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ABSTRACT. - We consider the one-dimensional totally asymmetric
simple exclusion process with initial product distribution with densi-
ties 0 ~ po  Pl  ... 1 in (-00, [C1 E 1, C2£T l ), ... ,

+(0), respectively. The initial distribution has shocks (discon-
tinuities) at = 1,..., n, and we assume that in the correspond-
ing macroscopic Burgers equation the n shocks meet in r * at time t * .
The microscopic position of the shocks is represented by second class
particles whose distribution in the scale £-1/2 is shown to converge to
a function of n independent Gaussian random variables representing the
fluctuations of these particles "just before the meeting". We show that
the density field at time ~"~*, in the and as seen 

converges weakly to a random measure with piecewise constant density
as ~ - 0; the points of discontinuity depend on these limiting Gaussian
variables. As a corollary we show that, as ~ - 0, the distribution of the
process at ~ ~ -1 ~2a at tends to a non-trivial convex
combination of the product measures with densities pk, the weights of the
combination being explicitly computable. © 2000 Éditions scientifiques
et médicales Elsevier SAS

Key words: Asymmetric simple exclusion process, Dynamical phase transition, Shock
fluctuations
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1. INTRODUCTION AND RESULTS

It is well known that the hydrodynamical behavior of the one-

dimensional asymmetric exclusion process is described by the inviscid
Burgers equation

where y is the mean of the jump distribution. Since Eq. ( 1.1 ) develops
discontinuities, one has to be careful about the precise statement, but
loosely speaking, if (r, t) is a continuity point of p (r, t), for a given initial
measurable profile ~o(’). then at the macroscopic point (r, t ) the system
is distributed according to the measure where vp is the product
Bernoulli measure on {0, 1}~ with = 1) = p for all x. This is
known as local equilibrium. As it is known, the exact statement involves
a space/time change, under Euler scale, and for all these developments
we refer to Andjel and Vares [2], Rezakhanlou [ 11 ], Landim [8].
The problem with which we are concemed here involves the descrip-

tion of the (microscopic) behavior of the system at certain discontinuity
points (r, t) (or shock fronts) of the solution of Eq. ( 1.1 ). For example, if
y &#x3E; 0 and the initial profile is a step function

with 0 ~ a  ,8 ~ 1, the entropy solution of Eq. ( 1.1 ) is p (r, t ) = a l{r 
vt) + fJ l{r ~ where v := y(l - a - is the velocity of the shock
front and 1 f ~ } is the indicator function of the set {-}. This description is
valid only for continuity points. The investigation of what happens to the
system if looked from this shock front was first studied by Wick [ 13] for a
different model, and for the asymmetric simple exclusion in the particular
situations a = 0 and a + # = 1 by De Masi et al. [4] and Andjel, Bramson
and Liggett [ 1 ], respectively. They all proved that at the shock front one
sees a fair mixture of va and vx . This result has then been extended so
as to cover all cases Ferrari and Fontes [6], from now
on referred as [FF]. [FF] worked with the nearest neighbor asymmetric
exclusion process, whose generator is the closure of
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for f a cylinder function in {O, 1 r~~, with

where p(x,x + 1):= p, p(x,x - 1):= q:= 1 - p, with 1/2  /? ~ 1.
This process was first studied by Spitzer [12]. Calling the product
measure on with site marginals

denoting St as the semigroup corresponding to the above generator and
6x as the space shift := j with = + z) ,
[FF] proved that

as t - +00, and where [x ] denotes the integer part of x. This

corresponds to the exact statement made above, under Euler scale, and
for the macroscopic point (r, t) in the front line, i.e., r = vt. In fact,
in the above mentioned references, more detailed analysis is performed,
by looking at the microscopic structure of the shock represented by a

, 

second class particle. A second class particle jumps to empty sites with
the same rates as the other particles, but interchanges positions with the
regular particles at the rate holes do. A formal definition using coupling
is given in the next section. Calling X t the position of a second class
particle added at the origin, the process as seen from the second class
particle has distribution asymptotically product to the right and left
of the origin with densities ex and ,8 respectively, uniformly in time. The
velocity of the second class particle is the same as the velocity of the
shock in the Burgers equation: = [FF] proved
that the fluctuations of the position of the particle are Gaussian: calling
Xt := Xt - vt,

where is a centered Gaussian random variable with variance

a ) + ~6)). With this result in hand [FF] proved
that, if - ~  a  +00, the distribution of the process at time t at the

point vt + converges to a mixture of va and vx ; more precisely, for
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real a,

which in particular yields 1 2 (03BD03B1 + v/3) for a = 0 and interpolates between
va and vx , as a varies from - ~ to +00.
Our goal is the consideration of two or more shock fronts and the de-

scription of the microscopic behavior of the system at the (macroscopic)
time and position of their meeting. To avoid unnecessary technical diffi-
culties, we look the totally asymmetric case: we assume

. The extension to 1 /2  p  1 will be briefly discussed at the end.
We consider points ck, densities pk and the existence of a space-time

point (r*, t * ) such that

With this assumption the entropy solution to Eq. ( 1.1 ) with initial data

has the property that all n shocks meet at r* at time t * . More precisely,
the entropy solution is given by

where

Notice that after t * only the extreme densities po and pn are seen.
In our discussion we shall need to consider entropy solutions starting

with more general increasing step profiles, i.e., not necessarily with all
shocks meeting at (t * , r * ) . For this let (Pk) satisfy (1.8), - oo = bo 
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b1  ...  hn  bn+1 = + ~ and consider the entropy solution to the
Burgers equation with initial data

which is given by

where ~, ~ (r, t ) are the right and left limits of À(r, t): ~, ~ (r, t ) =
limr/~o À(r :f: r’, t), with r’ &#x3E; 0. In words, bl (t) ~ ... ~ bn (t) represent
the shock fronts, which move initially as = b j + t ( 1 - P j)
for 1  j  n, until two or more of them meet. When this happens the
involved shock fronts coalesce, with the disappearance of all intermedi-
ate densities and the front keeps moving with a new velocity given by
one minus the sum of the two densities, to its left and to its right, i.e.,
the two densities which form the shock. This simple description, mainly
due to the fact that we are in the one dimensional situation and the initial

profile is an increasing step function, allows to define the following map
1/1’ R" - II~n , ~ _ ( ~k ) , which will be fundamental in the determination
of the distribution of the process at the macroscopic meeting point of the
shocks:

Définition of 1/r . Given a vector x = (x 1, ... , xn ) in let us take a
time t (x ) large enough so that defining

then

That is, if we consider a family of one shock solutions À~(r~), 1 ~ ~ ~ ~
starting with



114 P.A. FERRARI ET AL. / Ann. Inst. Henri Poincaré 36 (2000) 109-126

then xk is the position of the shock at time t (x), for the kth equation.
What we dénote is then the position of the shock fronts at time
t (x) in Eqs. ( 1.14)-( 1.15) starting with ( 1.13) for (bk = ~(~)). It is easy
to see that the definition is well posed, i.e., it does not depend on the value
of t (x ) provided ( 1.16) and ( 1.17) hold.
The coordinates of the vector p (x) = (03C8k(x)) are convex combina-

tions of some x j . In the particular case of n = 2 this becomes

fork= 1,2.
. 

We consider a family of product measures ~8 on with profile p:
the marginal one-site distribution is given by

where p ( ~ ) is given in (1.10) and corresponds to the case when all
shocks meet at the same point r* at time t* . Considering ,~£ as the initial
measure, our first goal is to look at the asymptotic distribution of the
process at time Ts around site [jcj in the as E ~ 0, where

Let Jlo := 2014oo, := oo and

where (l, ... , Xn) are independent centered Gaussian random variables
with variances (Di,..., Dn ) given by

THEOREM 1.1. - Let ~c,c£ (0  ~  1 ) be the product measure on
associated to the profile p(.), given by ( 1.10). Let St denote

the semigroup associated to the totally asymmetric n.n. simple exclusion
process, corresponding to the generator given by ( 1.2) with p = 1. Then,
for a E 1R,
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where yk are defined in ( 1.20).

We shall see that, as in ( 1.5), (yl , ... , represents the limiting
fluctuations of the shocks at time t * ~ -1, around r * E -1. In the case of only
one shock (n = 1) this agrees with (1.6). The crucial difference is that
if, say, the kth and (k + l)th microscopic shocks meet before t * ~ -1, they
coalesce and change the velocity and the intermediate zone of density pk
disappears. This explains the weight of vpk in ( 1.22): it is the same as the
probability that

(a) the kth and (k + l)th shocks have not collided yet, and
(b) these shocks are to the left and right of the point we are looking at,

respectively.
The coalescing dynamics of the microscopic shocks in the is
as in the Burgers equation. Its relation with the n one-shock dynamics-
represented by (xk) is given by the function 1/1’.
We tum now to the profile seen from the meeting point and time of the

shock fronts, scaled by £ -1 /2. For £ &#x3E; 0 and a local function f, consider
the (random) measures on the real line given by

where x~ and Ts are given by ( 1.19), is the Dirac delta measure at
~1/2x, and l7t is the configuration at time t for the initial measure ~ .

Let (Vi,..., yj be as in ( 1.20) and consider the random measure

THEOREM 1.2. - As converges in law to A as ~ ~ 0, for the usual
weak topology on the space of measures.

The analysis is based on the well known strategy of identifying
microscopically the shocks with second class particles, defined through
the so called basic coupling of different versions of the process starting
with measures with different uniform densities. From the dependence
of their locations on the initial condition, which is a one-shock fact
as in [FF], we can ascertain their distribution around the macroscopic
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meeting place [xs] at the macroscopic meeting time Tg; in the scale E -1 /2
this is given by (xl , ... , If we look at the positions of the shocks
at time Ts - a ~ -1 /2, the law of large numbers apply. This is also a one-
shock fact (Ferrari [5]). If a is big enough these positions are ordered,
with very large probability, and they are represented by the variables
hk(X1, ..., Xn) as in ( 1.16), taking t (x ) = a ~ -1 /2 . From then on, using
the invariance of the product measures involved, we can follow their
trajectory up to the meeting time through successive applications of the
one-shock law of large numbers. The final positions of the shocks in the

are given by the variables yk + 
Theorem 1.2 follows from the weak convergence of a suitable function

of the second class particles to the variables and the asymptotic
properties of the measure as seen from the second class particles.
We show Theorem 1.1 as a corollary of Theorem 1.2, by using the
attractiveness of the process. The proof avoids proving firstly the
translation invariance of the weak limits of Theorem 1.1, as in the proof
given by [FF] for the one-shock case.

2. SECOND CLASS PARTICLES AND MORE

Ferrari, Kipnis and Saada [7] and Ferrari [5] have shown that in the
case that is the initial measure, the shock front is well described

by X t , the position of a "second class particle" initially located at the ori-
gin. This fact together with the validity of a central limit theorem for X t
as t - +00, proven by [FF], are the essentials for the proof that in the
totally asymmetric case tends + v,~). For all this,
as well as in the present work, the main tool is coupling. To realize a cou-
pling of several évolutions of the simple exclusion process, corresponding
to several initial configurations, is particularly simple through the graph-
ical construction: to each pair of sites (x, x + 1), let us associate a Pois-
son process with rate 1, and at each of its occurrences we put an arrow
x ~ x + 1. Construct all such Poisson processes as independent in some
space A, P). Given any realization of arrows and a initial config-
uration yy, we may realize an evolution l7t corresponding to L imposing
that whenever an arrow x - x + 1 appears, if there is a particle at x and
no particle at x + 1, then this particle moves to x + 1; otherwise, nothing
happens. (In the non-totally asymmetric cases, we have arrows (x, x + 1)
with rate p and (x, x - 1 ) with rate q,all Poisson processes being inde-
pendent.) Since the probability of two simultaneous arrows is zero this
construction makes sense and defines the process of interest. (One could
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also state the coupling via a suitable generator, cf. Liggett [9] and Chap-
ter VIII of Liggett [ 10] .) From this coupling, the attractiveness property
of the dynamics is immediate: if 170 and 171 are two initial configurations
such that ~ ~ ~ 1 (i.e., r~° (x)  r~ 1 (x) Vx) and we write for their
evolutions using the same arrows, then r~°  171 for each t.

Let us then couple in this way realizations of the exclusion process with
random initial configurations, distributed according to = 0,..., n .
In fact we have a small perturbation since we will add particles at 
For example, let U = be a family of i.i. d. random variables
uniformly distributed on [0, 1 ], taken as independent of all the Poisson
processes of arrows, where, if needed, we enlarge the basic probability
space (il, A, P). Then, for (Ck) and (Pk) as in Section 1 define

Using the same graphical construction above described we may
consider the simultaneous evolution of all these configurations, which
we denote by = 0,..., n, on the space A, P). The marginal
distribution of crt is the simple exclusion process under the invariant
distribution 

Consider the configurations on f 0, 1 } ~ given and for
k=1,...,n,

It is easy to see that when considering the joint motion of (~,..., 
then for j  k particles have priority over the k particles : if there
is a ~ ~ particle at site x, a k particle at x + 1 and an arrow from x
. to x + 1, then they exchange positions. Otherwise, the interaction is the
usual exclusion.

Denote X t the position at time t of the k particle which was at site
at time 0.

The essential tools in [FF] (with as the initial measure) include
the joint realization of the evolutions ( r~t , Zt ) and ~/, X t1 ), where l7b
is distributed as conditioned to have the site 0 occupied by a sec-
ond class particle, and Zt describes the position of this single second
class particle, while ce/ and X/ were defined above for n = 1, po = a,

When p = 1 the above coupling can be achieved by
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and Zt = Xtl. Together with the law of large numbers and the central
limit theorem for X~ , this coupling is the basic ingredient in [FF]. Still
restricting ourselves to the case p = 1, a natural extension of this to our
evolution l7t starting with ~c,~~ is the following.

Définition of (!~). Let us recall that we consider the case p = 1,
and X~ are as just described above. Let Yfl n 2014oo, Yt +1 - oo. For
k = 1,..., n, we define and ti inductively in i &#x3E; 0 as follows. Let
to = 0 and = X~ for all k = 1 , ... , n and t &#x3E; 0. Having defined tf
and for all k = 1,..., n and t &#x3E; if tf = oo , we stop the inductive
procedure; otherwise, let

(with the usual convention that inf0 = oo). Denote by if the index
involved. If finite, is the time of the first crossing after time tf of two
particles whose positions at time tf are At time a aif-1Iaif+1 1

discrepancy appears at the position Yt~+ 1. Since p = 1, from on, 

and do not uncross, so we can ignore the particles and consider
only the evolution of (ai: 1 # Accordingly, we define, for t &#x3E; 
~~+1 ~ the position of this discrepancy at
time t. We also make = for i + 1. This concludes the

inductive step.
Notice that the inductive steps in the above procedure correspond to

instants of crossings of shocks, after each of which we coalesce the

crossing shocks into a single one, which is then made to follow a new
discrepancy, leaving the remaining shocks untouched.
We are ready to define For all 1  k  n and t &#x3E; 0, let Yk 

if tf ~ t  In case tn  oo, is defined as oo.
We further define

Notice that some of the indicator functions may vanish. This happens
when the corresponding Y particles coalesce before t. Since p = 1, r~t
has the same law as the evolution starting from ~ conditioned to have
the sites occupied by second class particles with respect to the
other particles of 17’ such that the second class particles of lower labels
have priority over the ones with higher labels.



119P.A. FERRARI ET AL. / Ann. Inst. Henri Poincaré 36 (2000) 109-126

THEOREM 2.1. - Writing X~ = X ~ - and Y1:: = ~ - 
where Tg and x~ are given by ( 1.19), we have: 

where (Xk) are i. i.d. centered Gaussian with variances Dk given
by (2. 21 ) and (yl , ..., yn) = 03C8(X1, ..., xn ), with defined in Sec-
tion 1.

Before proving Theorem 2.1, let us recall that from Theorem 1.1 of
[FF] we have

with (k03C4~ ) and (JYk) as in the previous statement. We discuss indepen-
dence below. The basic idea to show this theorem is to look at the system
"just before" 03C4~ (in macroscopic time); more precisely: let a &#x3E; 0 and

= ~ 2014 G~ E -1 /2 . We shall make £ - 0 and then a -~ +00.
Presumably, if £ is small, but a is large enough, with overwhelming

probability the second class particles in the n one-shock systems,
(X~..... have not yet crossed each other and so Y â = X ka for
k = 1, ... , n . This is due to the control on the asymptotic behavior
of X~. known from [FF] and a reasoning as the one used to define
bk (x ) in ( 1.17). This allows to compare the system with n independent
systems of only one shock each, and we conclude that (F~,..., 
are at asymptotically independent Gaussian distances from their expected
values (on scale). (Notice that since p = 1, then each pair X~ i

and X~ with i  j cross each other only once.)
Since, furthermore, (F~,.... are at distance of order £-1/2 apart

from each other, in the time interval from i a to t£ (of length 
the fluctuations are negligible (we are in the regime of the hyperbolic
scaling, thus of the law of large numbers for Yk) and it is as if we have a
completely deterministic situation.

Rigorous versions of the facts described on the previous two para-
graphs lead straightforwardly to Theorem 2.1. We state and prove them
in the paragraphs below.
The first step is to describe the behavior of (X ~a , ... , X ~a ) . Since each

of the coordinates X k correspond to the motion of a second class tagged
particle in a single shock situation, the essential is their dependence on
the initial condition. Indeed, if
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it follows from [FF] that

Remark. - Indeed the result in [FF], for X t , is for uniform product
measures off the initial location of the tagged particle. A straightforward
conditioning argument shows it to be true for any finite perturbation of
that measure. From Theorem 3.1 in (Ferrari [5]), but also from (2.6) it
holds

the random variables are independent
since by (1.9) they are functions of the initial configuration at disjoint
sets of sites. This and the product nature of the initial distribution allows
us to use the central limit theorem for sums of Bernoulli random variables
to show (2.3). D

To compute the limiting joint probabilities of (2.4) let A &#x3E; 0 and

consider the following intervals

The following lemma takes care of the case when the X~ have not still
crossed each other.

LEMMA 2.2. - For integers i ( 1 )  ...  i (n ),

where (Xk)k are as in Theorem 2.1.

Proof - It follows from the definition of Yk and (2.3). D
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Now we study the case of unordered X~ . We consider first the case
n = 2. Take arbitrary integers &#x3E; i (2) . For 0  D  1 / 2 let

The interval is strictly contained in Let

where

This corresponds to the coordinates of the vector defined in (1.18)
because i(1) &#x3E; i(2).

LEMMA 2.3. - For integers i (1) &#x3E; i (2), and for all fixed ~,

Proof. - For l, J c R we say

Considering, as before, Ta = Ts - a ~-1 ~2, let us define the intervals

which we get at time T by translating and at velocity
-(1 - pk-j - Pk) backwards from time 03C4~ to time Let a big enough
such that

From the one-shock law of large numbers for Xi and the definition of Yk
(which coincide with the X~ for t  tl in that defintion), we have:
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This gives the localization of the Y particles at time ta . The idea is that
those particles will follow their respective characteristics and thus meet
during the time interval rj, where they coalesce and follow the new
characteristic, thus ending in Xe + ~~,(2) at time Te. Since we are in the
same scale for time and space, the result will follow from the law of large
numbers.
To make this rigorous, at time ia put 1 discrepancies (second

class particles) at + 8~£-1/2] + 1 and ~A6-~] and
c~ 1 ~ cr 2 discrepancies (third class particles) at [~ -L a (2) ~ ~ DE-1 ~2] + 1 and
[7~) - ~A~’~~. Label their positions Z~ and Y t , respectively,
for~T~.

Let T; = i£’ + 8£-1/2, where z£’ is defined by = At

time which will be smaller than 03C4~ for ~ sufficiently small, put 03C30|03C32
discrepancies at

Label their positions Y and Yt, respectively, for t &#x3E; r;.
Since p = 1, we easily check the facts that for t &#x3E; ia,

which shows in particular that for all t &#x3E; r~:

and

Now, a simple geometric argument relying on the laws of large
numbers for Y t , (cf. Theorem 3.1 in [FF] and remark following
Eqs. (2.6)), (2.11 ) and (2.12) proves that

plus 0(~), as soon as 8 &#x3E; 0 is small enough. cornes from the

probability of the event on the right of the union on the right hand side of
Eq. (2.11 ) and the law of large numbers for Y and Yt .
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The result now follows from an application of the laws of large
numbers for and the fact for t &#x3E; (See
.Fig. 1.) D

The same argument with a more complicated notation shows the above
extends to the case of general n, summarized below.

LEMMA 2.4. - For distinct integers i ( 1 ) , ..., i (n ), and for all fixed ~,

where

Proof of (2.4). - Follows from Lemma 2.4 and (2.3). 0
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3. PROOF OF THEOREMS 1.1 AND 1.2

Proof of Theorem 1.2. - Let us start by noticing that Theorem 1.2

was stated in terms of the evolution which is not exactly the r~t we
are considering, for which initially the sites = 1,..., n, are

occupied by second class particles. On the other side, it is immediate

to see that coupling l7t and 17; in the usual way, one concludes that the
eventual discrepancies, at most n, behave as second class particles. They
might even annihilate one another, but in any case diffuse as £-1/2. This
shows that Theorem 1.2 will be proven (i.e., for l7t) once we check
the analogous for our perturbed process 17;. For this, it is sufficient,
according to Daley and Vere-Jones [3], Proposition 9.1.VII, to show that
for every bounded continuous function 1&#x3E; with compact support j 4l 
converges weakly to ~ 03A6 dA as ~ - 0. The former integral is

Let M ~ 0 be an integer such that the cylinder function f depends only
on the coordinates in {2014M,..., M}. Then, we use (2.2) to condition on
the (standardized) locations of the shocks at time Te, and decompose (3.1)
as

where Yf = ~~~(F~ 2014 [xg ] ) and the random variable Zs satisfies

By Theorem 2.1, (1~, ... , n~) converges weakly to ..., Xn) as
~ ~ 0, and this implies at once that lim~~0E(|Z~|) = 0.

The result follows from this. To see it, notice that, for £ &#x3E; 0, the

expression in (3.2) is a function of (o~~ ) and which we denote

... , ..., By the product structure of and the law

of large numbers, for all (yi,..., yn )



125P.A. FERRARI ET AL. / Ann. Inst. Henri Poincaré 36 (2000) 109-126

almost surely, where is defined as in (1.24). Both F and 03C8
are continuous in (yj , ... , Yn). &#x3E; 0} is equicontinuous as a
family of functions of (yj , ... , Yn). This almost sure convergence and
continuity properties of F and 03C8 plus the weak convergence of 
yield the weak convergence claimed in the statement of the theorem by
standard arguments. We leave the details to the reader. 0

Proof of Theorem 1.1. - It suffices to check that

where 3~ are as in the statement of Theorem 1.1, l7t represents the

process starting with /~ and f is a cylinder function, increasing (for the
usual coordinatewise order). Now, to recover the above expression out
of Theorem 1.2 we may take the expectation E j 4l d ~ where the test
function defined = ~  a + M}, with u &#x3E; 0 will give
an upper bound for Similarly by using 03A6 defined by

== 11{~ 2014 u  w  a } , with u &#x3E; 0, we get a lower bound. (The fact
that these particular test functions have two points of discontinuity is not
a problem, due to the continuity of limit measure A .) Here we are using
the attractiveness of the system and the monotonicity of the initial profile
to for increasing continuous f. Letting u tend
to zero both terms will converge to the desired expression. D

Remark 3.5. - A similar analysis can be employed to determine that
the (microscopic) measure seen from ([xs + a ~ -1 ~2 ] , iE + s ~ -1 ~2 ), with
a, s E R fixed, converges as 8 ~ 0 to a mixture of For that, as in the
definition of p , let

This is the function that enters in the corresponding statement.

Remark 3.6. - In this paper we have treated in detail only the totally
asymmetric case, where p = 1. It is not hard, but technically more
cumbersome, to extend the analysis to 1 /2  p  1. One can define r~t
in the same way. The extra difficulty cornes from the fact that now the
shocks can uncross each other. However, since the gaussian fluctuations
and the law of large numbers remain valid, essentially the same analysis
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applies, with the appropriate change on parameters. Details are left to the
reader.
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