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ABSTRACT. - We show that the passage time, T* (r), of a random walk
Sn above a horizontal boundary at r (r ~ 0) is stable (in probability) in

. 
the sense that T * (r) / C (r) 2014~ 1 as r - oo for a deterministic function

C (r ) &#x3E; 0, if and only if the random walk is relatively stable in the sense
- that 1 as n - oo for a deterministic sequence Bn &#x3E; 0. The

stability of a passage time is an important ingredient in some proofs in
. sequential analysis, where it arises during applications of Anscombe’s
Theorem. We also prove a counterpart for the almost sure stability of
T * (r), which we show is equivalent to  oo, EX &#x3E; 0. Similarly,
counterparts for the exit of the random walk from the strip {J y J  r } are
proved. The conditions are further related to the relative stability of the
maximal sum and the maximum modulus of the sums. Another result
shows that the exit position of the random walk outside the boundaries

_ at Jir drifts to oo as r - oo if and only if the random walk drifts to oo.
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RESUME. - Nous montrons que le temps de passage, T * (r), d’une
marche aleatoire Sn au-dessus d’une frontiere r (r ~ 0) est stable

(en probability au sens ou T * (r ) / C (r ) ~ 1 quand r - oo pour une
fonction deterministe C (r) &#x3E; 0, si et seulement si la marche aleatoire est

relativement stable au sens ou Sn / Bn -~ 1 quand n -~ oo pour une suite
deterministe Bn &#x3E; 0. La stabilite d’un temps de passage est un ingredient
important dans quelques preuves d’ analyse sequentielle, ou elle intervient
dans des applications du theoreme d’ Anscombe. Nous demontrons aussi
un analogue pour la stabilite presque sure de T * (r), que nous montrons
etre equivalente a E ~ X ~  oo, EX &#x3E; 0. De meme nous demontrons des

analogues pour la sortie de la marche aleatoire hors de la bande y ~  r.

Les conditions sont liees a la stabilite relative du maximum des sommes

partielles et des sommes partielles des modules. Un autre resultat montre
que la position de sortie de la marche aleatoire hors des frontieres en ±r
tend vers l’ infini quand r - oo si et seulement si la marche aleatoire tend
vers rinfini. © Elsevier, Paris

1. INTRODUCTION

The time taken for a random walk to exit a deterministic region is an
important consideration in the design and analysis of a sequential trial
defined in terms of that region, because the exit time is, or is closely
related to, the (random) sample size at the conclusion of the trial. Thus
certain aspects of its distribution assume great prominence in the theory
of sequential analysis (and in other applications), and one aspect of
particular importance is what we will term the "stability" of the passage
time.
To formulate this concept, we first specify the two kinds of passage

time to be studied here. Suppose our random walk is

composed of increments Xi i which are independent with the same
distribution as a random variable X whose distribution function is F.

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques



687STABILITY OF EXIT TIMES OF RANDOM WALKS

We assume throughout that F is not degenerate at 0. Take So = 0. Let

(with T*(r) = oo if Sn # r for all n) be the first passage time of Sn
strictly above the horizontal boundary at r. Elementary properties
are that T * (r )  oo a. s. for some (hence all) r ~ 0 if and only if

lim supn~~ Sn = oo a.s., and E(T *(r))  oo for some (hence all) r &#x3E; 0
if and only if Sn - oo a.s. as n - oo. (See, for example, Chow and
Teicher [4, pp. 145-146] and Kesten and Maller [15].)
Assuming T*(r)  oo a.s., we say that T*(r) is stable as r --+ oo if

there is a deterministic function C (r) &#x3E; 0 such that

The terminology here is borrowed from random walk theory, where it is
said that Sn is positively relatively stable (written, Sn E PRS) if there is a
deterministic sequence Bn &#x3E; 0 for which

We say that Sn is negatively relatively stable, Sn E NRS, if ( 1.4) holds
with -1 in the right hand side instead of +1. If Sn E PRS or Sn E NRS,
we say that Sn is relatively stable, Sn E RS. The use of the terminology 

’

"stable" for (1.3) is a good choice, as it turns out, since one of our main
results (Theorem 2.1 below) will show that ( 1.3) and ( 1.4) are equivalent.
We will also consider exit times from the horizontal strip with

boundaries at ±r, r &#x3E; 0; thus:

(with T (r) = oo if r for all n &#x3E; 1 ). It is always the case (when the
Xi are not degenerate at 0) that T(r)  oo a. s ., and in fact E ( T (r ) )  oo

for all r &#x3E; 0 (by "Stein’s Lemma", see, e.g., Woodroofe [22, p. 29]).
Again we say that T (r) is stable if

and we will show that this occurs if and only if Sn E RS.

Vol. 35, n° 6-1999.
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The stability, in the above sense, of T*(r) and of T (r) (and of other
passage times out of more general boundaries) is especially useful, for
example, in "Anscombe’s Theorem", which we discuss further below.
Also applicable is the concept of almost sure (a.s.) stability of T * (r)
or of T (r). T * (r) and T (r) are a.s. stable if T*(r)/C(r) - 1 a.s.

or T (r) / C (r) - 1 a.s., respectively, for some deterministic function
C(r) &#x3E; 0. We will show that these occur if and only if 0  EX x
EIXI [  oo or 0  EIXI [  oo, respectively. Since we can then
take C (r) = r / I E X I, as we show below, these results are closely related
to the elementary renewal theorem. Other elementary properties of T * (r)
and T (r ) are that

and

(for r &#x3E; 0), and these suggest that the stability of T * (r) or of T (r) (in
probability) might be equivalent to the stability of the maximum or the
maximum in modulus of the random walk, i.e., to 

’

or to

This is so, as we demonstrate, and similarly for the a.s. versions. These
results are stated in Section 2 and proved in Section 4.
We go on in Section 3 to state other weak or strong convergence

or divergence results for T(r). These are related, as expected, to

corresponding divergence or convergence properties of Sn which are
relatively easy to derive. S~ is harder to handle, however, and we conclude
with an example demonstrating that Sn is much less predictable in this
respect than Sn . These results are proved in Section 5.
The following functionals of the tails of F will be needed. For x &#x3E; 0

define

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques



689STABILITY OF EXIT TIMES OF RANDOM WALKS

u

It will be useful to summarize here some properties concerning the
relative stability of Sn; for reference, see, e.g., Rogozin [20], Maller [18],
Kesten and Maller [ 12, especially Theorem 2.1 ], Kesten and Maller [ 14,
p. 450]. First assume that

. We then have that Sn E PRS, i.e., Sn / Bn ~ 1 for a deterministic sequence
Bn &#x3E; 0, if and only if the function A (x ) defined in (1.11) is strictly
positive for all x large enough, xo, say, and satisfies

We need to remark here that this is proven in Kesten and Maller [12] only
under the extra assumption that Bn is increasing (in the weak sense, that
is, nondecreasing). However, this assumption is superfluous, because we
may always replace Bn by maxkn Bk. To show that this is permissible, it

suffices to show that Sn /Bn ~ 1, or even only

implies

Vol. 35, n° 6-1999.
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Clearly maxkn Bk &#x3E; Bn. Therefore, ( 1.17) can fail only if there exist
sequences {mk}, with mk  nk, and a constant b &#x3E; 1 so that

and

In Lemma 4.3 we shall prove (without using any monotonicity properties
of Bn ) that these relations imply

On the other hand, mk  nk implies 0  Smk  Snk, so that

The last two relations clearly contradict each other, so that ( 1.16) does
imply ( 1.17). We may therefore assume that Bn is increasing and ( 1.15)
is the correct analytic condition for Sn E PRS.

If A(x) &#x3E; 0 for x &#x3E; xo, then there is some xo so that the function

is strictly positive and finite and satisfies

for all x &#x3E; xi , and in addition is easily seen to be strictly increasing on
xi (by the continuity of y - A(y)/y). Thus we can define the inverse

function

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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In addition, if ( 1.14) holds, then A (x) is slowly varying as x - oo
(Maller [18]). As a consequence D(x) and D-1 (x) are both regularly
varying with index 1 as x - oo (see Bingham, Goldie and Teugels [2,
Theorem 1.5.12]). Also, when (1.15) holds, it is easy to check that

A(y)/y is strictly decreasing for y large enough, so D-1 (y) is continuous
and strictly increasing, and

for y large enough. Finally, we can take Bn = D (n) in ( 1.4) (Maller [ 18]).
For negative relative stability, i. e., when Sn / Bn ~ -1 (where Bn &#x3E; 0),
the above remains true with A (x ) replaced by - A (x ) . Relative stability
of Sn, i. e., as n - oo, is equivalent to

As explained in Kesten and Maller [12, p. 1806], (1.22) implies that
A (x) &#x3E; 0 for all large x or A (x)  0 for all large x, corresponding to
PRS or NRS. We will note in Theorem 2.3 below that Sn E RS if and only
if oo, a nice counterpart to ( 1.22).

If ( 1.14) fails, then H (xo) = 0 for some xo &#x3E; 0 (but not H (x) = 0 for
all x &#x3E; 0). Then the Xi are bounded, and EX2  oo. Then (by the weak
law of large numbers) Sn E PRS (NRS) if E X &#x3E; 0 ( E X  0) and then in

fact Sn/(nIEXI) - a. s. Conversely, if Sn / Bn -~ ±1 for some Bn &#x3E; 0,
and EX2  oo, then EX # 0. It is possible to have Sn E RS and EX = 0,
but we must have EX2 = oo then, as discussed in Remark 5, p. 1812,
of Kesten and Maller [12] and Maller [18, p. 143]. We will make the
convention that ( 1.15) and ( 1.22) are understood to hold when H (xo) = 0
for some xo and EX &#x3E; 0, respectively EX # 0, so that they characterise
PRS and RS (and similarly for NRS), irrespective of the validity of (1.14).
Note that in the case H (xo) = 0, EX # 0, we have A(x) = EX # 0
for x # xo, and the regular variation of D (x ) and D -1 (x ) as
jc -~ oo is trivial in this case.

The almost sure relative stability of Sn, i.e., Sn / Bn - :!:1 a.s., can only
occur if EIXI  oo and EX # 0 (see Chow and Robbins [3], Maller [ 18]
or Kesten and Maller [12, Theorem 2.2]), and this idea transfers over to
the a.s. stability of T * (r) and of T (r), also.

Vol. 35, n° 6-1999.
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2. STABILITY RESULTS FOR T* (r) AND T (r)

THEOREM 2.1. - The following are equivalent:
There exists a deterministic function C(r) &#x3E; 0 such that

There exists a nonrandom sequence Bn &#x3E;,0 such that

There exists a nonrandom sequence Bn &#x3E; 0 such that

If any of (2.1)-(2.3) hold, we have A(r) &#x3E; 0 for r large enough, and we
may choose C(r) = r/A(r). This C(r) is regularly varying with index 1
as r - oo. Furthermore, we may choose Bn = D(n) in (2.2) and (2.3),
where D (.) is defined in (1.18). Then Bn is also regularly varying with
index 1 as n - oo.

THEOREM 2.2. - The following are equivalent:
There exists a deterministic function C(r) &#x3E; 0 such that

There exists a nonrandom sequence Bn &#x3E; 0 such that

If (2.4)-(2.6) hold we may take C (r) = r/ EX and Bn = n E X .

Remarks. - 
’

(i) Heyde [10, Theorem 7] showed that (2.4) (with C(r) = r/EX)
follows from (2.6), so Theorem 2.2 provides a converse to this, as

well as the extra equivalence in (2.5). When Xi # 0 a.s., Theorem 2.2

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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becomes much simpler, since Sj equals Sn then, and the
equivalence of (2.5) and (2.6) follows from the strong law of large
numbers. Gut et al. [9] showed the equivalence of (2.4)-(2.6) in this
special case.

(ii) There are of course analogues of Theorems 2.1 and 2.2 for pas-
sage times of Sn below -r, r &#x3E; 0, and the negative relative stabil-

ity of Sn, which can easily be formulated we omit the details of
these.

, 

THEOREM 2.3. - The following are equivalent:
There exists a deterministic function C (r) &#x3E; 0 such that

There exists a nonrandom sequence Bn &#x3E; 0 such that

There exists a nonrandom sequence Bn &#x3E; 0 such that

. 

If (2.7)-(2.9) hold, we may ~ take C(r) = r/ ( A (r) (, which is strictly
positive for r large enough, and in (2.8), as well as (2.9), we may take
Bn = D(n), where D(~) is defined in (1.18) with A (.) replaced by ~A(~)~..
THEOREM 2.4. - The following are equivalent:
There exists a deterministic function C (r) &#x3E; 0 such that

There exists a nonrandom sequence Bn &#x3E; 0 such that

If (2.10)-(2.12) hold we may take C (r ) = and Bn = n|EX|

Vol. 35, n° 6-1999.



694 H. KESTEN, R.A. MALLER

Remark. -

(iii) Suppose EX2  oo and EX = 0. A version of Anscombe’s

Theorem (Theorem 1, p. 322 of Chow and Teicher [4]) tells us that

5~)/~(r) =~ N (0, 1 ) , if t (r ) are integer-valued random variables with
t (r) / C (r) 2014~ 1 as r - oo for a deterministic sequence C (r) &#x3E; 0. This

cannot be true for t (r) = T * (r), of course, because ST* ~r) &#x3E; r cannot

be asymptotically normal, and Theorem 2.1 explains why Anscombe’s
Theorem is not applicable here: T * (r)/ C (r) ~ 1 as r - oo can only
hold if Sn E PRS, and PRS cannot apply when EX2  oo and E X = 0, as
discussed in Section 1. The same argument explains why #

N (O, 1 ) cannot be expected (and in fact is not true) when EX2  oo,

EX = 0.

3. OTHER WEAK AND STRONG LAWS FOR T (r) AND ST~r)

In this section we consider conditions under which T (r) becomes

small, or large, with respect to a deterministic norming sequence, rather
than remaining comparable, as is the case with stability. Most of our
results concern T (r), which is easier to handle than T * (r) in this context,
due in part to some inequalities of Pruitt [19] for the distribution of T (r),
which are given at the beginning of Section 5. It is natural to consider
the behaviour of the position too, for these results. The one-sided

passage time is much more difficult to analyse in this way, and we restrict
ourselves to some limited results and a counterexample at the end of this
section.

Throughout the paper f (n) will denote a strictly positive, increasing,
deterministic norming sequence, with f(n) - oo as n - oo, not

necessarily connected with the D(n) or Bn of the previous section. The

sequence fen) will be the norming for maxi~~ in our first two

results, and

its inverse function, will be the appropriate norming for T (r) . Since

fen) - oo as n - oo, f -1 (r ) is well defined (finite) for all r &#x3E; f ’ ( 1 ) .
Note that, according to (3.1), n = f -1 (r) is an integer for r &#x3E; 0,
with r, that is, f ( f -1 (r))  r, but f ( f -1 (r) + 1) &#x3E; r. Also

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Our first theorem gives necessary and sufficient conditions for T (r) /
f -1 (r) I 0 as r - oo, which is a kind of "degenerate convergence
criterion" for T (r) . This turns out to be equivalent to the divergence of
I ST(r) I lf (T (r)) to oo, in probability, as r --+ oo. As a corollary to this,
we obtain necessary and sufficient conditions for ST~r~/f (T (r)) ~ oo.
Theorem 3.2 gives a subsequential version of Theorem 3.1, Theorem 3.3

. 

gives a version of Theorem 3.1 for divergence to oo of T (r ) / f -1 (r ) ,
while Theorem 3.4 gives equivalences for the almost sure divergence
to oo of ST(r) and Recall that fen) &#x3E; 0 and fen) t oo as
n - oo, throughout.
THEOREM 3.1. - Let f (n) be such that

for some constant A. Then the following statements are equivalent:

COROLLARY TO THEOREM 3.1. - If f (12) satisfies (3.2), then Sn/
oo if and only if ~ oo.

Remarks. -

(iv) The assumption (3.2) is used only to show the equivalence
of (3.4), (3.5) and (3.6). The corollary to Theorem 3.1 provides a full
sequence version of Lemma 2 of Kesten and Maller [16]. A necessary
and sufficient condition for Sn/,f (n) ~ oo is in Theorem 2.2 of Kesten
and Maller [13].

Vol. 35, n° 6-1999.
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(v) As another interesting corollary to Theorem 3.1, take f (n) = ~
to see that the following are equivalent:

(3.11 ) is equivalent to:

To these we can add the equivalence:

((3.13) obviously implies (3.9). Also, (3.13) follows from.a concentration
function inequality (Esseen [5, Theorem 3.1]) if EXz = oo, or from the
weak law of large numbers if EXZ  oo and 0.) This raises the

question of how generally we may add the equivalence / f (n) ~ 00
to those listed in Theorem 3.1. We do not know the answer to this even

for f (n) = n. ..

THEOREM 3.2. - Let f (n) satisfy (3.2). Then the following statements
are equivalent:
There is a nonstochastic sequence rk --+ oo such that

There is a nonstochastic sequence rk ~ oo such that

There is a nonstochastic sequence nk ~ oo such that

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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There is a nonstochastic sequence rk -~ ~ oo such that

THEOREM 3.3. - The following are equivalent:

As a corollary of the next theorem, we prove a "trichotomy" result for

ST~r~ which parallels Spitzer’s trichotomy theorem for Sn.

THEOREM 3.4. - We have

lim Sn = oo a, s.. if and only if lim = oo a. s. (3.23)
n-m r-m

and

COROLLARY TO THEOREM 3.4. - We have

lim sup ST ~r ~ &#x3E; -00 a. s. if and only if ’ lim sup Sn = oo a. s.
r-m 

~ 

and then

Also,

Vol. 35, n° 6-1999.
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and then

Consequently there are only three modes of behaviour for a random
walk:

or

or

Remarks. -

(vi) Necessary and sufficient analytic conditions for (3.23)-(3.24) and
for lim Sn = oo a. s. are given in Kesten and Maller [ 15] .

(vii) We showed in Kesten and Maller [16] that ST (r) often mimics
Sn to some extent in its asymptotic behaviour. In particular, we found
that S T(r) ~ oo (respectively, ~ oo) as r - oo if and only if
Sn 2014~ oo (respectively, Sn / n 2014~ oo ) as n - oo. The equivalence of (3 .10)
and (3.13) is another instance, this time for "two-sided" divergence. On
the other hand, it is obvious that this kind of correspondence does not
always occur; for example, we always have ST(r) &#x3E; r, so I ST(r) 
a. s . as r - oo ; but of course |Sn| - oo a. s . if and only if the random
walk Sn is transient.
We conclude with some results which show that the maximal sum

can behave in a much less predictable way than the max-
imum modulus of the sums, IS j I, with respect to divergence.
We begin with a negative result.

Example 3.5. - There is a random walk Sn with

The next theorem shows that (3.28) is, in some sense, not atypical.

THEOREM 3.6. -7~ 0) ~ 1 ~d maxi~~ --+ 00, ~~
p
-+ -00, --+ 00.

As a necessary condition for max1jn Sj/ ~ 00, we find:

Poincaré - Probabilités et Statistiques
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THEOREM S~ /n ~ oo then

4. PROOFS FOR SECTION 2

We will prove Theorems 2.1-2.4 via a series of lemmas. It will be

convenient to use the abbreviations Sn and Sn introduced in ( 1.7)-( 1.8)
for the maximal sum and the maximum in modulus of the sums.

Throughout the proofs we will understand that convergences related to
Sn are as n - oo, and those related to T*(r), T(r), ST* ~r~ and ST~r~ are
as r 2014~ oo.

LEMMA 4.1. -Ifn is such that 0} ~ ~ then for any 2

and 0  6’  1,

Proof of Lemma 4.1. - This is proved in a similar way as Lemma 1 in
Bertoin and Doney [1]; we omit the details. 0

LEMMA 4.2.-Suppose T*(r)  oo a.s. and T*(r)/C(r) ~ 1 as

r --+ oo for a nonstochastic function C(r) &#x3E; 0. Then C (.) may be chosen
to be increasing and to satisfy, for 03BB &#x3E; 1,

Proof of Lemma 4.2. -Let T*(r)  oo a.s. and T*(r)/c(r) ~ 1. We
first prove that 

°

and hence

Vol. 35, n° 6-1999.
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If (4. 3 ) fails then c(sk)/c(rk) --+ a for some rk &#x3E; sk - oo and a &#x3E; 1.
But sk implies T* (rk) # T*(Sk), so . 

~

a contradiction. Thus (4.3) holds and we can replace C (r) by supsr c(s),
if necessary, to obtain an increasing C (r) . We assume this has been done.
Next, by the strong Markov property,

for &#x3E; 0, where ( T * )’ (s ) is an independent copy of T * (s ) . Thus for
~&#x3E;0

as r A s - 00. Consequently, for r A s large enough,

and thus for À &#x3E; 1

This proves the right hand inequality in (4.2). In fact, (4.5) holds for all
À &#x3E; 0 since C ( ~ ) is increasing.

Next we prove the left hand inequality in (4.2). Fix A &#x3E; 1. Note that

. because we took C(.) increasing. Suppose equality holds in (4.6), so for
some sequence rk - oo,

Then also ~ 1. We claim that this implies

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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To see this, use (4.5) to write

for some 8 &#x3E; 0, rk large enough. Then

Since ~ 1 and c(rk) under (4.7), the left"
hand side of (4.9) tends to 0 as rk - oo, provided

This proves (4.8).
Now (4.8), together with

implies

Moreover, the left hand side of (4.10) is at most

Vol. 35, n° 6-1999.
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so we see that

Define sk - oo by

Then c(sk)/c(rk) -~ 0, so by the monotonicity of C(’), ~ ~ rk. In fact
we must have

If (4.18) fails, choose l  1 so that Sk /rk  2-l. Then by virtue of (4.5),
C(~/2~) ~ 2-~-’C(r~), so

giving a contradiction. Thus (4.12) holds. We note also that

so that also

(by (4.5)). Further, since T*(r)/C(r) ~ 1 and &#x3E; 0,

Next we claim that, for each m ) 4,

If this fails, there is a 8 &#x3E; 0 and infinitely many integers nk E [c(sk)/m,
2c (Sk) / m] such that

Applying (4.1 ) with Xi i replaced by -Xi i and m replaced by 2m, we
deduce from this that for infinitely many k and 0  £  1,

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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This is not possible by (4.14), so we have (4.15). But then for m &#x3E; 4 and
k so large that sk  (h - 1)rk/2,

But since 2C(sk)/m + 1  3C(sk)/4 for large k and m ~ 4, this

contradicts T*(Sk)/c(Sk) ~ 1. 0

LEMMA 4.3. - Let Snk / fk ~ a for some deterministic sequences
nk --+ oo and fk &#x3E; 0, where -oo  a  oo is a constant. Then

Proof of Lemma 4.3. - First let Snk / fk ~ a E [0, (0) as k - oo.
Then necessarily fk - oo, because {Snk} is not tight. By the degenerate
convergence criterion (cf. Gnedenko and Kolmogorov [7, p. 134])
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for all x &#x3E; 0. In particular &#x3E; fk } - 0 and

for k large enough and 1 n k . We can therefore write, for 8 &#x3E; 0,

Applying Kolmogorov’s inequality to (4.19) gives, by (4.18), ,

(Recall that V is defined in ( 1.12).) If a = 0 this proves the first half
of (4.17) in this case. If a &#x3E; 0, simply combine (4.20) with

(where 0  £  a) to prove the first half of (4.17) in this case.
When a = 0, the second half of (4.17) follows from

together with

When a &#x3E; 0, combine the last relation with

(where 0  ~  a) to prove the second half of (4.17) in this case.

When Snk/fk -~ ~ where -oo  a  0, we can replace a by [ and

Xi by -Xi i in (4.19)-(4.21) to see that Snk / fk proving the first

half of (4.17) in this case. It only remains to show that 0 in this
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case. Note that (4.18) gives v( fk)  0 for large k. Thus if e &#x3E; 0 and k is

large enough, then

and the right hand side here converges to 0, as shown in (4.19), (4.20).
Together with (4.22), this proves the second convergence in (4.17) when
a  0. D

Remark. -

(viii) If Snk / fk ~ a = then the first half of (4.17) with 
is obviously true, as is the second half of (4.17) if a = +00. But if
a = -oo, the second half of (4.17) is not true in general, as is shown
by Example 3.5.

LEMMA 4.4. - Suppose S*n /Bn ~ 1 as n - oo, for some nonstochas-
tic sequence Bn &#x3E; 0. Then Sn / Bn ~ 1 as n --+ oo.

Proof of Lemma 4.4. - First note that we must have

for the same reasons as in (4.3). We may therefore assume that Bn is

increasing in n, in fact, Bn f oo, since Sn ~ oo.
Next, we show that

Suppose (4.23) fails, so (in view of the monotonicity of Bn ) there is a
sequence nk - oo with B2nk /Bnk - 1. Let rk = 3Bnk /4. Then

~
because --+ 1. Also

Vol. 35, n° 6-1999.



706 H. KESTEN, R.A. MALLER

because we have ~ 1 by virtue of the facts that S2nk / B2nk -~ 1
and B2nk/Bnk - 1. However

where ( T * )’ (r ) is an independent copy of T * (r ) , so

(4.25) and (4.26) are contradictory, so we have established (4.23).
Now note that, for B &#x3E; 0

Next consider

where is an independent copy of Consequently, for 0  8  1,
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Now by (4.23), B2n /Bn # a &#x3E; 1 for some a &#x3E; 1 once n &#x3E; some no (a) .
Choose £ E (0,1) so small that ( 1 - ~)a &#x3E; 1 and (1 - s) (a - 1) &#x3E; 3~ .
Then from (4.28)

Here &#x3E; (1 - -~ 0 because we chose ( 1 - s)a &#x3E; 1.
Since the left hand side of (4.29) converges to 0 as n - oo, we have

Together with (4.27) this gives

and this implies that Sn is relatively stable by Lemma 5.3 of Kesten and
Maller [14]. Thus 1 for some But then 1 by
Lemma 4.3, so Bn - Bn and Sn/ Bn  1. D

Proof of Theorem 2.1. - Let T*(r)  oo a.s. and T*(r)/C(r) ~ 1 as
r - oo. By Lemma 4.2 we can choose C (r) to be increasing and to
satisfy (4.2). Define Bn t oo by

so that C(~+) ~ n. Here C(x+) = limytx C(y), which exists by the
monotonocity of C(.) . Fix 0  8  1 and let r = r(n, 8) = (1 --~ ~ ) B~ .
Because of (4.2), we have .

for some at &#x3E; 1 and r large enough. Then
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By the definition of we have n &#x3E; C ( ( 1- &#x26;/2)B~). Let s = (1 - e)~.
Because of (4.2), we then have

for some b~ &#x3E; 1 and large s. Thus as n - oo

(4.30) and (4.31) prove that ~/B~ -~ 1, which is (2.2).
Next, (2.2) implies (2.3) by Lemma 4.4, while (2.3) implies (2.2) by

Lemma 4.3.

Now, as we already stated at the end of Section 1, when (2.3) holds
for some sequence then A (r) &#x3E; 0 for large r, and A (r) is slowly
varying as r - oo. Moreover, (2.3) will hold with Bn replaced by D (n )
(as defined in ( 1.18)), and D (x) is regularly varying with index 1 as

x - oo. In particular, we have Bn - oo as n - oo .
Finally let (2.2), or, equivalently, (2.3), hold, and let C(r) = r / A (r ) .

Now (2.3) implies oo and so Sn -~ oo. Thus T * (r )  oo a.s.

for each r ~ 0. Take s e (0, 1) and let n = n(r, s) = L(l + 
denotes the largest integer less than or equal to x ; fxl will denote

the smallest integer greater than or equal to x.) Then

because r/A(r) = C(r) - + ~) and r - + ~)) - D(n)/(1-I-
B), by the regular variation of D(.), and because (2.2) holds with Bn
replaced by D (n) . Similarly, with m = [(1 2014 

because r - C -1 (m / ( 1 - 8)) rv Bm / ( 1- ~). This proves (2.1 ), with C (r )
and Bn chosen as claimed. 0

Proof of Theorem 2. 2. - Let T*(r)  oo a. s. and T*(r)/c(r) - 1

a.s. as r - oo. Then T * (r) / C’(r) ~ 1 as r ~ oo, so we know from
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Theorem 2.1 that we may take C (r ) = r/ A (r ) , and if Bn = D (n ) , then

Sn/Bn ~ 1, and C(r) and D(x) enjoy the properties listed in Section l.
Now if 6’ 

because

as r - oo by (1.21) and the regular variation of C(.). Similarly,
we see that P{~ ~ (1 - s)Bn i.o. } = 0, so (2.5) holds. Conversely,
(2.5) implies (2.4) by similar arguments.

Next, let (2.5) hold. Then (2.2) holds so D (x) is regularly varying with
index 1 by Theorem 2.1. Let T) = 0 and let T) , j # 1,..., be the strict
ascending ladder times of S, i.e.,

(2.5) implies that lim Sn = oo a.s., so T~  oo a.s. and T~ ~ 00
a. s . as j - oo. Define further

We claim that (2.5) forces

Indeed, the A~, j ~ 1, are i.i.d. Therefore, if (4.33) fails, then by
Kesten [ 11 ] or Chow and Teicher [4, Section 7.1, Example 1 ],

But, by definition of the 

In particular,
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Thus, if also (2.5) holds, then (recall Bn = D(n))

By the regular variation of D (.) this implies that

This contradicts (4.34), so that (4.33) must hold. Note that (4.33) and the

strong law of large numbers implies

(2.5) also implies

To see this, note that the 1 
are also i.i.d., so that if (4.37) fails,

then, as in (4.34), 
~ 

But then, (4.35), (2.5), (4.36) and the regular variation of D ( . ) imply

This contradicts (4.38), so that (4.37) must hold. Since E{X1;
Xi &#x3E; 0}, it follows that EX+  oo. Finally, Theorem 2.1 and Eq. ( 1.4) of
Kesten and Maller [15] show that Sn -a oo a.s., so that we must have

(compare Lemma 1.1 in Kesten and Maller [15]). Hence (2.6) is proved.
The final implication, that implies T * (r ) /

(rEX) - 1 a. s. and ~/(~EX) -~ 1 a. s., follows from Theorem 7 of

Heyde [ 10] and the strong law of large numbers, respectively. D

LEMMA 4.5. - Let Snk / fk ~ a, where 0  a  oo, for some nonsto-

chastic sequences nk --+ oo and fk &#x3E; 0. Then Snk | / fk ~ a.
Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques



711STABILITY OF EXIT TIMES OF RANDOM WALKS

Proof of Lemma 4.5. - For the same reasons as in Lemma 4.3,
fk - oo. Now for each £ &#x3E; 0

Thus, if a = 0 the lemma is obvious, so take a &#x3E; 0. Let {mk} be
any subsequence of integers. {mk } has a further subsequence, denoted
{m’k}, so that Sn’k/fm’k, converges weakly to some Z’, where nk = 
By (4.39), a.s., so Z’ is a proper, infinitely divisible random
variable. Furthermore, as a bounded infinitely divisible random variable
it must degenerate to a point, Z’ = a’, say (see Feller [6, p. 177]). Thus

Sn’ -~ a’. By Lemma 4.3 this means

Thus la’l = a, so Snj ) |/fm’k ~ a. This is true for all subsequences f mk},
so in fact ISnk / fk ~ a . 0

Proof of Theorem 2.3.-Let I ~ 1. By the argument follow-
ing ( 1.16) we may assume that Bn is increasing. It then follows from

Lemma 5.3 of Kesten and Maller [14] that for some Bn, and

clearly we can choose Bn = Bn. So Sn / Bn 2014~ 1 by Lemma 4.3, and (2.8)
holds. Conversely, (2.8) implies (2.9) by Lemma 4.5.

Next assume that (2.9) holds, and for the sake of definiteness suppose
that Sn/Bn --+ 1. Then Sn /Bn / 1 by (2.8). Choose C(r) = r/A(r),
which is strictly positive for large r. If E &#x3E; 0 let

so that

Then

since D ( (n + 1)/(1 +8)) rv D (n ) / ( 1-~- ~ ) by the regular variation of D(.),
and also Bn, by Theorem 2.1. In a similar way we get
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so (2.7) holds.

Conversely let 7"(r)/C(r) ~ 1. Let us first dispose of the case in
which X is bounded, that is H (xo) = 0 for some xo. In this case we must
have E X ~ 0. Indeed, if E X = 0, EX2  oo, then the weak convergence

of to Brownian motion shows that T (r)/C(r) ~ 1 is

impossible. However, if E X ; 0, then (2.9) is clearly true with Bn =

For the remainder of this proof we therefore assume that H (x) &#x3E; 0 for
all x. We shall prove that then (1.22) must hold, and as stated in Section 1,
this implies (2.9). Assume, to derive a contradiction, that (1.22) fails and
let rk - oo be such that

for some constant C. Now

shows that

Therefore, by going over to a subsequence, if necessary, we may assume
that =&#x3E; Z, where Z is an infinitely divisible random variable
with P ~ ~ Z ~  1} = 1. If follows that Z is degenerate at some point, c say,
with |c|  1 (see Feller [6, p. 177]). By the conditions for degenerate
convergence (Gnedenko and Kolmogorov [7, p. 134]) we then have

First suppose c = 0. Then we can replace 4 for any À &#x3E; 1, in (4.42),

to deduce that ~ 0. Then by Lemma 4.3, ~ 0
for all ~&#x3E; 1. But then

so ~ oo, which is impossible. Thus c # 0 in (4.42).
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B ut then

in contradiction to (4.40). Thus ( 1.22) and (2.9) hold.
Finally, the beginning of this proof shows that we can take C(r) =

r/A (r) whenever (2.7) holds. If (2.9) holds we can take Bn = D(n) by
Theorem 2.1. D

Proof of Theorem 2. 4. - If T(r)/c(r) - 1 a. s., then T(r)/c(r) ~ 1,
so we can take C(r) = r/A(r) as in Theorem 2.3, and this is increas-
ing and regularly varying with index 1. Just as in the proof of Theo-
rem 2.2, we then see that (2.10) and (2.11 ) are equivalent. Furthermore,
when (2.10) holds, then for ê &#x3E; 0, a. s.

(since T (r)  (1 + ~)C(r)  C((1 + 2~)r)  + 3e)r) eventually).
Thus - 1 a. s . when (2.10) or (2.11 ) holds. Thus by Theo-
rem 3.1 of Griffin and Maller [8], (2.12) holds or EX2  oo and EX = 0.

But the latter cannot hold when (2.11), and hence --+ 1, holds.
Conversely, (2.12) implies (2.11 ), with Bn = by the strong law
of large numbers and Theorem 2.3. Hence (2.12) implies (2.10) with

0

5. PROOFS FOR SECTION 3

The following inequalities, essentially due to Pruitt [19], will be

helpful. Define

Then, for some constants ci &#x3E; 0 and for all n &#x3E; 1 and x &#x3E; 0,

Also, for 0  8  1 and r large

Vol. 35, n° 6-1999.



714 H. KESTEN, R.A. MALLER

Finally, for each fixed L &#x3E; 0,

The notation "~" here means that the ratio of the two sides of (5.4) is
bounded away from 0 and oo (by constants which in general depend
on L) as x - oo. See Pruitt [19, Eq. (1.2) and Theorem 1 ], for (5.2)-
(5.4). Actually, Pruitt used the function + U(x) where we have

+ U (x), but these are equivalent in the context of (5.2)-(5.4), as
remarked by Griffin and Maller [8, Eq. (4.1 ) and Lemma 4.1 ] .

Proof of Theorem 3.1. - Let (3.5) hold for an f with fen) t oo, and
suppose (3.7) fails, so there is a constant c &#x3E; 0 and a sequence xk t oo
such that

Define ~ = + 1, so !(nk) &#x3E; xk . As remarked in Section 3,
n k  oo, k = 1, 2, ... , and nk - oo as k - oo. Now (5.5) implies, for
large k,

Fix 03BB  8c and note that 4cxk  xk03BB/2 by (5.6). Thus
for j fi n k . Then use Kolmogorov’s inequality and (5.6)

to obtain 
-

Thus
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We have /(~) ~ xk, so (3.5) and nk - oo imply that

Thus from (5.7) we obtain

This means that

Since h is arbitrary, this shows that

hence nk H (xk) - oo. Thus - oo, which contradicts (5.6).
Thus (3.5) implies (3.7).

Conversely, (3.7) implies (3.5). Indeed, an application of (5.2) tells us
that for all À &#x3E; 0
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Letting x = fen) - 1 and using / ~(/(~) 2014 1 )  n in (3.7) we obtain
that .

It is easy to check that

for each h &#x3E; 0 as x - oo, so the right hand side of (5.9) converges to 0
as n -~ oo for each h &#x3E; 0 when (3.7) holds. This proves (3.5).

Next we observe that (3.3) is equivalent to (3.7). This is almost

immediate from (5.3) and the fact that (3.7) says f -1 (x ) k (x ) - oo as
x - oo. In one direction, assume that (3.3) holds. Then by (5.3), for all
0  ~  1 /(2c3 + 2), and large r,

Therefore,

for all large r. Thus (3.7) holds. In the other direction, if (3.7) holds, then
for any fixed s &#x3E; 0, r~ &#x3E; 0 we have for large r,

Thus (3.3) follows.
For the proof that (3.5) implies (3.4) the following observation is

useful: for 0, 0  1]  1 and 1
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Now assume (3.5) again, and take r&#x3E;0,0~l. Also let n = ,
n (sr) = f -~ (~r), so r ~ + and ~r. Then f (T ) &#x3E;

Er implies T &#x3E; n. So, for r large enough,

by (5.12) and (3.5). Thus f(T(r))/r ~ 0 and (3.4) holds.
Trivially, (3.4) implies (3.6), because IST(rl &#x3E; r. Finally, we complete

. the proof by showing that (under (3.2)) (3.6) implies (3.5). Indeed, if
s &#x3E; 0, a &#x3E; 0, then for large r, (3.6) and (5.3) give

This time we first choose n and then find r = r(n, ~) so that L 1 /
= n (since k(.) is continuous and k(r) - 0 as r - oo such

an r will exist for all large n). Further, let p be such that s2P &#x3E; 1/s. Then
by (3.2)

Consequently,

for large n. Since ~, a &#x3E; 0 are arbitrary, this implies (3.5) and completes
the proof. 0 

. 

.
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Proof of corollary to Theorem 3.1. -Let Sn / f(n) ~ oo. Then (3.5)
holds so (3.6) holds. Also &#x3E; O} --+ 1 by Theorem 3 of Kesten and
Maller [16], so ST~r~/f (T (r)) ~ oo.

Conversely (T (r)) ~ oo implies (3.6), hence (3.7), under (3.2).
Also P{Sn &#x3E; 0} - 1 by Theorem 3 of Kesten and Maller [16]. Now as-
sume first that U(oo) := limx~~ U(x) = oo. Then by Theorem 2.1 and
Lemma 4.3 of Kesten and Maller [13], A(x) &#x3E; 0 and 3xA(x) for
x large enough. We then obtain from (3.7) that f-1(x)A(x)/x - oo as
x - oo. Taking x = f (n) - e and letting first 0 and then n - oo, we
see that nA( f (n))/f (n) --+ oo as n ~ oo, and Sn/f(n) ~ oo then fol-
lows from Theorems 2.1 and 2.2 of Kesten and Maller [13]. If U(oo) 
oo, so that  oo, then by Theorem 2.1 of Kesten and Maller [ 13],
P{Sn &#x3E; 0} - 1 can occur only if EX &#x3E; 0. In this case T(r) - r/EX
a.s. by Theorem 2.4, and then (3.4) shows that f (r)/r --+ 0. Conse-
quently,

Proof of Theorem 3.2. - (This is a modification of the proof of
Theorem 3.1 but we will give some details for completeness.) Let (3.16)
hold for a sequence nk and suppose (3.18) fails, so there is a constant
c &#x3E; 0 such that

for all large x. Let xk = f (n k ) , so n k  f -1 (xk ) . (5 .15 ) then implies, for
large k,

This implies (5.6), and now exactly as in the proof of Theorem 3.1
(but with (3.16) replacing (3.5)) we obtain a contradiction and thus
establish (3.18).

For the converse, assume that (3.18) holds. Then, for some xk - oo,
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This proves (3.16).
The equivalence between (3.14) and (3.18) is proved in exactly the

same way as that of (3.3) and (3.7). One merely has to restrict r to an
appropriate subsequence.
To go from (3.16) to (3.15) assume that (3.16) holds for some sequence

Then take rk = J(nk)/s. Of course J(T) &#x3E; srk = J(nk) implies
T &#x3E; nk, so

by (3.16). Hence (3.15) holds.
Now f (T (rk))/rk ~ 0 trivially implies (3.17) since &#x3E; rk.

The last step is to prove that (3.17) implies (3.16). We still have (5.13)
and (5.14) when r is sufficiently far out in the sequence for
which (3.17) holds. We apply these with a = AP /s . We find that for each
s &#x3E; 0 and p = pes) such that 2P &#x3E; S-2,

We can therefore pick a sequence which tends to 0 sufficiently slowly
that .

This implies (3.16) for nk D
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Proof of Theorem 3.3. - To prove that (3.19) implies (3.20) we use the
following simple observation, which is a kind of converse to (5.12): Let
x # 0 and define 8 by

Then at least one of the relations

or

must hold. For the sake of definiteness, assume that (5.18) holds. Then
define the stopping times

Thus, if (5.18) holds, then

In fact, this inequality is always valid, since one can replace X by -X
when (5.19) holds.
Now assume that (3.19) holds. Then for fixed 0  E  1, and n

sufficiently large, .

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques



721STABILITY OF EXIT TIMES OF RANDOM WALKS

Now write r = r(n) = fen). Then f-1(r)  nand

The right hand side here tends to 0 as n, and hence r, tend to oo.
Thus (3.20) holds.

(3.20) and (3 .21 ) are equivalent by Lemmas 4. 3 and 4.5.
(3:21 ) implies 

’

by the degenerate convergence criterion (cf. Gnedenko and Kolmogorov
[7, p. 134]). Conversely (5.21) implies (3.21) by replacing Xi by
(Xi A f (n)) v (- f (n)) and an application of Chebychev’s inequality.
Also (5.21) and (3.22) are easily seen to be equivalent by the definition
of f -1 and the fact that for f (n) ~ x  fen + 1) we have 
= n,

(since decreases) and

Finally, assume that (3.22) holds. Let À &#x3E; 0, r &#x3E; 0 and n = (r) (so
r), and use (5.2) and (5.11 ) to write

for some cx &#x3E; 0. The last expression converges to 0 as n -+ oo by (5.21 ),
so (3.19) holds. 0 .
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Remark. -

(ix) Note that the above proof yields the equivalence of (3.22)
and (5.21). In a similar way, noting (5.10) and (5.11 ), we see that (3.7)
implies

In fact, (3.7) is equivalent to (5.22). To see this assume that (5.22) holds
but (3.7) fails. Then there exists a sequence xk t oo and a constant c such
that .

Take nk = f -~ (xk), so that nk fi xk  f (nk + 1). Then we have

and

Together with (5.23) this contradicts (5.22). This proves the claimed

equivalence of (3.7) and (5.22).

Proof of Theorem 3.4. - If Sn ~ oo a. s., then obviously ST(r) -

oo a.s., so assume ST(r) - oo a.s. Then ST(r) ~ 00 so Sn ~ oo by
Theorem 3 of Kesten and Maller [16]. If U (oo)  oo, then Theorem 2.1

of Kesten and Maller [ 13] shows that we must have 0  EX ~ 
oo and consequently Sn ~ oo a.s. (compare proof of corollary to

Theorem 3.1). We therefore may assume that U(oo) = oo. Then we
see from Theorem 2.1 and Lemma 4.3 in Kesten and Maller [13] that

A (x ) &#x3E; 0 and ~/(jc) ~ 3x A (x ) for large x, x &#x3E; xo, say. The proof now
is like that of Theorem 3.1 of Griffin and Maller [8], but we give the
details for completeness. The key point is to consider T (r) along the
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’right’ subsequence of r’s. Let D (x) be as defined in ( 1.18), so that

Define k (x) as in (5.1 ). Then since Sn ~ oo, we have

Thus from (5.24) we have, for large n,

Now define events E(l) for l = 1, 2, 3, ... by

where L &#x3E; 2 is some fixed integer. If E(f) occurs then 0, so

by hypothesis, P{E(f,) i.o.} = 0. We shall prove later that

Notice that, for x &#x3E; 2r

Thus, by virtue of (5.4) there are constants c4 &#x3E; 0, cs &#x3E; 0, such that
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This estimate, combined with (5.28), gives

But now we see from

that F(-2LD(n)) converges. It is necessary for our purposes to

remove the factor 2L in this sum, that is, to prove

’ 

To this end we use the fact that for any constant L &#x3E; 0

(see Griffin and Maller [8, Eq. 4.1 and Eq. 4.3]. Combined with (5.25)
this shows that there exists some constant c6 = c6 (L) such that

But then, for large x

Since D(’) is increasing, it follows that
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for large n. But then (5.31) follows immediately from the convergence
of L F(-2LD(n)). We can now use Lemma 3.3 and Theorem 2.1 of
Kesten and Maller [15], to conclude from (5.31) that Sn - oo a.s.
To complete the proof of (3.23) we must show that 

converges, given that i.o.} = 0. To do this we use a generalised
Borel-Cantelli lemma of Kochen and Stone [17] (see also Spitzer [21,
p. 317]). Suppose by way of contradiction that = oo. Take

j &#x3E; k and consider

Now
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The last step follows because, on the event in (5.34), D (2~ ) and

From (5.27) we have

Now by (5.29) and (5.32)
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Consequently we have shown that

For the second term,

Combining this with (5.36) gives, by (5.33),

By Kochen and Stone [ 17] or Spitzer [21, p. 317] we obtain P(E (l) i.o.)
~ c4/c~ &#x3E; 0, a contradiction. Thus indeed Sn - 00 a.s., as argued above.
This completes the proof of (3.23).

Next we prove (3.24). Note that oo a.s. implies -

oo a.s., of course. So assume ST~r~/ T (r) --+ oo a.s. Then ST(r) - 00
Vol. 35, n° 6-1999.
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a.s. So by what we’ve already proved, Sn -~ oo a.s. This is equivalent to
0  EX ~ E!X!  oo = EX+, where

by ( 1.18) of Kesten and Maller [15]. Also --+ oo so 
00 and A (x ) -~ oo by Theorem 4 of Kesten and Maller [ 16] . So we must
have J-  oo = EX +, equivalently, oo a.s. by ( 1.15) of Kesten
and Maller [ 15 ] . a

Proof of corollary to Theorem 3.4. - If lim &#x3E; -00 a.s.

then trivially lim Sn &#x3E; - oo a. s ., so lim Sn = a. s .

Conversely let lim Sn = oo a. s. and lim ST ~r~  oo a. s.

Then &#x3E; r i.o.) = 0 so -r i.o.) = 0 thus ST(r) ~ -oo
a.s. By Theorem 3.4 (with + and - interchanged) we have Sn - -oo
a.s., a contradiction. Thus lim ST ~r~ = oo a. s. D

Demonstration of Example 3.5. We will find a negatively relatively
stable Sn, i.e., such that

(where D(.) is defined by (1.18) with A (x ) replaced by - A (x ) , and
enjoys the properties listed in Section 1 ), and such that

but with

for all x &#x3E; 0. (5.37) then implies Sn/n ~ -00. We claim that in addition
(5.37)-(5.39) imply

To prove (5.40), fix x &#x3E; 1 and write, for any integer 
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We will choose = = D-1 (n). Since

when j - oo, as a result of (5.37), the regular variation of D(.) and
x &#x3E; 1, we see from (5.41 ) that

Thus (5.40) will follow from (5.37)-(5.39), as claimed.
It remains to give an example where (5.37)-(5.39) hold. Define

and keep 2  fJ  1. Choose a distribution function F which satisfies

for x large enough, xo, say. (Note that 1- F (x ) and F ( -x ) decrease
to 0 as x - oo, as they should.) Then for x &#x3E; 0
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where co is a constant. Thus A (x ) - - oo as x - oo and

Thus by (1.22), Sn is negatively relatively stable and (5.37) holds. The
norming sequence D (n ) can be chosen to satisfy

Since -A(x) ~ 00 as x ~ 00, (5.38) also holds. Now L (x) is slowly
varying, so 1 - F (x ) is regularly varying as x - oo. It therefore suffices
to check (5.39) with x = 1. Note also that log n as n - oo,
because D (n ) / [ - A ( D (n ) ) ] = n and A(’) is slowly varying. Hence

for some constant c &#x3E; 0. Since D-’ (n) = n/[-A(n)] we have

(because ~8 &#x3E; 2 ). Thus (5.39) holds too.

Proof of Theorem 3.6. -Suppose P{Sn  O} - 1 and oo.

Note that the latter forces 1 - F(x) &#x3E; 0 for all x. By Kesten and Maller
[16, Theorem 3 and Remark 3(iii)], the former then implies

and consequently that A (x )  0 for large x. We show, further, that

A (x ) --+ -00 as x - oo. If not, there is a sequence xk - oo with

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



731STABILITY OF EXIT TIMES OF RANDOM WALKS

0 and -c ~ A(xk)  0 for some constant c. Then by (5.43),
F(Xk)) - 0 as xk -~ oo. Take

Then, for x &#x3E; 0,

because

Set

and note that E(Xf) = A (xk ) and = U(Xk). Since A (xk )  0 we

have, by Kolmogorov’s inequality,

Hence
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It follows that

First let nk - oo, then x - oo. This shows that

Hence F(Xk)) - oo . B ut then

contradicting U(xk)(I- F (xk ) ) - 0. Thus indeed we have A (x ) - - oo

and then Sn/n ~ -oo follows from this, (5.43), and Theorem 4 and
Remark 3(iii) of Kesten and Maller [ 16] . D

Proofof Theorem 3. 7. - Let S~ / n ~ oo and suppose

for some c  oo and xk - oo . Again define n k ~ oo by (5.44) and use
the same notation as in the proof of Theorem 3.6 to write, for x &#x3E; 0,

We choose x &#x3E; 2e(1 + c) here. Now c ( 1 + c)  x /2 by (5.45),
so

By Kolmogorov’s inequality we get .
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Now follow exactly the same argument as in the proof of Theorem 3.6
to see that Fnk(Xk) -~ 0 and F(Xk)) -~ oo . But, then, again,
U(xk)(l - F(Xk)) - oo, contradicting (5.45). 0
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