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ABSTRACT. - Let denote a mean-field measure with potential F.
Asymptotic independence properties of the measure are investigated.
In particular, with denoting relative entropy, if there exists a unique
non-degenerate minimum of H( ~ ~ ~c) - F( ~ ), then propagation of chaos holds
for blocks of size o(N). Certain degenerate situations are also studied. The
results are applied for the Langevin dynamics of a system of interacting
particles leading to a McKean-Vlasov limit. @ Elsevier, Paris
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RESUME. - Soit une mesure de type champ-moyen avec potentiel
d’interaction F. Les proprietes asymptotiques d’ independance de la mesure

sont etudiees. En particulier, si désigne l’entropie relative, on
montre que, s’il existe un unique minimum non degenere de F( .) ,
alors la propagation du chaos est valide pour les blocs de taille o(N).
Certains cas de minima degeneres sont aussi etudies. Les resultats
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86 G. BEN AROUS AND O. ZEITOUNI

sont appliques a la dynamique de Langevin d’un systeme de particules
convergeant vers une limite de McKean-Vlasov. @ Elsevier, Paris

1. INTRODUCTION

Let (S, S, denote a (Polish) measure space, let F : MI (S) - JR be
measurable and bounded, and let X = Xi,..., X N denote a sequence of
random variables distributed according to the mean field Gibbs measure
with potential F

Here LN == -k ~N 1 8Xi is the empirical measure of the vector x = 
and ZN = fSN exp(N F(LN)) 03A0Ni=1 (dxi) is a normalization constant. In

various places, we also use L~ := N-1 ~N 1 bXi to denote the (random)
empirical measure of the random sample X.
Under mild assumptions, the law of L~ converges in distribution, under

the law to a deterministic measure b~,~ . By exchangeability, this

implies the convergence of the law of Xi under to and more

generally, for any k finite, the convergence of the law of (X1, ... , Xk)
under to (/~)~.

For any exchangeable measure on SN, let denote its marginal
on the first k coordinates; that is, for A C 6~ measurable,

By exchangeability, for any permutation 7 : {1,..., ~V} 2014~ {1,..., N~,

i.e. the k-marginals of /~~ do not depend on the choice of coordinates.
Recall that the relative entropy H(~~~) is defined as

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



87INCREASING PROPAGATION OF CHAOS

In this article, we estimate the relative entropy distance between and

appropriate (simpler) exchangeable measures v~N~, which are related to the
law ~*. The main interest in obtaining such estimates stems from the fact
that if one has that

then, for = a product measure, and k(N) = o(N/BN),

(See e.g. [5, (2.10)] for the first inequality). Hence, for appropriate (large,
increasing) blocks I~(N), the relative entropy distance (and hence, also the
variational distance) between and converges to 0. This

implies a strong version of the propagation of chaos. It is important to
notice that the notion of convergence we use is well suited to deal with

increasing blocks: a statement in the weak topology of Mi would not
be an advance over the finite dimensional propagation of chaos.
We remark that one can, by consideration of the function F(v) ==

with smooth g(.) , provided the latter integral is well defined and
that the support of J.L is bounded, adapt the set-up described above to Gibbs
measures involving empirical means, as opposed to empirical measures.
See the remark at the end of Section 2.

Similarly, the ideas presented here can be adapted to the Gaussian setup,
where they can be used to yield sharper versions of CLT convergence. For
a discussion of this application, we refer the reader to [2].
As will be seen, the critical value of k(N) and the structure of

depend crucially on the behaviour of the function F(.)
near its minima. In particular, if the minimum is unique, say 
then (~)~ with k(N) = o(N) if this minimum is non-

degenerate. Thus, with a non-degenerate unique minimum, one concludes
the propagation of chaos for blocks of size o(N).

This study is related to the one in [6], where a similar question in the case
of Gibbs conditioning was considered. Due to the extra regularity provided
by integration over F, the results here are more satisfactory in that they
cover (with sharp rates) genuinely infinite dimensional situations.
The structure of this article is as follows. In the rest of this introduction,

we describe our results for a (simple) problem, the Curie-Weiss model.
This model exhibits already a range of interesting phenomena. We describe
the precise assumptions we put on the function F, the statement of our
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88 G. BEN AROUS AND O. ZEITOUNI

main results in the non-degenerate case, and an application to the Langevin
dynamics of interacting particles, in Section 2. Section 3 is devoted to

the proofs of the non-degenerate case, while Section 4 is devoted to the
statements and proofs for the degenerate case.

Turning now to the Curie-Weiss model, let S = {-1,1}, ~ == ~ ( 8 -I + b1 ),
F(v) = F~,~(v) _ x)2 + a(v, x) and

We distinguish between the following cases

Let I ( v ) = A degenerate minima in this context is a
minimum /L* with = 0. It is easy to check (by embedding Ml (S)
into IR) that in both cases I and II, /L* is unique, with case I corresponding
to a non-degenerate /L* while case II is degenerate. On the other hand,
case III corresponds to the case of two non-degenerate minima I~2
(in all cases, and for any minimum /~, /~=/~(1) satisfies the relation

~*)) = 4/3(2/T - 1) + 2a~c*, with ~c* = 1/2 for 0 and

j3  1/2). A corollary of our general results in this paper is the

COROLLARY 1.

The possibility of working with k = o(N) in case III was pointed out to us
by A. Dembo, who also provided a proof based on the general results [7].
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For a study, from a different viewpoint, of the statistics of large blocks of
variables in the critical case, we refer the reader to [ 10] and the references
therein. F. Comets has kindly pointed out to us that the rate k(N) = 
in the critical case II is optimal. Indeed, fix 1 > E > 0, and let k(N) = EVii
and :== l~ ( N ) -1 ~ 2 ~ ~ ~ N ~ X i . Then, by [10, Theorem 1] ] (taking there
p = q6 and q = there exists a random variable wN such that the
law, under of the random vector q6wN) converges
weakly to a non-degenerate product measure, with first marginal non-
Gaussian and second marginal Gaussian. In particular, eN possesses a
non-Gaussian limit law for any E > 0. On the other hand, under the law

the standard CLT implies that its limit law is Gaussian.

Although Corollary 1 is a direct application of our general Theorems 1-4,
we provide a (direct) proof of parts I and II in the end of Section 4. Thus,
the reader interested in understanding first this simple situation may skip
directly there, avoiding the use of the results in [3] or [4].
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2. THE NON-DEGENERATE CASE

To state our results, we need to introduce some notations, following [ 1 ] .
Let I(v) = F(v). Denote mo = infvEMl(s) I(v). Let

Because F is bounded and continuous, JCF is nonempty and compact. We
often need the assumption of uniqueness of minimizers, summarized as:
(Al) There exists a unique M* E J’CF.
(See however Theorem 2 for a discussion of the case where (Al) does
not hold).

Let Ek (S) = ® ~ Cb ( S ) , the k-fold (projective) tensor product of Cb ( S ) .
Let Eoo(S) = and let sE(X)(S) denote the symmetric sub-
algebra of Eoo(S). For any e E E~(S), deg(e) is the largest integer k > 1
with nonzero component in the sum defining e.

Vol. 35, n° 1-1999.
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Let V e sEoo(S), with deg(V) = r, r > 2, and components Vk, k =

2, ... r. Let

(We do not need to consider linear components in the definition of F(.),
for these can be eliminated by a suitable modification of the measure 

Note that

Define next, on Lo (,S’, ~c* ) (the space of centered, ~c* square integrable
functions), an operator of kernel E such that

Let K(,u* ) = E). If I~(~c* ) = ~0~, we say that ~* is

non-degenerate. The non-degeneracy condition can be also given a Banach

space interpretation, c.f. [ 1, Lemma 2.19, pg. 96] and ( 11 ) below. Note that

by [1, Theorem B], there exist at most a finite number of non-degenerate
elements in KF.
Our main result is the following.

THEOREM 1. - Assume (Al ) and that ~c* is non-degenerate. Then, for some
constant C independent of N,

As a consequence, for any k(N) = o(N),

Interesting phenomena occur in the case where JCF consists of a finite
number of non-degenerate ~c J ~ . Let

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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Define next ~cN~* _ that is ~uN~* consists of a mixture of
product measures with weights ci. Let denote the restriction of 
to its first k coordinates, and note that it is also a mixture of product
measures. We now have:

THEOREM 2. - Assume consists of a finite number of non-degenerate
minima { *1, ..., Then, for some constant C which is independent of N,

Further, for any k = o(N),

Remark 1. - The constants C appearing in Theorem 1 and Theorem 2
can be computed explicitly, and the statements can be strengthened to yield
a convergence to C of the relative entropies in (4) and (5).

2. The results presented above extend immediately if F(LN) is

replaced by g(F(LN)), where g(.) E Cl(JR; JR) and F satisfies the

assumptions described in the beginning of this section. In this case, 7(~) =
~f(~~) 2014~(F(~)). This extension allows one to consider interactions based
on the empirical mean which are not necessarily polynomial. Technical
improvements, in particular on the boundedness assumption on the support
of J-l, are possible but will not be discussed here.

3. By [1, Corollary 1.6], one may state the assumptions on the potential
F directly in terms of the Banach spaces B appearing in the course of
the proof of Theorem 1. We chose not to do so as the introduction of the
functions V allows for a rather explicit expression for the non degeneracy
condition.

4. As mentioned in the introduction, (6) strengthens the weak convergence
announced in [1, Theorem B], which by itself precludes the existence of
propagation of chaos. Unfortunately, the simple reduction from (5) to (6)
used in the case of single minimum does not work in the case of non-
product measures, and a slightly more involved argument is needed. The
proof given below of (6) is based on a suggestion of A. Dembo.

Finally, we show how to apply Theorem 1 in a dynamic setting to

deduce propagation of chaos for a system of interacting particles obeying a
Langevin dynamic. Let satisfy the system of SDE’s [1]

Vol. 35, n° 1-1999.
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Here, denote N independent, IRd -valued Brownian motions,
U : IR,d - IRd is a C2b function, and V E IR), which is

assumed to admit the representation

with (C, v) a compact space, and g : IRd x C - IR differentiable in its

first coordinate for all T E C. (Note that by [ 1, Corollary 1.6], such a

representation with continuous g always exists, and the only additional
restriction here involves its differentiability. It holds, e.g., if V(x, y)
possesses a Fourier transform in Finally, we assume

with S E 0;Cb(IRd,IR), r > 2. Denote by E 

the law of (X 1 ~ N , ... , X ~ ~ N ) . Next, introduce the McKean-Vlasov

nonlinear diffusion: let Bt denote an Ill° Brownian motion, independent
of Xo, and for  E let

Under the above assumptions, the process Xt exists and is well defined
[8]. Let E denote its law. We are now ready to
state our main result concerning the dynamics.

THEOREM 3. - Let F(v~ _ (S, and I(v) = Assume

that (AI ) holds with non-degenerate. Then, there exists a constant C
such that

Further, for k(N) = o(N), propagation of chaos holds, that is

The following corollary is an immediate consequence of Theorem 3.

COROLLARY 2. - Under the assumptions of Theorem 3, let S = 0, that is
at t = 0 the are i.i.d.. Then, with k(N) = o(N),

In particular, at time T independence is still preserved for sub-blocks of
size A:(~V) ~ o(N).

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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3. PROOFS

Proof of Theorem 1. - Our proof relies on the sharp Laplace asymptotics
derived in [1], which in turn build on [3]. By definition,

The sharp asymptotics for the partition function of a mean field model
were computed in [ 1 ] . Indeed, [ 1, Theorem B] ] yields that

Hence, the proof of Theorem 1 follows as soon as we show that is

uniformly bounded.

By our assumptions, c.f. [1, Theorem 2.13 and Remark 2.16], log d~* E
Cb(S). Hence, F(v) = ~~-l~Tl~, with Y1 E Cb(S), and V =
(~,...,~) E sEoo with deg(V) = r.
We next follow the procedure suggested in [ 1 ] in order to embed the

computation of into a Banach space, for which the results of [3] may
be applied. By [ 1 ], Corollary 1.6, there exists a compact measure space
(C, v), a continuous function h : C -~ Cb(S) such that

with

Clearly, one also has

Vol. 35, n° 1-1999.
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for an appropriate V (but same (C, v)). Let B = v). B is a type 2
Banach space (c.f. [1]). Define Th : Mi(S) - B by

and P : B ~ IR by

With these definitions, F = P o Th.
By the fact that /~* is a minimizer (see [1, Theorem 2.13 and

Remark 2.16]), it holds that for any neighborhood 0 of /~, there exists a
constant K = K(O) such that, whenever LN E 0,

(See (16) below for an understanding of why (10) holds true). Next, let
a denote the law induced by  on B by the map x ~ h(.)(x). Note that

~*)) _ ~c*)), whereas the linearity of Th as a
map on Mi (6’) implies that ~*) is an empirical mean of 
B-valued random variables for which the results of Bolthausen [3] apply.
In particular, let (i, H, B) denote the abstract Wiener space generated on B,
and denote the Hilbert-norm by H (c.f. [3] for details of the construction).
Then (c.f. [1, Lemma 2.19, pg. 96]), the hypothesis of non degeneracy is

nothing but the statement that, for cp # 0,

where p E B*, the dual space of the Banach space B, and §3 =

.~ E B.

Returning to the evaluation of note that by (9), for some constant
C independent of N, and all N large enough,

By Varadhan’s lemma, for any neighborhood 0 of ~*,

Annales de l’Institut Henri Poincaré - Probabilites et Statistiques
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(13) and the fact that the set

is an open set imply that for any constant c > 0,

Further, by the bound (10), for every neighborhood 0 of and constant
c there exists a constant ci = ci(c) such that

(In fact, the precise limit in (15) can be computed by using the CLT of [ 1 ],
Theorem B, but we do not need it here).
To conclude the proof of Theorem 1, we borrow an argument from [3],

pg. 315. First, note that by the argument there, there exists an E small enough
such that, denoting A~ = {x E B : > I}, one has
8(E) := ~ infxEAE > 1. Next, denoting y~ = ~c*)) E B,
the Frechet differentiability of P implies that

with

Let c be such that, for  

Vol. 35, n° 1-1999.
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Then, reducing E further and increasing c, if necessary, one has by
Bolthausen’s extension of Yurinskii’s inequality to Banach spaces, c.f.

[3, Theorem 3], that, for all c  t  

Hence, for some constant c2 independent of N, and all N large enough,

where the last inequality is due to 8 ( E) > 1.

Combining (14), (15) and (17), one concludes that supN  oo,

yielding (4). The second part now follows from the estimate (3). D

Proof of Theorem 2. - Throughout this proof, C denotes a constant whose
value may change from line to line but which is always independent of
N. Let

By definition,

where throughout E(N) denotes expectations with respect to the measure

Exactly as in the proof of Theorem 1, one has that is uniformly
bounded. Let now Oi denote arbitrary open, disjoint neighborhoods of 
then by [ 1 Theorem B] it holds that ~~(0,) c, .

Localizing on ~Ji=1Oi by the large deviations for LXN, one finds that

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Note that

Since for Oi = small enough and LN E Oi one has that

one sees that for 03B4  and all N large enough it holds
that 

, , u , , ,

Hence, with Fi(v) = F(v) - (v, 

The proof that BN  C, i.e. of (5), now proceeds exactly as the proof of
boundedness of B(2)N in Theorem 1.

where the last two equalities follow from the convergence
E Oi) ci > 0 and the same argument leading to

the boundedness of in Theorem 1.

Vol. 35, n° 1-1999.
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Let now

It follows from (3) and (18) that if k = k(N) = o(N) then

Recall that  C. Hence, 
exists, and, denoting by ~a - b~var the variation distance between two
measures,

where the last limit is due to the inequality Ila -  and

(19). One concludes that

and hence

Next, with f = E Cb(Sk),

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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whereas, (at least for N / k integer, the general case following by truncation),

Combining (20) and (21), one arrives at

as soon as k = o(N). D

Proof of Theorem 3. - By [1, Page 115, (3.6)], one sees that the law
is Gibbsian with respect to (with S = C( ~0, T], and

bounded, continuous potential F E = r V 3, see [1, Page 118,
Corollary 3.21]). Hence, Theorem 3 follows from Theorem 1 as soon as

one establishes that the variational problem associated with F possesses a
unique, non degenerate minimum which is But this is the content,

respectively, of [ 1, Page 136, Corollary 3.10] and [ 1, Page 122, Theorem
2.7]. []

4. THE DEGENERATE CASE

For simplicity, we assume (Al) in the degenerate case. Let d =

let ~e~ ~d-1 denote an orthonormal base of in Lo (S, ~c* ),
and define A(t) by

Vol. 35, n° 1-1999.
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We refer to [1] (notably, the proof of Theorem C) for properties of A(~).
In order to state our last hypothesis, we refer to the construction of

the embedding into the space B described in the proof of Theorem 1.

Let {~}~ = 1,..., d denote an orthonormal basis in the d-dimensional
space of cP E B* achieving equality in (11), such that cPj(Th(V - p* )) =
(ej, v - ~~*). Defining q : B - 1R by ~(~) == (y(x), ... , and

A : B -~ IR by A(~) = Th(v) = ~}, it holds that (see [4,
Pg. 172], and use [1, Lemma 3.8] to identify A(t) of [1] with A(t) of [4])

In order to apply [4] (i.e., to obtain certain local limit theorems uniformly),
we will need the following smoothness hypothesis on the finite dimensional
measures o 

(A2) The characteristic function of the measure o q-1 on IRd is in Lp,
some oo > p > 1.

THEOREM 4. - Assume (A1 ) and that p* is degenerate. Further, assume
(A2) and that some p > 3 integer and L > 0.

Then,

As a consequence, for any k(N) = 

Proof of Theorem. - Throughout this proof, C denotes a constant whose
value may change from line to line but which is always independent of N.
We essentially follow the proof of Theorem 1, whose notations we adopt,
except that one has to condition on the degenerate directions, as in [4].
Here, with BN defined in (8), it is enough to prove that BN = 0(N~~~/P ) .
By [1], Theorem C, we know that ~(Nd~l/2-1/p))~ and hence

= O(log(N)). Therefore, (12) is replaced by

By standard large deviations as in (13), one can localize the computation
of (23) to any fixed neighborhood 0 of 

Letting now q(Th(L% - *)) = t(x), one may write Th(L’N -
jj*) = Vt(x) + Wt(x) with = t and = 0. Further,

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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since F(/~  M*))11, it holds that

F(~)!  + Fix now c > 0

large enough such that [4, Proposition 3.12] can be applied, and take
the neighborhood 0 to be such that L£ 11 + 11  
We now have

where the last inequality is due to the uniform CLT contained in [4,
Proposition 3.12] (note that we are working in the non-degenerate directions,
and follow the same computation as in Theorem 1 when deriving (17)).
On the other hand, following the computation leading to [4, (4.2)-(4.6)],
one finds that

Combining the last inequality with (24) and (23) yields the desired estimate
on and hence the theorem. D

Proof of Corollary 1. - We consider the case a = 0, the general case
being similar. The argument leading from Case III to case I being exactly
as outlined in the proof of Theorem 2, we deal with cases I and II only.
Throughout this proof, C denotes a constant whose value may change from
line to line but which is independent of N. Recall that

By theorem 2 of [9], one knows that ZN = C(l + 0(1)) (case I)
while ZN = + 0(1)) (case II) for some constant C (which
may be computed, although we do not need this computation). Let

YN = x). Then

Vol. 35, n° 1-1999.
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Next, by Chebycheff’s inequality, denoting A(0) = 
log cosh B, one has

A direct computation reveals that A~(0) = A (3) (0) = 0, while = 1,
and 

,_, , ,

Hence, in Case I, one gets

while in Case II one gets

One conclude that BN = 0(1) (Case I) and BN = 0(NI/2) (Case II). The
conclusion of the corollary follows. D
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