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ABSTRACT. - The present work deals with reflected random walks in the

trough Z~_ x Z having a zero mean-drift in the interior of the domain. It is
proved that in all non-critical cases the random walk is transient whereas it is
recurrent in one critical subcase. The convergence problem for renormalized
random walks is also studied. Two possible cases are separated. In the first
one, so-called semimartingale case, the renormalized in a standard way
random walks converge weakly to a semimartingale reflected Brownian
motion described in [24], whereas in the second case the random walks
exhibit a non-trivial behavior. Namely, one of its coordinates tends to

infinity almost surely faster than The obtained results are based on the

estimates of the invariant measure of a driftless random walk in a wedge
derived in [6]. @ Elsevier, Paris
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50 S. ASPANDIIAROV AND R. IASNOGORODSKI

L’article est consacre a l’étude de marches aleatoires dans
le quart d’espace Z~_ x Z avec drift nul a 1’interieur et reflection au bord
du domaine. Nous montrons tout d’abord que cette marche est toujours
transiente dans tous les cas non-critiques de reflection au bord. Nous nous
interessons ensuite au probleme de convergence des marches renormalisees
et montrons que deux situations sont possibles : le processus limite est une
semimartingale continue decrite dans [24] ou bien la marche se comporte
d’ une facon inhabituelle, notamment, une des coordonnees tend vers l’ infini
presque surement avec la vitesse superieure a Pour l’ obtenir on s’ appuie
sur des estimations de [6] pour la mesure invariante de la marche projetee
a valeurs dans Z~. @ Elsevier, Paris

1. INTRODUCTION

Stochastic processes with boundary conditions in domains of Rd with
smooth boundary such as random walks or diffusion processes have been
studied quite extensively these last years. However, problems appearing
in queuing networks theory, stochastic algorithms and some other applied
fields made obvious the necessity of the study of stochastic processes
with boundary reflection in non-smooth domains and with a discontinuous
boundary reflection. Of particular interest here are the questions of existence
and uniqueness of diffusion processes in such domains as well as those of
recurrence classification of their discrete counterparts, i.e. driftless random
walks.

One of first results dealing with these questions was obtained by
S.R.S. Varadhan and R.J. Williams in [25], who found necessary and
sufficient conditions for existence and uniqueness of a Brownian motion
in a wedge with a constant (on each side of the wedge) oblique reflection
from the boundary. It was shown later in [ 1 ] that any reflected Brownian
motion in a wedge can be obtained as a weak limit of renormalized in
a standard way reflected random walks with zero-drift in the interior of
the wedge (see Theorem 3 in [ 1 ]). Moreover, in papers [2], [4], [5],
[17] it has been proved that properties of reflected random walks and
diffusion processes such as recurrence classification or passage-times are
closely related to each other though not always identical. Namely, a recent
study of two-dimensional reflected random walks brought into light some
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new phenomena for invariant measures having no analogues for reflected
diffusions (see Remark 6, Theorem 7 in [6]).

The next important step in construction of reflected diffusions was

initiated by J.M. Harrison, M. Reiman and R.J. Williams who came up with
the notion of the so-called Semimartingale Reflecting Brownian Motion
(SBRM). For the history of the subject and references we invite the reader
to consult a recent survey by R.J. Williams [27]. Loosely speaking, these
processes have a semimartingale decomposition and behave like diffusions
with a constant drift and covariance matrix in the interior of the domain

and their bounded variation parts increase in a prescribed direction when
they hit the boundary in order to confine the processes in the domain. The
existence and uniqueness of such processes in different polyhedron-like
domains was then established in [8], [24]. Similarly to the two-dimensional
case, for particular cases of reflection fields multidimensional SBRMs were
shown to be approximations to renormalized reflected random walks (see
e.g. [ 11 ], [19], [22]).

However, the obtained necessary and sufficient conditions under which
SBRMs exist and unique or may be represented as a weak limit of discrete
processes do not cover all possible reflection fields even in the simplest
domains like n-dimensional troughs. The construction of reflected diffusions
in dimensions greater than 2 with a "non-semimartingale" reflection on the
boundary is an open theoretical problem which solution would also be of
benefit for applications. Further discussion of the problem and its current
state can be found in [26], [27].

As a first step in the study of non-semimartingale reflected diffusions we
investigate recurrence and limiting properties of three-dimensional reflected
random walks which is an interesting problem in itself. It is well known

that even for the simplest case of unconstrained driftless random walks in
Rn the transition from n = 2 to 3 brings a different recurrent behavior.
Similarly, the addition of a boundary reflection even in the planar case may
transform a null recurrent process in Z2 into an ergodic (positive recurrent)
or a transient one in Z+ (see [2], [12]). Let us notice that in dimension 2 the
boundary reflection does not much affect the limiting behavior of random
walks (provided, of course, that they remain non-ergodic) in a sense that
being renormalized in a standard Vii way they still converge. Moreover, this
limiting behavior remains stable with respect to changes of the boundary
reflection at the faces of co-dimension greater than 1 (i.e. the origin (0,0)
in Z~.). That is whatever the reflection from the origin be, the limiting
process remains the same. In the present work we are interested in driftless
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reflected random walks in Z+ x Z whereas in the forthcoming paper [3] we
will study the case Z~.. The questions to be addressed are the following:

1. What happens with a transient driftless random walk in Z3 if one
considers it only in the trough Z~_ x Z and adds a boundary reflection
which is constant on each particular face ?

2. What will the asymptotic behavior of Z~_ x Z-valued driftless random
walk be? For instance, will it be diffusion (i.e. ~) one? If so, what
are its limiting processes?

3. Would changes of the reflection from the edge of the trough Z~_ x Z
affect this limiting behavior?

The answers obtained are valid for all non-critical boundary reflections
and one critical subcase described in Definition 1. In non-critical case, it

will be shown that whatever random walk in Z~_ be (i.e. transient, null or
positive recurrent), the addition of the third unconstrained coordinate makes
it always transient. We should mention here that even though the result
looks very similar to that for unconstrained random walks in Z3, it has a

different nature. As for asymptotic behavior in the non-critical case, it will
be proved in Theorem 2 that the following two situations are possible. In
the first one, the ~-renormalized reflected random walks converge to the
corresponding SBRM in the trough and the boundary reflection on the edge
of the trough Z~_ x Z does not affect the limiting process. However, in the
other, "non-semimartingale" case, the asymptotic behavior differs from the
standard one. Namely, one has the almost sure drift of the process along
the edge to +00 or -oo with the speed n/3, where ,~ > 1/2. Furthermore,
the direction of the drift depends heavily on the boundary conditions on the
edge. It turns out that the main reason for this non-trivial behavior lies in
ergodic properties of the "projected" random walk in Z~_ obtained in [6].
We also prove that contrary to the non-critical case, in one critical

subcase the random walk is recurrent. Moreover, in this situation, even

though a > 1, the ~-renormalized reflected random walks still form a

weakly relatively compact family. As we suspect, it can be further proved
that these processes converge weakly to a continuous process which can be
then called non-semimartingale diffusion process in Z~_ x Z.
We believe the principal results of the paper provide further insight to

the intricacies of multidimensional reflected diffusions.

2. NOTATION AND MAIN RESULTS

In the sequel G is the three-dimensional domain G = R+ x R.
Its two faces and the edge are denoted by 8G2 and 8G3, i.e.
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8G1 = {(z1,z2,z3) E G; Zl = 0, z2 ~ 0} and ~G2 = {(z1,z2,z3) E
G; z2 = 0, z1 ~ 0}. The interior of G is referred to as 8Go. For each
I = 0,1, 2, 3 let 8Cl = 8Gl n {Z3 = 0~ and 8G = U~o,i,2,39~. .
We will study an irreducible aperiodic discrete-time Z~_ x Z-valued

Markov chain {Zn = 0} with the following transition
mechanism. The MC starting from the point z = z2, z3) of Z~_ x Z jumps
to (zl + i, z2 + j, z3 + k), i, j > - l,1~ E Z with transition probabilities

(respectively according to (zi , z~ , z3 ) e 8Go
(respectively 8G2, 8G3) which satisfy the following moment
conditions:

1. For any I = 0,1, 2, 3, and for some 8 > 0,

2. For any i, j > -1, k E Z,

3. Boundedness from below of z3-increments, i.e. there exists a positive
ko such that for any l = 0,1,2,3 and i, j > -1,

4. a) Zero-drifts in the interior of the domain 8Go, i.e.

b) For each l = 0,1,2,3 let Cl = (cli,j), l = 0,1, 2, 3 be the 3 x 3-
dimensional covariance matrix of the jumps distribution from ~Gl
with elements

It is assumed that (c°2)z > 0.

5. Non-degenerate reflection from the boundary 8Gi U 8G2, i.e.

Vol. 35, n° 1-1999.
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Let us introduce a new discrete-time MC (Zn, n > 0~ obtained by
projecting {Zn, n > 0~ on the plane {Z3 = 0~, i.e. (Zn, Zn) = (Z~, Z),.
Its transition probabilities from of Z2+ ~ ~Gl, l = 0,1, 2, 3 to

(zl + i, z2 + j) , i, j > -1 are given by

The vectors P == (pi,p2,p3), Q == (91~2,93), ~ == (r-i,~,~), (resp.
~ == (Pi.P2), Q == (91.92), 11 == (n,~)) with

will be called the vectors of the boundary reflection of the MC Z (resp.
Z). Notice that the condition (01) simply means that the vectors P, Q are
non-tangent to the respective faces and R is non-zero. The 3 x 3-matrix
which columns are formed by the coordinates of P, (resp. P, Q, 0)
will be called the reflection matrix and denoted by S (resp. S°) whereas
the 2 x 2-matrix formed by P, Q will be denoted by S. The submatrix

will be denoted by C .
Let 03A6 be any isomorphism of R2 transforming the quadratic form

+ + into X2 + y2. For instance, such ~ can be defined
as follows

where

Then H == tP(G) is the wedge of angle ~ = arccos (-r). Let ai , a2 be the
angles that make with the inward normals to the corresponding
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sides of the wedge H positive angles being toward the comer (the exact
expression for a in terms of is given in [ 1 ]). Set

where

As was proved in [4], [5], [2], the parameter cx fully determines the
recurrence classification of the Markov chain ~ Zn , n > 0}. Namely, Z is
recurrent, if and only if a > 0 and is positive recurrent if and only if ex > 2.
In what follows, we will also need to distinguish the case 03B1  ( > ) 1. These
conditions can be expressed in terms of the original transition probabilities.

Remark 1 .

DEFINITION. - The critical case is the case when either a) a = 1 or b)
a > 1 and det(S) = 0.
Our main results are formulated as follows.

THEOREM 1. - (Recurrence classification (non-critical case)).
The n > 0 ~ is transient.

THEOREM 2. - (Stability theorem (non-critical case)).
Let the initial value Zo be a constant vector with probability 1.

1 If a  1, then the processes n- 2 Z~n .J, n > 1 converge weakly in
the Skorokhod topology to W, where ~ Wt , t > 0 ~ is an SBRM in G

starting from (o, o, o) with the reflection matrix ,S‘°, zero-drifts and the
covariance matrix C° (for definition of W see [24]).

2 If a E ( 1 , 2), then the processes n- 2 (Z~n .~ , Z~n .~ ), n > 1 converge
weakly in the Skorokhod topology to W, t > 0)
is a (non-semimartingale) Brownian motion with oblique reflection
~(P), in the wedge H starting from (0,0) (a definition of W
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can be found in ~25J). However, the third coordinate of Z has a
different asymptotic behavior. Namely, for any 0,

3 If a = 2, then n- 2 n > 1 converge weakly to (0, 0)
and (10) holds.

4 If a > 2, then

where the random vector (a, b) is distributed according to the

stationary distribution ~r of the MC ~Zn, n > 0~ and the constant
c is equal to

As for critical cases, we were able to obtain reasonable answers only
in the critical subcase b).

THEOREM 3. - (Critical subcase b)).
If 03B1 > 1 and det(S) = 0, then:
1. The MC Z is recurrent.

2. The family of renormalized MC n- 2 Z~n .J, n > 1 is weakly relatively
compact.

CONJECTURE. - We suspect that:
1. In the critical subcase a) the MC Z is transient.
2. In the critical subcase b) the > 1 converge

weakly to a continuous three-dimensional process in G, which might be
then called non-semimartingale Brownian motion.

Before starting the proof let us introduce some more notation.

DEFINITION 2. - For each n > 0, let 0n be the filtrations
~J 7{(Z~ZD~..~(~~~)}. For each 2 > 1, let us

define Yi = Zi - Zi _ 1 and the F-martingale {Mk, k ~ 0),
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Remark 2.

Notation. - For each ~=1,2,3, 7r~ denotes the total time spent by the
process Z (or Z) on the boundary (or 9Gj) up to the time n, i.e

Throughout the paper we adopt the usual convention 0. The

convergence in probability will be denoted by ~ .
The proof of the main results varies according to the values of o;.

3. PROOF OF THE MAIN RESULTS

3.1 Preliminaries

3.1.1. One local limit theorem for sum of independent random variables

We start with one local limit theorem for sum of independent non-
degenerate random variables with values in Z.

DEFINITION 3 ([20], Chapter 7.1). - Random variables n > 0~
form k-sequence, if the set of all distinct distributions of the variables Xn
contains k elements.

Before enunciating the main result of this section let us discuss some
properties of characteristic functions of integer-valued random variables.

LEMMA 1. - Let X be a r.v. (not necessarily Z-valued) with characteristic
function ~. Suppose for some to E R, I = 1. Then for any integer
m > 0, such that  oo,

If 2, then there are a positive E = Eto and a continuous at to function
bto (t) such that bto (to) = 0 and for any t E [to - E, to + E~ ,

Vol. 35, n° 1-1999.
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Moreover, if to ~ 0, then there is a E R such that with probability 1, the
random variable X takes values on the lattice (a + to k, k E Z ~.

Proof of Lemma 1. - We first prove ( 14). If to = 0, then the assertion
is a well-known property of characteristic functions. Let now t0 ~ 0.

By assumptions there is a E R such that = or, equivalently,
= l. Hence, E(cos(to (X - a))) = 1. Since cos(x)  1, then

with probability 1, cos(to(X - a)) = l. Consequently, with probability 1,
sin(to(X - a)) = 0 and P(X E ~a + dk, k E Z~) = 1 with d = Also

Then, d a~(t°) = 
As for ( 15), in both cases to = 0 and t0 ~ 0 it follows from the Taylor’s

formula of the second order for the function log(03C6) in E-neigbourhood
of to with sufficiently small E for which in this neigbourhood of to

 1.
As consequence we obtain one useful property of Z-valued random

variables X. For any such X there are some a E Z, dEN, d > 0 such
that P(X E ~a + dk, k E Z~ ) = 1. Although such a and d are not
unique, one can still choose a maximal positive d for which this property
is verified. In fact, take any x 1, x2 belonging to the lattice of values of X,
i.e. xl = a + dk1, x2 = a + for some k1, k2 E Z. Then d = x1-x2 k1-k2
which shows that d belongs to the ~x2~ , k E Z~. This allows us
to choose uniquely the maximal d.

DEFINITION 4. - Let X be a Z-valued random variable. Maximal span
of the variable X is the maximal number dEN, d > 0 for which
P(X E ~a + dk, k E Z~) = 1 with some a E Z.
The last lemma easily yields the following result.

COROLLARY 1. - Let X be a Z-valued random variable with maximal span
d. Then I = 1 if and only if to = 2d~ for some k E Z.

Remark 3. - It is immediate by the last corollary that one necessary
and sufficient condition for the existence of to ~ 0, to E [-7r, 7r] such that

= 1 is that the maximal span d is greater or equal to two.

PROPOSITION 1. - Let ~Xn, n > o~ be a k-sequence of independent
square integrable random variables taking values in Z. Denote by S the
set of possible distributions of the variables Xn. For any n > 1, set

An = E(X2) and Bn = Var(Xi). Then
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1. There exists a positive constant C depending only on S such that for
any n > 1,

2. Suppose additionally that the maximal spans of all distributions from
S are equal to 1. Then there exists a positive function C = C(n)
depending only on S such that C(n) ~ 0 as n ~ oo and

B - /

where N is the density of the standard gaussian variable.

Remark 4. - The interest of this theorem lies in fact that the estimates
obtained are uniform on numbers of random variables having particular
distributions from S among n random variables X i , ..., Xn.

Proof. - Let Pl , ... , Pk be the set of possible distinct distributions

of the variables X, X 1, ... , X ~ be random variables with respective
distributions Pl , ... , Pk and ~~ be their characteristic functions.
Then for any n > 1, the characteristic function fn(t) of the random

variable Sn == is equal to

where nj is the number of the random variables Xi which has the

distribution Pj, i.e. 

For all x E Z and any n > 1, denote Pn(x) = i = ~)- ..
Then by the inversion formula,

We would like to consider separately two subsets of the interval [-7r, 7r]:
a union of small neigbourhoods of points to, where some of the functions

I are equal to 1 and its complement. For each j = 1, ... , k, let Tj be
the set of zeros of the function ~~ (t) ~ - 1 on the interval [-7r, 7r]. Set

T = Notice that card(T)  oo.

Vol. 35, n° 1-1999.
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For each s E T, let us denote by Es any number satisfying the assertion
of Lemma 1 with to = s. For any t E T, define Jl == {j = 1,..., ,1~;

( = 1} and Jl == {j = 1,..., k; ] # 1}. Let us consider any
t E T and any j e {1,..., &#x26;}. If j E then by Lemma 1 it follows
that for any u E [t - Et, t + 

with some continuous at 0 function bj,t satisfying = 0.

Suppose j E Jl. Since the absolute value of the function 

is less than 1 for u = t, then there exists E  Et

such that ]  1 for any u E [t - E, t + E]. That is,

In other words for all j E Jt2, the bound (20) holds with function bj,t - 0.
In this way we define bj,t for any index j and any t E T.

Recall that T is finite. Therefore one can choose a sufficiently small E
such that E ~ min~T(~) and E ~ t2/) and for
any t E T in E-neigbourhood of t the inequalities (21 )-(20) hold. Set V =

and V = [-7T, 7r] B V. For any n > 1 define sets
Vn = {~B/B~; ~ E V} and Yn = [-7rVE;:, 7rVE;:] B Vn. Notice that since
the functions ~~ are continuous, then bE = 
1. The proofs of two parts are almost the same so that we prove in detail
the first assertion and sketch out the proof of the second one.

1 ) Let us split the integral in (19)

By (18) and (19) and our choice of E (see conditions (21 )-(20) it follows that

where for each t E T, bj,t are continuous functions at 0 such that = 0

(recall that by definition bj,t - 0 for all j E For any E > 0, set
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By definition and continuity of bj,t at 0 it follows that A(e) 2014~ 0 as E - 0.
Recalling the inequality I  

On the other hand, since ~~ nj = n,

The estimates (22)-(26) permit to conclude the proof of the first assertion

by choosing a sufficiently small E.

2) The second assertion is proved in a similar way. By using the

expression for the characteristic function of the standard normal distribution
we get from (19) that

Since the maximal spans of Pi,..., Pk are equal to 1, then I
are equal to 1 only at 0. That is T = ~0~. Set E = eo, V = [-E, E],
Vn = [-e~B~, and Yn == [-7rVE;:, 7rVE;:] B Vn. Split the integral
in (27),

From (18) it follows that

where the functions bj,t were defined in Lemma 1. Therefore, by the

inequality ea - 1 ~ ]  - 1 valid for any a E C,
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with 0(E) defined in (24) The estimation of the second integral in (28)
is straightforward. Namely,

Immediately, the third integral here tends to 0. Using the arguments which
led to (26) (recall that outside the interval [-E, E] all functions I are

different from 1 ) the last two remaining integrals can be shown to tend to
0 as n  oo. This and (27)-(30) conclude the proof of the proposition..

3.1.2 Asymptotics for the time spent on the axis

As initial step in the proof, let us describe the asymptotic behavior of the
time spent by Z on the axis This description will play an important
role in proofs of the main results in both cases a > 1 and c~  1. The
first one is

PROPOSITION 2. - Suppose a > 0. Then, as n ~ o,

If 0152 - 2, then

Finally, if a > 2, then

Proof. - 1. If 0152 > 2, then (32), (34) are trivial consequences of positive
recurrence of the MC Z and follow from the ergodic theorem for such MC
(see Theorem 2 in [7], p.92).

2. Let now a E [0,2]. Observe that n ~ i n 3 i 1 Ti , where
Tk are the amounts of time elapsed between successive hittings of 8G3
by the process Z, i.e.

Obviously, since the Markov chain {Zn, n > 0} is recurrent, then 03C03n ~
as n ~ oo. Therefore, in order to check (32), (33) it suffices to prove
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LEMMA 2. - Suppose a E [0, 2]. Then

Proof - We start with the simplest case a = 2. In this case, it follows

from the non-ergodicity of the MC Z that the random variables Tk are

not integrable. Hence, by a version of the strong large numbers law for

non-integrable i.i.d. random variables as was to be proved.
We now prove the statement (35). Recalling Theorem 2 from [21 ] ~ we
immediately see that

where

We claim that Q == 8 == % fact, as follows from Theorem 3 in [4],
there exist constants A, B, A, C such that the following bound holds for
all x 2: A and Izl > CA,

where the random time T- is defined as TA = 0; ~~!  A~.
By irreducibility of the MC Z, there exist Zo E Z~_, ko E Z+, ~ > 0 such
that Izol ] > CA and starting from the origin, the MC Z hits Zo at time ko
without returning to the origin up to ko with probability greater or equal
to x. Let us fix them. Then, since -a.s. TA  To, (36) and the strong

Markov property of Z imply that there exists a positive constant C such
that for all x > A,

1 This reference was kindly pointed out to us by Jean Bertoin.
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On the other hand, Theorem 6 in [5] ensures that the constant A can be
chosen in such a way that for some positive constants and for all
x > A,

Since h(x) > P(o,o) (T1 > x), then the lower bound (37) implies that

Q ~ 8 ~ ~.
Moreover, the upper bound (38) and some easy calculations show that

there exist positive constants ci, c2 such that for all sufficiently large x,

(here we use an easy inequality > u) du,
for any p > 0). Since 0152 E [0, 2], the last upper bounds imply 
which concludes the proof of Lemma 2 and Proposition 2.

3.1.3 Limit theorem for renormalized two-
dimensional reflected random walks in the orthant

We now need to state one modification of the main results

(Theorem 1 and Remark 4) in [ 1 ] . For any n > 1, let Gn =

~ (zl /~, z2/~), (zl, z2 ) E Z+ ~ and let be any converging
sequence from G such that for any n, zn E Gn. Denote its limit by z. Let
{{Z~, k > 0}, ~ > 1} be any family of G-valued Markov chains with
the same transition mechanism as ~Z~, 1~ > 0~ such that Zo = 
Fix such (zn) and {Zn} and set

PROPOSITION 3. - Let ~ ~Xt , t > 0~, n > 1 ~ be the above defined family
of G-valued Markov chains. If a  2 (resp. c~ > 2), then X n converge
weakly to W, t > 0 ~ is a (non-semimartingale) Brownian
motion with oblique reflection in the wedge H starting from
(0,0) (a definition of W can be found in (25~).
The only difference between our setting and that of [ 1 ] consists in the

fact that in [ 1 ] the process Z was allowed to jump only at its neighbors,
i.e. were equal to 0 if either of i, j > 1. This difference complicates
the verification of the continuity of paths of the limiting process but not
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very much. Namely, in the present situation, the continuity follows from
Theorem 3.10.2 in [10], Lemma 5.5.1 in [16] and Lindeberg’s condition: for

any E > 0, t 2: 0,~ E~ ~ A which

in turn follows from the moment condition ( 1 ) and the construction of

Z k’ Apart from that the proof in [1] ] remains unchanged and covers this
more general setting.

3.2. Non-semimartingale case a > 1

Proof of Theorem 2. - Theorem 3 in [2] yields that the Markov chain
> 0} is null recurrent (resp. positive recurrent), if c~ E (1,2]

(resp. a > 2) and has an unique (up to a positive multiplicative
constant, if 0152 E (1,2]) stationary distribution 7r. Recall that by definition

(Z1n, Z2n) = (Z1n, Zn). Hence, the convergence of the first two coordinates
(renormalized by if a E (1,2]) is an immediate consequence of the
positive recurrence of the MC Z in the case a > 2 and Proposition 3 in
the complementary case.

Let us prove ( 10)-( 12). The key idea of the proof consists in the following
simple but powerful observation. By Theorem 7 in [6], it follows that even

though 7r(G) might be infinite (which happens in the case a E (1,2]), the
total measure of the boundary

is always finite if 0152 > 1. Hence, by the generalized ergodic
theorem (Theorem 1 in [7], p. 91) for any j = 1,2,

We are now prepared to study the asymptotic behavior of Z. For any
n > 0,

(recall that El were defined in Definition 2). Since there exists a positive
constant c such that  c a.s. for all i, then the quadratic
variation of the martingale M is of the order O(n). The stability theorem
for martingales (see, e.g. [ 18], Prop. VII-2-4) implies that for any E > 0,
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Let us fix an arbitrary ,~ E (!, ~). Then from (40)-(42), Remark 2 and
Proposition 2,

Recalling the weak convergence of jiï, jiï, 
zn ~(0,0). From (43) it follows that this sequence converges

almost surely to ( 0, 0 ) . Therefore,

Substituting the obtained values of "(aG1 ) , one gets that" 

7r(9G3) 7r( 8G3) 
"

By (43) for all (3 > 0,

Hence,

Then (10)-(12) follow from Remark 2, (34) in the case a > 2 and (32)..

Proof of Theorem 1. - The desired assertion follows immediately from
convergence statement of Theorem 2..

By the similar token we get the following result.

2 We would like to mention here that in the case a > 2 the equivalence p3 "( aG 1 ) +
_ ?r(9G’3)

q3 "~aG2~ + r3 > 0 iff det (S)  0 was first noticed by M. Menshikov who obtained it by a7r(9G-3)
different method.
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Remark 5. - If det (S) > 0 and 0152 > 1, then for (z°, z°, z°)
such that z3 > 0, the first hitting-time 7-0 of the plane {z3 = 0} is finite

with Pzo -probability 1.

Proof of Theorem. - 1. Let us first prove the recurrence. We need to

prove that starting from an arbitrary initial state z the process spends with
Pz-probability 1 an infinite time in z. Since the n > 0~ is

irreducible and aperiodic, then it suffices to prove that for some initial state
z = (0, 0, z3) with an arbitrary z3 the MC spends an infinite time in z.

Let us fix any such initial state z. Since det (S) = 0 and 0152 # 1, then
there exists a vector v = ( vl , v2 , v3 ) such that v3 # 0 and

Hence, the process U defined for all n > 0 by Un = (v, Zn ) is a martingale.
Furthermore, it is a square-integrable martingale. Its quadratic variation An
is expressed in terms of the covariance matrices Ci of the distribution of
the vector Zn+1 - Zn conditioned on {Zn E and satisfies for any
n > 0 the following upper bound

Let T be the first return-time to the axis 8G3. Since cx > 1, then by
Theorem 6 in [AI2], is finite. Hence, by (47), is

also finite. By one classical result on square-integrable martingales (see
Proposition VII-2-3 b) in [18]), T is a regular stopping time for the

martingale {Un, n > 0~ and (11, z) = v3z3. But by the
definition of T, Ez (11, Zr ) = v3 Ez ( Z~ ) and, hence, = z3 . Introduce

the successive hitting times of 8G3 by the MC Z, i.e.

and the random > 0}. Increments of this random walk are
i.i.d. random variables with zero mean, since by the strong Markov property
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By a well-known result (see e.g. [Revuz], Prop. 3.5.5), it then follows that
the random walk is recurrent. Hence, ZT = z3 for an infinite number of
n’s. Therefore, ZTn = (0, 0, z3) for an infinite number of n’s and so is Z~.
This implies the desired recurrence.
2. Let us now handle the second assertion of the theorem. As is known
from [ 1 ], the first two coordinates of the process {2014~, ~ ~ 0~ converge.
Therefore, by a well-known result of weak convergence, in order to prove
the weak relative compactness assertion, it is sufficient to prove that the

third coordinate z1] converges as n - oo.
Let v with v3 # 0 be a vector satisfying the property (46). We introduce

the sequence of processes V n by setting for each n > 0 and t > 0,

-v:n = (v, ). For each 1~, n > 1 let us set U~ = Then,

for each n > 0 and t > 0, We will now prove that the

processes vn converge to a driftless diffusion process. By one variant of
a well-known central limit theorem for martingales (see e.g. Theorem 3.33
in [14], Chapter VIII]) it suffices to verify the following two conditions:

for some positive constant c. The first condition is satisfied since

where Yl is a vector with distribution equal to that of Yk conditioned
on E Notice that convergence to 0 follows from the square

integrability of Yl. Check now the second condition.

where Cl are the covariance matrices of the transition mechanism defined
in (5). We now separate two cases.
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a) Let a E (1,2]. Then, by Proposition 2 and (40) we have that for all
l = 1,2,3,

Hence, ~~nt~ ~t and v t as n -~ oo. b)

If a > 2, then by ergodic theorem for any l = .0, 1, 2, 3, 03C0l[nt] 03C0(~Gt)t,
and, consequently, 

This terminates the verification of the second condition from (48).
Therefore, the processes vn converge. But the first two coordinates of

the processes {2014~ ~ > 0~ converge. Since v3 # 0, then so do the third
coordinates..

As was mentioned earlier, the crucial role in the proof of all these results
was played by asymptotic equivalence of the times spent on the boundary
(see (40)). However, this argument can not be applied in the case a = 1
because of the next result which shows that times spent by the process
Z on the boundaries 8Gi and 8G2 on the time interval [0, n] are of the
same order as n  oo and are asymptotically greater than that spent on
8G3. More precisely,

Remark 6. - If a = 1, then there exists a positive constant q such that

Moreover, limn~~E(0,0)(03C03n) E(0,0)(03C01n) = 0.

Proof of Remark 6. - Here we will only prove the first part of the remark.
The proof of the second assertion relies upon purely analytic methods and
will be given elsewhere. 

~ 

Since a = 1, then the vectors of boundary reflection P and Q for the
two-dimensional MC Z are collinear. Let q > 0 be such that P = 
We fix any vector vo orthogonal to P. These vectors (vo, P) form then
a basis of R2.

Let T be the first return time to the origin by the MC Z. Then for any
n > 1 and any two-dimensional vector v we have that
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Applying this to the vector v - vo we obtain that
= 0 which shows that for any n > 1

there is a constant bn such that = SnP-

Consequently, = On the other

hand, setting in (51) v - P, we see that 

~ P ~ 2 (E(o,o~ {~Tr~n ) - ’YE(o,o~ (~T~n ) ) . Combining these two equalities we
see that for any n > 1, E(o,o)(7r~J - ~E(o,o)(7r~~) = ~~ .

Notice that for any n > 1, bnP > (here the inequality
should be understood in the coordinate sense). Since a = 1, then one
of the coordinates of P is positive and another one is negative. Hence,

 oo and

3.3. Semimartingale case a  1.

Contrary to the previous case the proofs of Theorems 1 and 2 are

completely independent.

Proof of Theorem 1. - (case a  1).
Since in the case a  0, the MC Z is transient, then the original MC Z is
also transient. We therefore left with the case 0152 E ~0,1 ) . Let us denote by

and the n-step return probabilities to the origins:

We will use a well-known criteria of transience of countable irreducible

aperiodic MC which ensures that

We now investigate the asymptotic behavior of p(O,ü,O) as n - oo. Suppose
that with probability 1, Zo = (0,0,0). Set V = {(z~’) E Z~_; max(2, j ) 
1, pl-i,-j > 0 for some 1 = 0,1,2} (the probabilities pl-i,-j were defined
in (7)). Since the Markov chains {Zn, n > 0~ and {Zn, n > 0~ are
irreducible, the set V is non-empty. Then
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It is easy to see that the conditional distribution of Zn on a-algebra 
is the same as the distribution of the sum

where the random variables are independent and for each j = 0,1,2,3,
çf have the same distribution as that of Y3 (recall that

7r~ stands for the total time spent by the process Z on the boundary 8Gj
up to the time n). By Remark 2

We drop the subindex i in çf since for each fixed j the random variables
are identically distributed. Let us denote by v2j = These variances

are finite because of the moment condition ( 1 ). For any n > 1, set

By Proposition 1 applied to random variables ~, there exists a positive
constant c such that uniformly on 7r~, j == 0,1,2,3 for any n > 1,

This and (52) show that there exists a positive constant ci such that for
all n > 1,

By the time-homogeneity of the transition mechanism,

which together with (53) imply that there exists a positive constant c2
such that
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Let us next study the convergence of the sum Obviously,

where ~" ~ £i=0 ’~~0,0).
The following lemma will provides an estimate leading to certain bounds

for sn as n - 00 from (37), (38). It can be also used in a different
context and regarded as a generalized tauberian theorem (cf. [1 3], Ch. 1 3,
Theorem 5).

DEFINITION 5. - A positive finction / defined on [0,(0) is called

subexponential, if there exists a positive p such that lim sup x-pf(x)  00.

x-o

LEMMA 3. - Let be a sequence of positive reals, sn == 03A3nk=0 pk
and let f be the generating function of the sequence pk on [0, 1) defined
by f(x) == Suppose there exist positive constants CI, C2 and a
subexponential function Li such that for all suficiently small a > 0,

Then there exist positive constants c3, c4 such that for all sufficiently large n,
1. (Upper bound). Sn  
2. (Lower bound). For any positive sequence an such that as n ~ o,

an = o( 1 ), nan ~ o, and

the following inequality holds:

Remark 7. - Sequences an with the properties described in the second
assertion of the last lemma exist because of the subexponentiality of Li.
For instance, one can take an = n-’ with 7 E (0,1).

Remark 8. - As we shall see, the proof of the upper bound for sn needs
only the upper bound in (56).
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Proof. - The proof of the upper bound is elementary. Namely, by
definition

as asserted. Let us now deal with the lower bound. First of all, observe that
the just proved upper bound implies that for all a > 0,

Observe also that for all (n, a) such that n a > j3 the function g(x) _
x/3 e - ax decreases on [n, oo) and, hence,

Let us denote the last integral in the RHS of (59) by na). Notice
that, as x ~ oo,

Let now an be any sequence satisfying the conditions of the lemma. Hence,
from (56)-(58) it follows that for all sufficiently large n, n an > /3 and

Then, recalling the estimate (60) with x = nan and the properties of an,
we arrive at the desired lower bound..

Remark 9. - We will need the following assertion which is a

straightforward modification of the upper bound in the last lemma:
If for some positive constant c and for all sufficiently small a, 
clog (1/a), then there exists a positive constant ci such that for all

sufficiently large n, Sn  ci log(n).
Vol. 35, n° 1-1999.
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In order to apply the last two results to the sequence pk = 
bounds for the generating function of this sequence are needed. Recall the
following classical formula:

where T is the first return time to the origin (0,0) of the MC Z starting from
the origin. By (37), there exists a positive constant B such that for all a > 0,

Hence, from (62), the upper bound in the assertion of the last lemma
with j3 = 2 and the last remark we get that for sufficiently large n,

sn  log(n) and

since o;  1. (12) concludes the proof of Theorem 1..

Remark 10. - Similarly, one can prove that a driftless random walk in
the half-space Z2 x Z+ with any constant reflection on the plane {Z3 = 0~
is transient.

3.4. Proof of Theorem 2 (c~  1)
The proof is broken into many steps. The starting point is decomposition

( 1 ) of The first task is to prove the tightness of the family

{( 03C01[n.] n, 03C02[n.] n, 03C03[n.] n), n ~ 1 which in turn implies the tightness of the
") 1

family {03A3[n.]i=1 E(Yi|Zi-1) n, n > 1}. Next, the weak convergence of the

martingales { M[n.] n, n ~ 1 } to a diffusion process will be proved. This will
then give us the tightness of the family ~-~ ~ > 1 . An identification of
the limit process will possible because of Proposition 3 and one uniqueness
result for SBRMs proved by L. Taylor and R.J. Williams in [24]. Let us
now proceed.

Let z E G. Let us fix any sequence converging to ll’ such that
for any n > 1, zn E Gn. Let us also fix any family of G-valued Markov
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k > 0), n > 1} with the same transition mechanism as
k > 0} such that Zo = For each n > 1, let X n be the

stochastic process defined by (39).
L~tJ

Notation. - For all j = 1, 2, 3 let us denote by = 

We will omit the subscript 1 in 

The following result will be crucial for the proof of the relative compactn-
ess of the family of R3+-valued processes {03A3n. = (03C31,n., 03C32,n, 3,n), n > 1}.
LEMMA. - There exists a positive constant c, such that for any t > 0 and

-n 

for any initial values Zo E 2~, we have

Proof - For the sake of typography, throughout the proof we will omit
the superscript n in X" and Z . Let us first prove the lemma in the case
t = 1. We define positive functions /i,/2 on G by

and apply to them the martingale property of P. Then, for each n > 1,

where L" is the infinitesimal operator of the process 2014 defined on the
set of bounded functions by

/

Obviously, fi i E Then, the moment conditions (1)-(4) on the

increments of the MC Z (and, hence, Z, Z " ) and the Taylor’s formula
applied to yield that there exist positive constants c2,1 (which do
not depend on the initial values Zo ) such that for all sufficiently large n,
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Let us now estimate 
As in (67), let us apply the martingale property and the Taylor’s
formula to the functions Then, using the properties fiz E C~(G),
~ f’,2 = (0, 0) on 8G3 and the moment conditions (1)-(4),

Trivially, on 8Gi,

and on 8Gi

The following cases will now be separated.
1. Let p2  0,~i  0. Then, from (67)-(70) and the triangle inequality

we get that for all sufficiently large n,

By Remark 1, c5 = det (S) > 0. By definition (8)), > 0.

Moreover, pi > 0, q2 > 0 and max(ri, r2) > 0 because of (6).
Suppose, for example, ri > 0. Then the last bounds imply that for
all sufficiently large n,

as was to be proved.
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(here Z~ is the second coordinate of Z k). Again (67)-(70) and the
triangle inequality imply that for all sufficiently large n,

Hence, B/~2~ ~ 0 and, therefore, there exists a positive
constant C6 such that pn  c6. Suppose, for example, ri > 0. This and the
second bound in (73) implies that there exists a positive constant c7 such
that a2,n  c7. Finally, the first bound in (73) concludes the proof.

3. The proof in the cases p2  0, ql > 0 or p2 > 0, ql > 0 is carried out
in the similar manner and is left to the reader.

Notice finally that the constants appearing in these arguments do not depend
on the initial values of Z. This enables us to get (bounest) for an arbitrary
t by passing to the limit over the particular subsequence An = N

LEMMA 5. - Let Zo = zn be such that for any n,
zn E Gn, with some z E G. The family of the processes

{03A3n, n > 1} on tight. Moreover, any weak limit of this family is a

R3+-valued process with continuous paths starting from (0 , 0 , 0) .
Proof - Since Rt is separable and the trajectories of E~ have jumps of

size at most then any weak limit has continuous paths.
Let us prove the tightness by verifying the following sufficient conditions

of relative compactness ([10], Theorem 3.7.2, Prop. 3.8.3). For each fixed
E > 0 and n > 1, define inductively:

We simply denote Tl’n by T(E, n). The following two statements need to
be verified:

1. The compact containment condition: for each 8 E (0,1 ) and t > 0
there exists E > 0 such that
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Both of the statements (74) and (75) are easy consequences of the strong
Markov property, the Chebyshev’s inequality and Lemma 4. Let us prove,
for instance, (75). In fact, since the processes are positive and non-
decreasing, then we immediately have from Lemma 4 that for any T > 0,
E > 0 and t > 0,

Passing to the limit as t 2014~ 0 gets (75)..

COROLLARY 2. - Let Zo be a constant vector a. s. Then

{ ( 7r 1 7r2 7r3) tight family. Moreover, 7r3 converges

and any weak limit o f the f amil y (, ), n ~ 1 is aweakly to 0 and any weak limit j the family i t , ), n 2014 I f is a

R+-valued process with continuous paths starting from (0 , 0).
Proof - The tightness and the continuity of any weak limit point follows

from the last lemma. Let us now prove that ---+0.
If 0152 > 0, then the convergence immediately follows from
Proposition 2, whereas in the case a  0, it is an easy consequence of

the transience of the MC Z. In fact, if a  0, then for any initial value
of Zo the probability of not hitting of 8G3 is positive. It is easy then to

see from the strong Markov property that 7r? i2014~7r~, where 1f~ has the
following distribution:

where for any z, pz is the probability of not hitting of 8G3 starting

The next step in the proof of Theorem 2 is

LEMMA 6. - The family of the processes M~ n ~ , n > 1 converge weakly
in DR3 to a 3-dimensional diffusion process {Bt, t > 0} with the covariance
matrix C’°t and zero-drifts.
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Proof. - The proof is similar to that of Remark relcom and will only be
sketched out. Let us denote by Uk = 

Then for any n, t By the multidimensional variant
of the central limit theorem for martin g ales ( see e.g. Theorem 3.33 in

[14], Chapter VIII] ) in order to prove the lemma it suffices to verify the
following two conditions:

1. For any E > 0, t > 0, 

2. For any t > 0 and zj = 1,2,3, E .~~_1 -~c°?~t.
The first condition is verified as in the proof of Lemma 3 using the
moment condition ( 1 ). The second condition is an immediate consequence
of Corollary 2. In fact,

and by Corollary 2 for each l = l, 2, 3, n 03C0l[nt] n ~0. []
We have now all necessary ingredients to prove Theorem 2. First of

all, Corollary 2, Lemma 6 and one well-known result on the tightness in
Skorokhod topology (see, e.g. [14], Chapter VI, Corollary 3.33) imply that
the families jY~~~Y ~ 1 and {~L, n > l} are also tight. Let
us choose any subsequence nk providing the weak convergence. Let us
denote the limiting processes by (B, ~1, ~2, 0) and W respectively. Then,
for any t > 0,

Notice that the process W is a semimartingale since the processes A , A
are increasing and B is a martingale.
On the other hand, from Theorems 1, 2 in [9] and Proposition 3 it follows

that the first two coordinates of the processes Z~ n~ , i.e. converge weakly
to a semimartingale W with the following decomposition for any t > 0,

where the process B is a 2-dimensional diffusion process with covariance
matrix C and zero-drifts starting from (0, 0) and the processes L~, L2 are
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continuous R+-valued non-increasing processes such that Li can increase
only when W is on the face 8Gi. Then W - ( W 1, W 2 ) . Moreover,
since both processes are semimartingales, their triplets of semimartingale
characteristics should coincide. In particular, their martingale terms B and

should coincide. Since 0, we also get ( ~ 1, ~2 ) _
(LI, L2). Finally, from (76) for any t 2: 0,

where the process B is a 3-dimensional diffusion process with covariance

matrix C° starting from (0,0,0) and the processes LI, L2 are continuous
R+-valued non-increasing processes such that Li can increase only when
W is on the face 8Gi. But by Theorem 3.4 of [24] such semimartinglale
reflected diffusion W is unique. This terminates the proof of Theorem 2..
The last result of this section completes Remark 5 and Theorem 1 in

the case a > 1.

Remark 11. - If 0152  1, then for any ZO == z°, such that z3 > 0,
the first hitting-time To of the plane {Z3 = 0} is finite with Pzo-probability 1.

Proof. - (z°, z°, z3 ) such that z3 > 0. The proof consists in
proving the following stronger claim: there exists a subsequence (nk) and
a positive constant c such that

We start by recalling decomposition ( 1 ) for the third coordinate of Z, i.e.

Let us first study the asymptotic behavior of M which is a square-integrable
martingale w.r.t. to the standard filtration generated by Z. Define the process
A by = E~=i~((~ - Then

where, as above, v2j is the conditional variance of r:3 == Zf - Zf-I on
E c~G~ ~ . By definition, it follows that for any n > 0,
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Obviously, An ~ oo almost surely as n ~ oo. Since the processes

{ ( 03C01[n.] n, 03C02[n.] n, 03C03[n.] n), n > 1 converge weakly by Corollary 2, then there
exists a subsequence n~ such that oo oo and for any

j == 0,1, 2, 3,

The result which will allow us to study the behavior of M is the following
iterated logarithm law type result for square-integrable martingales.

LEMMA 7 (Theorem 3.2 of [15]). - Let {Mn, n > 0} be a squa re-
integrable martingale w. r. t. a filtration (.~’7,, ). For any n > 1, set Xn =

Mn - and

Define random function ~ M (t) , t > 0 ~ by

Suppose An -~ oo as n -~ 00 and for some fixed {3 > 0, almost surely

B ~~ J

Then, redefining M if necessary on a new probability space, there exists a
Brownian motion W such that almost surely, as t - 00,

In particular, as n ~ oo,

Let us now verify that the martingale M and the process A satisfy the
condition (83) of the last lemma for some positive {3. Fix any such {3. Since
the variables Yi3 admit finite moments of the order 2 + 8 and these moments
are uniformly bounded in i, then the increments Xi = Mi - Mi_ 1 also

admit finite moments of the order 2 + 8 which are also uniformly bounded
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in z. By Chebyshev inequality it then follows that there exists a positive
constant C > 0 such that for any B > 0,

Substituting B by I A one sees from the upper bound on A
from (81) that the condition (83) is satisfied.

Let us choose any positive /3  1 and set for any n > 0, 
2n log2n. Then by (80), (81 ) and (85) it follows that almost surely,

for any subsequence nk for which (82) holds. Notice that the process Y
defined for any m > 0 by Y~ = is a Gaussian square-integrable
martingale with quadratic variation

bounded from below by and from above by
max~-o,1,2,3 (v~ ) . This fact and the iterated logarithm law for gaussian

martingales (see [ 18], page 154) imply that the last limit in (87) is less than
a negative constant. This terminates the proof of (79) and the remark..
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