
ANNALES DE L’I. H. P., SECTION B

MARC ARNAUDON

XUE-MEI LI

ANTON THALMAIER
Manifold-valued martingales, changes of probabilities,
and smoothness of finely harmonic maps
Annales de l’I. H. P., section B, tome 35, no 6 (1999), p. 765-791
<http://www.numdam.org/item?id=AIHPB_1999__35_6_765_0>

© Gauthier-Villars, 1999, tous droits réservés.

L’accès aux archives de la revue « Annales de l’I. H. P., section B »
(http://www.elsevier.com/locate/anihpb) implique l’accord avec les condi-
tions générales d’utilisation (http://www.numdam.org/conditions). Toute uti-
lisation commerciale ou impression systématique est constitutive d’une
infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIHPB_1999__35_6_765_0
http://www.elsevier.com/locate/anihpb
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


765

Marc ARNAUDONa, *, Xue-Mei LIb, 1, Anton THALMAIERc,2

Manifold-valued martingales,
changes of probabilities, and smoothness

of finely harmonic maps

a Institut de Recherche Mathematique Avancee, Universite Louis Pasteur et CNRS, 7,
rue Rene Descartes, F-67084 Strasbourg Cedex, France

b Department of Mathematics, University of Connecticut, 196, Auditorium Road,
Storrs, CT 06269-3009, USA .

c Institut fur Angewandte Mathematik, Universitat Bonn, Wegelerstraße 6,
D-5 3115 Bonn, Germany

Article received on 17 June 1998, revised 26 April 1999

Ann. Inst. Henri Poincaré,

Vol. 35, n° 6, 1999, p. 791. Probabilités et Statistiques

ABSTRACT. - This paper is concerned with regularity results for

starting points of continuous manifold-valued martingales with fixed
terminal value under a possibly singular change of probability. In

. particular, if the martingales live in a small neighbourhood of a point
and if the stochastic logarithm M of the change of probability varies
in some Hardy space Hr for sufficiently large r  2, then the starting
point is differentiable at M = 0. As an application, our results imply
that continuous finely harmonic maps between manifolds are smooth, and
the differentials have stochastic representations not involving derivatives.
This gives a probabilistic alternative to the coupling technique used by
Kendall ( 1994). @ Elsevier, Paris .
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766 M. ARNAUDON ET AL.

RESUME. - On etudie la regularite par changement de probabilite
eventuellement singulier, du point de depart d’une martingale continue
a valeurs dans une variete et de valeur terminale donnee. On prouve en

particulier que si la martingale est a valeurs dans un petit voisinage d’un
point et si le logarithme stochastique M du changement de probabilite
est dans un espace de Hardy Hr pour r  2 suffisamment grand, alors le

point de depart est differentiable en M = 0. On donne en application
une nouvelle preuve du resultat suivant obtenu par Kendall (1994)
avec des methodes de couplage : les applications continues et finement
harmoniques entre varietes sont C°°. On donne une expression de leur
differentielle qui ne fait pas intervenir de derivee. @ Elsevier, Paris

1. INTRODUCTION

Throughout this article (Q, is a filtered probability
space satisfying the usual conditions, such that all real-valued martingales
have a continuous version. Examples of such filtrations include Brownian
filtrations, Walsh filtrations, or filtrations such that there exists

a continuous martingale which has the (~)-predictable representation
property. For simplicity we assume that the probability of elements in 00
is Oor 1.

Let W be a smooth manifold and V a torsion-free connection on W.
For the sake of calculations we choose occasionally a Riemannian metric
g = (.1.) on W with corresponding Riemannian distance 8. However, in
general we do not assume that V is a metric connection to this or any
other Riemannian metric. Only when we refer explicitly to Riemannian
manifolds we always work with the Levi-Civita connection and the given
metric g.

Recall that a W-valued continuous semimartingale is a martin-

gale, if for each real-valued C2 function f on W,

is a real-valued local martingale.
If Y is a semimartingale taking values in W, we denote by its

Ito differential (see [7]). There is a canonical decomposition dVY =

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



767MANIFOLD-VALUED MARTINGALES

dm y + into a martingale part dm Y and a finite variation part 
The latter is also called the drift. Denote by r~k the Christoffel symbols
of the connection. In local coordinates and in terms of the decomposition
dYi = d Ni + d Ai , where Ni is a local martingale and Ai a process of
finite variation, we have:

and so

Formally, dm Y. and are tangent vectors at the point Y..
. For a real-valued local martingale M let Y. (M), if it exists, be a W-

valued semimartingale with drift -d M d Y (M) converging almost surely
as t tends to infinity to a fixed W-valued random variable L. Here
d M d Y (M) is the "vector" d (M, The principal objective of
this article is to find conditions on W under which the map M - Yo (M)
is Holder continuous or differentiable. The main results (Proposition 3.3
and Theorem 3.5) show that if the processes take their values in a

compact convex subset V of W with p-convex geometry, then the
distance between Yo(0) and Yo (M) is less than for

some constant C depending only on V and r &#x3E; 1. Moreover, if W

is sufficiently small and M varies in some Hardy space Hr for r  2

sufficiently large, then M r+ Yo (M) is differentiable at M == 0 and a

formula for its derivative can be given in terms of the geodesic transport
above Y.(0).

Note that if M is a real-valued martingale, there exist stopping times T
arbitrarily large in probability such is a uniformly integrable
martingale. The semimartingale Y (M) stopped at T is a -martingale
where = ~(M)~ . P. Hence, Proposition 3.3 and Theorem 3.5 cover
regularity results for starting points of martingales under an equivalent
change of probability.
The notion of p-convexity plays a fundamental role. We prove

(Proposition 2.4) that for every p &#x3E; 1 and every x E W there exist a

neighbourhood of x with p-convex geometry..
In order to establish the differentiability of the map M - Yo(M), we

also need (Proposition 2.7) that for every &#x3E; 0 and every x E W there

exist a neighbourhood V of x such that Z/-norms of the inverse of the
geodesic transport along any V-valued martingale are finite.

Vol. 35, n° 6-1999.



768 M. ARNAUDON ET AL.

In Section 4 the results and estimates from Section 3 are applied to give
an alternative proof of Kendall’s result that continuous finely harmonic
maps from a Riemannian manifold to a manifold with a connection, i.e.,
maps which send Brownian motions to local martingales, are smooth.

2. PRELIMINARIES

Let V be a subset of W. A V-valued martingale Y is said to have
exponential moments of order Àg (or simply of order when V is a metric
connection to g ) if

We use the notation Y I Y ) for fo (d Y I d Y ) . By Proposition 2.1.2 of [ 11 ]
and the observation that there exists locally a function with negative

. Hessian, we have: ,

LEMMA 2.1. - Let À &#x3E; 0 and x E W. There exists a neighbourhood V
of x such that every V -valued martingale Y has exponential moment of
order ~,g.

Remark 2.2. - Another consequence of [ 11 ], Proposition 2.1.2, is that
if a compact subset V of W has a rieighbourhood which carries a function
with positive Hessian, then there exists À &#x3E; 0 such that all -V.-valued

martingales have exponential moments of order ~,g. In particular, the
quadratic variation of V -valued martingales has moments of any order,
which are bounded by a constant depending only on the order and on V.

DEFINITION 2.3. - ( 1 ) Let p &#x3E; 1. We say that W has p-convex
geometry if there exist a C2 function on W with positive Hessian, a
convex function W x W --~ R+, smooth outside the diagonal and
vanishing precisely on the diagonal, i.e., = {(x, x), x E W },
and a Riemannian distance 3 on W such that C03B4p with
constants 0  c  C.
A subset of W is said to have p-convex geometry if there exists an open

neighbourhood of W with p-convex geometry.
(2) A subset V of W is called convex if it has an open neighbourhood

V’ such that any two points x, y in V’ are connected by one and only
one geodesic in V’, which depends smoothly on x and y, and entirely lies
in V ifx and y are in V.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



769MANIFOLD-VALUED MARTINGALES

Note p-convex geometry implies p’-convex geometry for p’ &#x3E; p: if
1fr satisfies the conditions in the definition for p-convex geometry, then

satisfies the conditions for p’-convex geometry..
Simply connected Riemannian manifolds with nonpositive curvature

have 1-convex geometry. In general, a manifold does not have p-convex
geometry. However, we have the following local result.

PROPOSITION 2.4. - For every x E Wand p &#x3E; 1 there exists a

. neighbourhood of x with p-convex geometry.

Proposition 2.4 is a direct corollary of a more general result on totally
geodesic submanifolds (compare with [7] 4.59):

PROPOSITION 2.5. - Let W be a totally geodesic submanifold of W.
For every point a E Wand p &#x3E; 1, there exist a neighbourhood U of a
in W, a convex function f on U such that is smooth and constants

0  c  C such that c8p (~, W )  f  C~p (~, W ) on U.

Proof - For p ~ 2 the result is proved in [7, 4.59]. Let us assume 1 
p  2. As in [7, 4.59], we choose coordinates ..., xq , yq ~ 1, ... , yn )
vanishing together with the Christoffel symbols at a such that the

equation for W is {xl = ... = xq = 0}. We use Latin letters for indices
ranging from 1 to q and Greek letters for indices ranging from q + 1 to n.
Define f = where

Clearly f vanishes precisely on W and possibly by reducing U it satisfies

for some 0  c  C.
It is shown in [7] that h is convex for U small and s &#x3E; 0 close to 0. It

suffices to prove that f is convex, and since p &#x3E; 1, it is enough to check
this on {h &#x3E; 0}. But on {h &#x3E; 0},

Hence, for f to be convex, it is sufficient to verify that on {h &#x3E; 0} the
bilinear form b defined by
Vol. 35, n° 6-1999.



770 M. ARNAUDON ET AL.

is positive. As in [7] it suffices to check the matrix

to be positive on {h &#x3E; 0}. But a Taylor expansion of the entries reveals

It is easy to see that the 0-order term of the matrix with Latin index entries

is greater than (p - 1 ) Id. Regards the matrix with Greek index entries,
since W is totally geodesic the vanish on W, hence 
and for £ sufficiently small, the 0-order term of this matrix is greater
than £’ Id with £’ &#x3E; 0. This implies that f is convex in a neighbourhood
of a. D

In the case of Riemannian manifolds, Picard establishes a relation
between p, the radius of small geodesic balls and an upper bound for
the sectional curvatures ([12], proof of Proposition 3.6): if all sectional
curvatures are bounded above by K &#x3E; 0, then a regular geodesic ball with
radius smaller than &#x3E; 1, has p-convex geometry where p is the

conjugate exponent to q, and martingales with values in this geodesic ball
have exponential moments of order K q / 2.
The torsion-free connection V on W induces a torsion-free connection

VC on T W called the complete lift of V and characterized by the fact that
its geodesics are the Jacobi fields for V (see [15]), or by the fact that the
~c-martingales in T W are exactly the derivatives of V-martingales in W
depending differentiably on a parameter (see [2]).
The connection V induces another connection Vh on T W, called the

horizontal lift of V, which in general has nonvanishing torsion and is
characterized by the fact that if J is a T W -valued semimartingale with
projection X E W, then the parallel transport along J
(with respect to Vh) of a vector w = wvert C whor in VJo ~ HJ0
is given by

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



771MANIFOLD-VALUED MARTINGALES

where v V and h ° : H are, respectively, the
vertical and horizontal lift, //o,, the parallel transport along X with
respect to V . 

’

DEFINITION 2.6. - Let Y be a semimartingale taking values in W.
The geodesic transport Oo,s, 0 ~ s (also called deformed parallel
transport or Dohm-Guerra parallel translation) is the linear map from
TYo W to TYS W such that

(i) 80,0 is the identity map on TYo W,
(it) for w E TYo W the It3 differential d°c Oo,, (w) is the horizontal lift

above Oo,, ( w ) . ,

We define OS,t = for 0 ~ s ~ t. 
,

Let J be a T W -valued semimartingale which projects to a semimartin-
gale Y on W. By [2] we have

where R is the curvature tensor associated to V. Using the relation
between and in Lemma 4.1 of [2], we get

In local coordinates, adopting the summation convention, Eq. (2.2) can
be written as 

.

In the case when Y is a martingale, we are able to establish the
existence of moments for the norm of 0;,; along Y :
PROPOSITION 2.7. - Let x E Wand À &#x3E; 0. There exists a neighbour-

hood V of ~x such that for every V -valued martingale Y, the geodesic
transport above Y satisfies

where the is defined via the metric g.
Vol. 35, n° 6-1999.
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Proof. - Take V included in the domain of a local chart. Since Y is a
martingale, we have

in local coordinates, where Mm is a local martingale. Hence by (2.3),

This equation, together with Lemma 2.1 and [ 10], Theorem 3.4.6, gives
the result for an appropriately chosen V depending on h . 0

In the case of the Levi-Civita connection on a Riemannian manifold,
the situation is simpler because II I12, 0 ~ s  t, is a process of
finite variation, and one can give a more quantitative result.

PROPOSITION 2.8. - Let W be a Riemannian manifold and for y E W
let K(y) = sup(K’(y), 0) (respectively -k(y) = inf(-k’(y), 0)) where
K’ ( y) (respectively -k’ ( y) ) is the supremum (respectively the infimum)
of the sectional curvatures at y. Then, for any W -valued semimartingale
Y, the geodesic transport O along Y can be estimated in terms of the
quadratic variation Y ~ of Y as follows :

and

Proof - By means of [2], see (4.30), we have for any ~-measurable
random variable w in 7~ W .

Now with the bounds for the sectional curvatures we obtain

Hence

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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which gives the claim. 0

When Y is Brownian motion the bounds in (2.6) and (2.7) can be given
in terms of Ricci curvature as well known.

COROLLARY 2.9. - Let W be a Riemannian manifold and V a regular
geodesic ball in W with radius smaller than ~t/(2 Kq), q &#x3E; 1, where
K &#x3E; 0 is an upper bound for the sectional curvatures. Then, with respect
to the Levi-Civita connection, the geodesic transport along any V -valued
martingale satisfies

~roof - Just note that a V-valued martingale has exponential moments
of order Kq/2 by [12], and use (2.7). 0 

.

3. VARIATIONS OF MARTINGALES WITH PRESCRIBED
TERMINAL VALUE BY A CHANGE OF PROBABILITY

In the sequel we will say that a process has a random variable L
as terminal value if it converges to L as t tends to infinity. The
aim of this section is to establish regularity results for initial values
of martingales with prescribed terminal value when the probability is
allowed to vary. To formulate the main result of this article we first give
some definitions and lemmas.

LEMMA AND DEFINITION 3.1. - Let M be a real-valued local mar-

tingale and Z ~a W-valued semimartingale. The following two conditions
are equivalent:

(i) The semimartingale Z has drift -d M d Z where d M d Z is
the "vector" with the components d(M, in a system of
coordinates.

(ii) The stopped semimartingale ZT is a QT -martingale where QT =
~ (MT ) ~ I~ for every stopping time T such that the stochastic
exponential is a uniformly integrable martingale.

Vol. 35, n° 6-1999.
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If one of these conditions is satisfied we say that Z is a Q-martingale
with Q = ~(M) ~ I~ even if there is no probability equivalent to I~ such
that Z is a martingale, and the notion Q = ~(M) . I~ will mean that
a probability Q is defined on the subalgebras FT where it coincides

with QT.

Proof. - Since there exists a sequence (Tn)nEN converging almost
surely to infinity such that for every n E N, is a uniformly in-
tegrable martingale, one can assume that E(M) is a uniformly integrable
martingale and hence that Q = ~(M) ~ defines a probability equivalent
to P. Now, as a consequence of Girsanov’s theorem, we have that the re-
lation between the drift of Z with respect to P (denoted by d) Z) and with
respect to Q (denoted by d~° Z) is

This gives the equivalence of (i) and (ii). 0

LEMMA 3.2. - Let M be a real-valued martingale such that (M, 
fi 1 a. s. Assume that W has convex geometry and let Z be a semimartin-

gale with values in a compact subset V of Wand with drift -dZ d M.
Then, for every r &#x3E; 0, there exists a constant C ( V , r) &#x3E; 0 such that

Proof - Set G = ?(M). Then

Now by Lemma 3.1, Z is a G . P-martingale. Since W has convex geom-
etry one can construct a function with positive Hessian on a neighbour-
hood of V. Hence according to Remark 2.2, quadratic variations of mar-
tingales in V have uniformly bounded LS norms for s &#x3E; 0. This reveals

the last term to be bounded. The second term is obviously bounded (e.g.,
[13, Proposition 1.15, p. 318]). D . 

.

For r &#x3E; 1 let Hr be the set of real valued martingales M such that
. Mo = 0 and

is finite. Then (Hr, II is a Banach space.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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In the sequel, if S is a real valued process and i a stopping time, we
write S*03C4 for sups03C4 SS .
PROPOSITION 3.3. - Let V be a compact convex subset of W with p-

convex geometry for some p &#x3E; 1. Let r E ] 1, 2 [ and r’ E ] 1, r [. There
exists a constant C &#x3E; 0 depending only on 8, V, rand r’ such that for
every M E Hr, if Y is the V -valued martingale with terminal value Land
-z a V -valued semimartingale with drift -dZ d M and terminal value L,
then

Proof. - Let p : V x V -~ R+ be the convex function appearing in
the definition of p-convex geometry. Then a8p ~ ~/r ~ A8P on V with
constants 0  a  A. The required estimate (3.2) is equivalent to

Let T = inf { t &#x3E; 0, (M, M)t &#x3E; 1 } (with inf0 = oo ) . We have

Hence we are left to bound the first term on the right. First, Ito’s formula
for convex functions yields

Since 1fr is convex and the drift of (Y, Z) with respect to P is (0, -d M d Z),
we have 

.

Vol. 35, n° 6-1999.
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We get for the first term on the right-hand side of (3.5)

by using successively Doob’s inequality and Bienayme-Tchebichev
inequality. To deal with the second term in (3.5), let

We use successively the fact that 1fr is Lipschitz, Doob’s inequality and
Holder inequality. Choose ri &#x3E; 1 such that r and let rt be its
conjugate number. Then

According to Lemma 3.2 the last term is bounded. Thus, finally we get

Let M E Hr. By Y (M) we always mean a semimartingale with drift
-d M d Y and terminal value L. In the rest of this section we want to prove

differentiability of the map M H at M z 0 in Hr. The processes
~ 

we consider live in a convex set V, and since convex sets are included in

the domain of an exponential chart, we will identify V and its image in
such a chart.

First we need some lemmas.

LEMMA 3.4. - Let V be a compact convex subset of W with p-convex
geometry for some p E ~ 1, 2 [.

(1) Let r E I ~ , 2[. There exists a constant C &#x3E; 0 depending only on V
and r such that for every M E Hr, if Y and Z are as in Proposition 3.3,

Annales de t’lnstitut Henri Poincaré - Probabilités et Statistiques
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then

where t = inf{t &#x3E; 0, (M, M)t &#x3E; 1} (with infØ = oo).
(2) Let r’ E ]1, 4p [. For all r ~ ] sup ( 2r’ , r2 3 r,p) ) , 2 [ there exists a

constant C &#x3E; 0 depending only on V, rand r’ such that for every
Hr,

for all Y, Z and t as in ( I ).

Proof. - In the calculations below, the elimination of the brackets of Y
and Z by taking smaller Holder norms is done in the same way as in the
proof of Proposition 3.3 and will not again be carried out in detail. Set
a = 1/p.

(1) Using the facts that q5 = 82 is convex and

we obtain by Ito’s formula (3.4)

with r’  2 p, r"  2 satisfying ~ -f- r ,  1. This gives by (3.2)

if sup( i + 1, 2~ )  r  2. This proves the first assertion of the lemma.

(2) tfy Ito’s formula (3.4) we have

Vol. 35, n° 6-1999.
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To obtain the next estimate it is useful to note that

where the functions lfJij are smooth. Splitting the second term on the
right-hand side of (3.8) into its martingale and finite variation part and
estimating the Lr norms using BDG inequalities gives

where the single terms may be estimated with the same method as above,
using (3.2) and (3.6). For r’  p and 2r’ p  r  2, the first term on the

right is seen to be less than CllMlln (the difference here with the bound
on the first term on the right-hand side of (3.5) is that we use the Lr norm
of the bracket to the power 2a). By means of (3.2) the second term is
dominated by for r’  p and 

2r’ 
 r  2, the third term can be

estimated by ell M II n for

(here we use (3.6), and (3.2) with p’ = 3 p , together with the observation
that p-convex implies p’-convex). Finally, the fourth term is less than
C~M~203B1Hr if

(again by (3 .2) now with p’ = p 2-p). Thus, for all r, r’ such that 1  r’ 

4p 3+p and

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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we have .

We conclude with the remark that if 2r’  2 then

Note that (3.9) also holds true if p is replaced by p’ E [p, 2[ and a by
a’ = 1/p’. 0

For r &#x3E; 1, a subset V in Wand an F~-measurable random variable
L taking values in V, let DL z DL ( V , r) be the set of M E Hr such that
there exists a V-valued semimartingale Y(M) with drift -d M dY(M)
and terminal value L. Note that for compact convex V with convex

geometry, DL includes all M in Hr such is uniformly
integrable (see [1, Theorem 7.3]).
We are now able to prove the main result.

THEOREM 3.5. - Let x E W. There exists ro  2 such that for every
r E ]ro, 2[ there is a compact convex neighbourhood V of x with the
following property:

For any ~~ -measurable V -valued random variable L, the map M H

Yo(M) from to V is differentiable at M == 0, and the
derivative is given by

where Oo,, is the geodesic transport along Y, (0).

Remark 3.6. - Since a simply connected ’Riemannian manifold with
nonpositive sectional curvatures has 1-convex geometry, any compact
convex subset V of it has also 1-convex geometry and hence satisfies
the conditions of Theorem 3.5.

If W is a Riemannian manifold, then we can take V to be any regular
geodesic ball with radius smaller than a constant depending only on r
and an upper bound for the sectional curvatures. Moreover it is possible,
using Corollary 2.9, to find an explicit expression for ro. 

’

If W is a manifold with connection, since we used Proposition 2.7 in
the proof, we cannot give an explicit expression for ro.

Vol. 35, n° 6-1999.



780 M. ARNAUDON ET AL.

Proof of Theorem 3.5. - Seta = 1/p. Let x E W, r E ] 1, 2[ and let V be
a compact convex neighbourhood of x with p-convex geometry for some
p &#x3E; 1. We will use Propositions 2.7 and 2.4, and determine conditions
on V via the number p and the integrability of the inverse of the geodesic
transport. The conditions on r will be determined in the proof. We
identify again V with its image in an exponential chart.

Let L be an Foo-measurable V-valued random variable and M E
~B{0}. For simplicity we denote by Y. = Y.(0) the continuous V-
valued martingale with terminal value L, by Z, = Y.(M) the V-valued
semimartingale with terminal value L and drift -dMdY(M). Let J’ be
the semimartingale given by

For r’ E ] 1, r [, if V is sufficiently small then with the help of
Proposition 2.7 and Lemma 3.2 we can define

and I Jt I has a L r’ norm bounded by a finite constant depending only
on V, r and r’ . The process J is also the semimartingale in T W with
projection Y and Joo = 0. Its drift dVc J with respect to V~ is identical to
the vertical lift d M d Y : .

The latter is a consequence of [2] Theorem 4.12, which says that a T W -
valued semimartingale J is a ~c-martingale if and only if is a

V-martingale and is a local martingale. To prove the statement of
the theorem it is sufficient to prove that Jo converges to 0. as II M II Hr
tends to 0.

Let Tr03C8 denote the function T W - R+ defined by

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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where 03C8 is the convex function appearing in the definition of p-convex
geometry. Then TP1fr is a convex function with respect to and

for some constants 0  c  C. Hence to show that Jo converges to 0
is equivalent to show that Jo) converges to 0. The idea is to use
the fact that J and J’ are two semimartingales with the same projection
and the same terminal value, and that they have approximatively the same
drift with respect to approximatively the same connection. Under certain
conditions we shall be able to show that their initial values are close.

Let r = inf{t &#x3E; 0, (M, M)t r &#x3E; 1 } (with inf0 = oo ) as before. Ito’s
formula and the convexity of TP p yield .

for every stopping time S. If p &#x3E; 1 is sufficiently small, then with (3.13)
and again with the help of Proposition 2.7 we obtain that the random
variables Js) are uniformly integrable. This gives, using an
increasing sequence of stopping times converging to T,

where dVc (J’ - J) denotes the drift of J’ - J with respect to V, as
defined by ( 1.1 ).

For r’ E ] 1, r [, if 1  p  r/r’, we have by Proposition 3.3 
and as C. We get for the first term on the

right of (3.14), under the condition p  (r +1)/2, taking the conjugate r"

which goes to 0 tends to 0.

Vol. 35, n° 6-1999.



782 M. ARNAUDON ET AL.

We are left to find a bound for the second term on the right-hand
side of (3.14). For this purpose we need to introduce a connection VE
approximating ve, for which the drift of J’ has a nice expression, and
the canonical involution: s : ITW --+ 77W, given by = ~2~103B1
for two-parameter curves (ti , t2) t--+ cx (tI, t2) in W.

For s &#x3E; 0, let o£ be the connection in T W induced from the product
connection V Q9 V in W x W by the map

The drift of J’ with respect to the connection V is the vertical lift
of

Take ~ = Note that the canonical projection 03C01 : (T W, ~~) -
(W, V) is affine. We deduce that ~(J~(V - J)), ~(J~V), ~(J~V), and

J’) are T~Y TW-valued vectors, where denotes the drift

of the Ito differential of J with respect to V~. This and the equality

yield

where the last vector has to be considered as a vertical vector above

J’ - J .
We now estimate the last term of (3.14) using (3.15). First a calculation

in local coordinates shows that for vertical vectors A,

Hence from Holder’s inequality, estimate (3.2), we conclude that for r’ &#x3E;

(its conjugate r" has to be smaller than so that J’ - 
is integrable), 
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is bounded by

The Lr’ norm in the last expression is less than

Now, as a consequence of (3.7) (with p’ close to 2) the first term is
bounded by for r’  ~, and by (3.2) (with p replaced by

second term is dominated by  2 
rp 
.2(p-1) 

t e secon term is dominated b y Hr I r rp 2p2-3p+2.
Hence, when 

(3.16) can be estimated by for r  2 sufficiently large and
p &#x3E; 1 sufficiently small, which goes to 0 as I I M II Hr tends to 0.

Finally to estimate the term

we need a bound for d °~ ) J’ . With ( 1.1 ), we observe that

where bB is a smooth section of T~W 0 T * W . Since Jl’I is affine for both
Ve and VB, d J’) is vertical. Now the relations

and

Vol. 35, n° 6-1999.



784 M. ARNAUDON ET AL.

yield

Moreover, on compact sets we have Ca ([I], proof of Proposi-
tion 3 .1 ) . Take h = Then we get

With (3.2), (3.17) gives, for r’ &#x3E; r+1- p ,

Taking ~  r’  ~ (note that ~  ~ if and only if p  4 ),
the above quantity is, by formula (3.7), less thai

which goes to 0 as tends to 0 for p close to 1. Together with the
convergence to 0 of (3.16), we conclude that for r  2 sufficiently large
and p &#x3E; 1 sufficiently small, M r-+ Yo (M) is differentiable at M = 0 in
Hr with derivative 

.

4. SMOOTHNESS OF CONTINUOUS FINELY HARMONIC
MAPS

Let U and W be two manifolds with torsion-free connections VU and
and let £ be a smooth second order elliptic operator on U without

zero order term. We denote by g or (.1.) the metric generated by £ and
by 2b the drift of £ with respect to Vu. In coordinates, £ can be written
as gi~ Di j + (2b’~ - g‘~ where is the inverse of the metric and

are the Christoffel symbols of the connection Vu.
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Recall that a smooth map u : U - W is £-harmonic if in local
coordinates ’ 

’

where we use Latin index in U and Greek index in W (see [4]). Smooth
£-harmonic maps are particular instances of finely harmonic maps which
are defined as follows:

DEFINITION 4.1. - A map u : U ~ W is said to be finely £-harmonic
if u(X) is a W -valued continuous martingale for every U-valued

diffusion X with generator 2,C.
Note that if u is finely £-harmonic and qJ is a CZ positive function

on U then u is also finely 03C62£-harmonic. This can be proved with a time
change as in [ 14] Section 4.

In [8] it was shown how to construct continuous finely harmonic maps
as solutions to small image Dirichlet problems, and in [9] the author
proved via coupling techniques that continuous finely harmonic maps are
in fact smooth and £-harmonic. The aim of this section is to derive the
last result, as well as an explicit formula for the derivative, via changes
of probability from the methods of this paper.

First we need some constructions. Let u : U - W be a continuous

finely £-harmonic map. Fix a small open geodesic ball V’ in U such
that u ( V’) C V where V satisfies the conclusions of Theorem 3.5 for
some r  2 and has p-convex geometry for some 2 &#x3E; p &#x3E; 1. Let d be
the dimension of U. Via an exponential chart we can identify V’ with
the open ball B(0, Jr /2) about 0 of radius Jr /2 in Rd (note that Jr /2 is
not assumed to be the radius of V’ as a Riemannian geodesic ball). For
x E let

and define

with the convention 1](0) = 0. The map 1] is a smooth diffeomorphism.
For x e V’, set w (x) = cos r (x ) .
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We consider a family of diffusions on V’ with generator
21~2,C and Xo(x) = x for x E V’, constructed as solutions of the Ito SDE

where A E ® T U ) is such that A (x ) : Tx U is invertible and
A (x ) A* (x ) = for each x (here we identify Rd and its dual space),
and B is an Rd-valued Brownian motion.

In the coordinates of the exponential chart as defined above, (4.1 ) is
equivalent to

where ci (x ) = bi (x ) - The coefficients A i , ci and
all their derivatives are bounded. According to [14], for all x E V’

the diffusion process X (x ) has infinite lifetime and converges a.s.

to a random variable taking its values in Let Z (z ) =

r~ ( X ( r~ -1 (z ) ) ) for z E }Rd. This is a diffusion in I~d with infinite lifetime
which solves

where in terms of z = r~ (x ) ,

It is then a straightforward calculation to verify that there exists a constant
C &#x3E; 0 such that for all a, i , z,

all derivatives of z )-~ A(z) , z - C (z ) and z ~ of order larger or
equal to 1 are bounded, and also z ~ is bounded. Hence, using
[10, Corollary 4.6.7], we obtain that for every compact subset K of 
p &#x3E; 0, t &#x3E; 0 and every multiindex ~6,
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Let h : R+ - [0,1] be a smooth decreasing function such that h (0) = 1
and h (t) = 0 for some t &#x3E; 0. Fix x E V and v E Tx V’. We define

+ and Z% = X% = ~-1(Zs). The
process Zv satisfies the equation

As in [2] (see also [6]) we make a change of probability using GV =
where

Under P" = G". P (defined as in 3.1 on the subalgebras ~r where T is a
stopping time such that (Gv)T is a uniformly integrable martingale), Z"
has the same generator as Z under P. Hence under the process Xv
has generator 2~p2,C. We denote by N(v) the local martingale ~- 
For = x fixed, the map v - N ( v ) is linear, and we have

Note that this also writes as

LEMMA 4.2. - For every compact subset K of V’ and r &#x3E; 1, there
exist C &#x3E; 0 such that for all v E T U E K and norm less than 1,
the following estimates hold:

and

In particular, for every r &#x3E; 1 and x E K fixed, the map Tx U -~ Hr,
v 1-+ M" is differentiable at v = 0.

Proof. - Let K be a compact subset of V’ and let K’ be a compact
sub set of JRd containing all the + with x E K, s &#x3E; 0,
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v E Tx U satisfying 1. By the boundedness of and dq on K,
together with the fact that h (t ) = 0, we get from (4.5)

which implies (4.8) by means of (4.4).
We are left to prove (4.9). With a similar calculation, using (4.6), the

boundedness of and (4.4) with 1,81 ~ 2, we can bound the Lr norm
of the bracket of (~ - for r &#x3E; 0. D

THEOREM 4.3. - A continuous finely ,~-harmonic map u : U - W is
smooth.

Proof. - We proceed in three steps. First we show that u is differen-
tiable, secondly we show that u is C~ 1 and at the end we show that u is
smooth.

First step, u is differentiable. With the construction above, for x E
V’ and v E TxU, we have Xö = r~-1(r~(x) + the process
yv = is a Pv-martingale with values in V, starting at Yo =

and terminating at u ( X ~ ) which depends only on Thus,
differentiability of u is a consequence of Theorem 3.5 and Lemma 4.2,
and we have

where e is the geodesic transport above Y. This recovers a known
formula, see [5] and [2].

Second step, u is C I . We still identify V’ with the open subset

B(O, 7r /2) of Possibly by reducing V’, the image u(V’) is identified
via a chart with an open subset of where d’ is the dimension of

W. Let m E N* and r  1. Recall that for an Rm-valued continuous

semimartingale Z = Zo + M + A where M is a continuous local

martingale and A is a process with finite variation, the Sr norm and the
Hr norm of Z are defined as

and
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Fix xo e V’ . We have to show that Tx u converges to Txo u as x tends
to xo . Using local coordinates, we can compute the difference of Tx u to
Txo u by means of (4.10). With (4.6) and (4.4) we see that the Hr norms of
N converge and it is sufficient to prove that the stopped processes Yt (x)
converge to Yt (xo) in Hr for any r &#x3E; 1, and that if Oo,, (x) denotes the
geodesic transport above Y (x ) , then (9o~0c))~ converges to (@o~(~o)/ t
in Sr for r sufficiently large. 

~ 

Convergence of to From (4.8) of Lemma 4.2 and
Proposition 3.3, we conclude that if V’ is sufficiently small, then 
u(y)|  C(p)|x - y|1/p for some p &#x3E; 1. But the stopped process 
converges to Xt (xo) in Sr for every r &#x3E; 1, hence converges to

yt (xo) in Sr for every r &#x3E; 1. To transform convergence in Sr into

convergence in Hr, we use the fact that V has 2-convex geometry, and
as in (3.8), we write with ~ _ ~:

With the same calculation as in the proof of Lemma 3.4, but simpler here
since Y (xo) and Y (x) are martingales, we obtain by induction that Yt (x)
converges to yt (xo) in Hr for every r &#x3E; 1.

Convergence of (6~(jc)/ to (@~(~o))~ With formula (2.5), denot-
ing by the coordinates of (9o~M/ and

the difference (9~(jc) 2014 O~ (xo) satisfies the equation

This equation in (9~(~) 2014 ey (xo) has an explicit solution in terms of the _

stochastic exponential of (,Si ) (see [13], Chapter IX, Proposition 2.3, for
the one-dimensional case). By Lemma 2.1, for arbitrary large r, the Sr
Vol. 35, n° 6-1999.
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norm of is bounded by a finite constant which does not depend
on x, and the stopped process (S/ (x) - sf (xo))t converges to 0 in Hr for
every r &#x3E; 1, hence the solution of (4.11 ) stopped at time t converges to 0
in Sr for r as large as we want (the size of V’ depends on r).

Third step, u is smooth. We proceed by iteration, i.e., by applying step
one and two to T u and exploiting the fact that on { v E T U, v # O} the
differential T u transforms again an elliptic diffusion into a T W-valued

and so on. More precisely, we argue as follows: Let
as above, be a family of 1 203C62£-diffusions on U constructed as

solutions of the Ito SDE

In terms of an independent copy B’ of B let

be a variation of (4.12). Then, in particular, X £ (x ) is also an 2 ~p2,C_ 
.

diffusion for each £ which depends on ~ in a differentiable way and .

= X (x ) . For v E 0, let a be a curve in U such that

a (o) = v. Then 
’

is a nondegenerate diffusion on T U starting from v, which is mapped un-
der T u to the (~W)c-martingale T u 9X = on W. D

Remark 4.4. - In the particular setting of Riemannian manifolds U, W
(equipped with the Levi-Civita connections) the fact that continuous
finely harmonic maps uo : U - W are C1 (and actually smooth) can also
be directly derived from PDE results (like the small-time existence of
solutions to the nonlinear heat equation). Finely harmonic here means
that uo maps Brownian motions on U to martingales on W. We proceed
as follows:

Let 1  p  oo . Let V’ be a small open (relatively compact) geodesic
ball in U such that V = uo(V’) has p-convex geometry, say given by
1fr" _ ~ p . We let u o on V’ develop under the heat equation, keeping the
boundary conditions fixed:
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Fix t &#x3E; 0 small such that there is a classical solution on V’ up to time
t. In particular, t] x V’ is smooth and x V’ continuous. For
x E V’ consider the martingales .

where a (x) is the first exit time of X (x ) from V~. Then zl := y 2 )
is a nonnegative bounded submartingale with as = 0 for s = t A o-(~).
Thus /1 = 0, in particular YJ = Y5. This shows uo = ut on V’, with the
consequence that uo is smooth on V’.
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