for all). We note in
passing that, by Ito’s formula, for any ~ E the unique solution to
Eq. (2.4) verifies

Using this infinite collection of solutions to Eq. (2.4), we can now build
the IBMDs as weak limits of a whole sequence of finite particle systems,
denoted by and all built on a common probability space, as follows.

For any positive integer n, there is an initial system of mo particles,
each particle having mass and branching at rate The offspring
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distribution satisfies

and where both g &#x3E; 0 and 8 &#x3E; 2 are fixed constants.
Let ? be the set of all multi-indices, i.e., strings of the form a =

n 1 n2 ... n k , where the ni ’s are nonnegative integers. Let la be the length
of a. We provide 9t with the arboreal ordering: m 1 m2 ... m p ~ 
iff and mi 1 = ni , ... , m p = n p . If lal ( = p, then a has exactly
p - 1 predecessors, which we shall denote respectively by a-I,
a - 2,..., + 1. For example, with a = 6879, we get a -1 = 687,
a-2=68anda-3=6.

Define three independent families { Ba , a E E and
{Na, a E where the Ba’s are independent standard Brownian motions
in R; the S"’s are i.i.d. exponential random variables with parameter 
which serve as lifetimes; and the Na’s are i.i.d. random variables with

= k) = pk for k = 0, 1, 2,... and pi = 0.
The birth time f3 (a) of xa is defined by

The death time of XCX is defined f3 (a) -E- Sa and the indicator
function of the lifespan of XCX is denoted by = 

Recall that a denotes a point at infinity - the cemetery - and put
xa = a if either t  or ~ ~) holds. We make the convention that
any function f on R is extended to R U {9} by setting f (a) = 0 - this
allows us to keep track of only those particles not in the cemetery at any
given time.

Given JLo E with compact support, assume that ~co = x

is constructed from po as in Wang [ 17] so that /Lô # /~o holds
as n - oo. We are thus provided with collections of starting positions
{xo } for each h  1.

Let - { 1, 2, ... , m o } be the set of indices for the first generation
of particles. For any a E Nn1 n define
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and

For the path of the second generation, let 03B61 = a E Nf n 
By Ikeda, Nagasawa and Watanabe [6], for each w E Q there exists a
measurable selection ao = ao (w) E n 9t such that ~1 (c~) = Sao (úJ ) .

If Nao (w) = k &#x3E; 2, define, for every a E {aoi ; i = 1 , 2, ..., k{,

If = 0, define xa(t) _ ~ for 0 ~ t  oo and a E {aoi : i ~ I}.
More generally, suppose there have been m splits already. Let c ffi

be the set of all indices for the living particles and let ~+1 = a E

Nnm}. Then for each 03C9, there exists 03B20 ~ Nnm such that (03C9) = S03B20(03C9).
If = k &#x3E; 2, define

for 03B1 ~ {03B20i; i == 1, 2, ... , k} . If = 0, define

Continuing in this way, we get a branching tree of particles for any given
c~ with initial state selected at random amongst x5, ... , 

Define the associated empirical process

For any A E and t &#x3E; 0, define what will turn out to be an

approximation "a la Donsker" to a new cylindrical Brownian motion:

representing a (scaled down) "brood size" for those particles dead by time
t and positioned inside A upon the advent of their demise.

Observation (2.5) above implies that each ~cn satisfies, for every ~ E
S(R) ,
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where we use the notation

The four terms represent the respective components of the overall
motion of the finite particle systems nt (q5) :== (q5, contributed by
the individual Brownian motions (Ut (~)), the random medium (X§~ (q5) ),
their common diffusive effect (q5)) and the branching mechanism
(Z§~ (q5)). Using a result of Dynkin ([4, p. 325, Theorem 10.13]), we get
at once the following theorem.

THEOREM 2.2. - Vn E N, defined by (2.9) is a right continuous
strong Markov process which is a unique strong solution of (2.11 ) in
the sense that it is a unique solution of (2.11) for fixed probability
space (Q , 0, P) and given W, { B" {, { Sa }, { Na { defined on (Q , 0, 
Furthermore, all the {,~,ct ; t ~ O} are defined on the common probability
space (Q , 0, P) .

Denote by t O} the filtration defined by writing for the 03C3 -

algebra generated by the collection of processes

LEMMA 2.3. - If we write ~rz :== 1, we have:
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(i) For every ~ E = Ya’2IE fo ~~2, du ;
(ii) For any T &#x3E; 0 and n &#x3E; l, we have

(iii) f ~c,~t ; t ~ O} defined by (2.9) is tight as a family of processes with
sample paths in D ( [o, oo ) , 

Proof - (i) Remembering that }Sa, a E are i.i.d. exponential ran-
dom variables with parameter 03B303B8n and ha (t) = 1{03B2(03B1)t03B6(03B1)}, for any
A E ,~3 (II~) , we have

Therefore, we get

(ii) Since (1, = Z§~ ( I ) is a zero-mean martingale, by Davis’s
inequality (see Dellacherie-Meyer [3]) we have

Similarly, Doob’s submartingale inequality yields
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(iii) By Theorems 4.5.4 and 4.6.1 in Dawson [ 1 ] (plus part (ii), which
precludes explosion in finite time), we only need to prove that, for any
given £ &#x3E; 0, T &#x3E; 0, ~ and any stopping time rn bounded by T,
then &#x3E; 0, ~03B4, no such that supnn0 supt~[0,03B4] P{[ n03C4n+1(03C6) - n03C4n (03C6) ( &#x3E;
.

Using the strong Markov property of we obtain from (i)

which goes to 0 as t - 0. D

LEMMA 2.4. - (i) Un, is tight on D([o, oo), (S’(11~))4).
(ii) (A Skorohod representation): Suppose the joint distribution of

converges weakly, then there exist a probability space (Q, .~_’, I~) and
D ( j0, oo) , sequences and

~ W defined on it, such that

holds and, P-almost surely on D ( [0, oo ) , (S’ (Il~) ) 5 ),

(iii) (Z ~k (4~~ ~ /~nk (4’) ~ U nk (Y’) ~ nk (~) W nk (Y’)) ~ (Z°(~),~(~),
0(03C6), 0(03C6), 0(03C6)) in L 1 (SZ , P) as an R5 -valued process, for any
~ E 

_

(iv) WO(dy, ds) and Wnk (dy, ds) are cylindrical Brownian motions
and the following stochastic integrals converge -
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(v) (~c°, Z °, X °) is unique in distribution and satisfies the equation

(vi) Znk is orthogonal to X nk and ZO is orthogonal to X °.

Proof - (i) By a theorem of Mitoma [14], we only need to prove
that, for any q5 E the sequence of laws for (q5) , Zn (q5) , Un (q5) ,
Yn(~)) is tight in D ([0, oo), II~4). This is equivalent to proving that each
component and the sum of each pair of components are individually tight
in D([0, oo), R). Since the same idea works for each sequence, we only
give the proof for { Zn (~) { . Let C = and use Lemma 2.3 to get

which yields the compact containment condition. Now we use Kurtz’s
tightness criterion (cf. Ethier and Kurtz [5, p. 137, Theorem 8.6] ) to prove
the tightness of f Zn (~) ~ .

Let ~(5) _ ~ y cr 2 C /~), then for any 0  t + 8 ~ T,

By Lemma 2.3, lim8-+o supn (8)} = 0 holds, so ( Z’~ (q5) ) is tight.
(ii) If we choose any countable dense subset of and

any enumeration of all rational numbers, then Theorem 1.7 of
Jakubowski [7] shows that the countable family {fij: i, j E N} of contin-
uous functions (with respect to Skorohod topology on D([0, oo), S’ (IR)))
separates points, when we define ~ : D([0, oo), ?~(R)) - by
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fij(x) = arctan(gi, x(tj)). This proves that space D([0, oo) , -

and by an easy extension space D([0, oo ) , (S’(R))5) verifies the basic
assumption for a version of the Skorohod Representation Theorem due
to Jakubowski [9].

(iii) From Lemma 2.3, given E ?(R), we obtain the uniform
integrability of (q5) , Z nk (q5) , U nk (q5) , Y nk (q5) and (q5) , (q5) ,
Wnk (q5)) . So (ii) imghlies (iii) --.-

(iv) Since W, WO and Wnk have the same distribution, W ° and
W nk are cylindrical Brownian motions. In view of the continuous

embedding of into the Sobolev dual space H-3 (see Dawson
and Vaillancourt [2, Proposition 5.1]), the conclusion follows from
Lemma 2.3 (which yields tightness), Lemma 2.4(iii) (which guarantees
the uniqueness of the limit) and Jakubowski’s results on the continuity of
the Ito stochastic integral in Hilbert spaces (see [8]).

(v) Since

holds, we get (2.14) by way of

By Ito’s formula, we see that t &#x3E; 0} is a solution to the martingale
problem for (A + B, The uniqueness of t ~ O} follows from
Theorem 4.1 of Wang [17]. This also implies that X ° + Z ° is unique
in distribution. From (iv), the uniqueness of X ° is obvious. Combining
these facts, we 2"each the conclusion. 

~ 

~

(vi) Since znk is a purely discontinuous martingale while X nk is
a continuous martingale, they are orthogonal - see Theorem 43 in
Dellacherie and Meyer [3, p. 353]. From Corollary 7.3 of Wang [17],
we have
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So there holds (X ° (q5) , t = 0 P-almost surely 0. This implies
the orthogonality of Z ° and X ° . D

We now turn to the proof of Theorem 1.2. From Lemmas 2.3 and 2.4,
we have

Now let V be an S’ (R)-valued cylindrical Brownian motion which is in-
dependent of JL and W ° (and hence also of X °) - if necessary, we con-
struct V on an extension (72, F, P ) of probability space (Q, P )).
Let is (x) be the density process of ~.° constructed in Wang [16]. Set

by restricting the first spatial integral on the right hand side to f x : n -1 
n ~ and then letting n t oo. Then it is easy to verify that

Vt is an cylindrical Brownian motion and that Z~°(q5) =
fo f~ This last expression, Lemma 2.4(vi)
and the definition of V, together with the independence of V and W °
stated above, imply the independence of V and W ° (and hence that of V
and W in the statement of the theorem). Note that all the terms in (2.11)
converge in L 1 ( SZ , F, Taking limits in (2.11 ) and using Lemma 2.4,
we get the desired SPDE ( 1. 3 ) for 
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