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From repeated games to Brownian games
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ABSTRACT. - The subject of this paper is related to the analysis of the
convergence rate of the value of the n-times repeated zero-sum game with
one sided information and full monitoring. Particularly, the ultimate aim
of this work is the proof of the existence of an asymptotic expansion for
this value vn : 

.

As suggested in the conclusion of [6], the function ~ appearing in this
expansion should be regarded as the value of a "continuously repeated"
game.

In this paper, we propose and analyze a game of this kind. In this

game, the strategies are progressively measurable processes on the filtration
generated by a Brownian motion and the payoff function is defined by use
of the Ito-integral. Our main result is the proof of the existence of optimal
strategies for both players in this game. @ Elsevier, Paris

RESUME. - L’ objet de cet article est lie a l’analyse de la vitesse de
convergence de la valeur vn des jeux a somme nulle n fois repetes et

a information incomplete d’un cote. Plus precisement, le but ultime de

(1 ) This paper is a revised version of the third chapter of my Ph. D. thesis [3]. I am indebted
to Professor J.-F. Mertens, my adviser, for many fruitful comments and discussions. My sincere
thanks go to him. I also want to thank an anonymous referee for his very carefull reading and
his many suggestions on the presentation of the paper.
AMS classifications : 90020; 93E05; 35J60.
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2 B. DE MEYER

ce travail est la preuve de l’existence d’ un developpement asymptotique
pour vn :

Comme le suggerait la conclusion de l’ article [6], la fonction 1b qui apparait
dans ce developpement devrait etre consideree comme la valeur d’un "jeu
repete en temps continu".
Dans cet article, nous definissons et analysons un tel jeu. Les strategies

des joueurs y sont des processus progressivement mesurables sur une

filtration generee par un mouvement Brownien et la fonction de payement
fait intervenir Fintegrale de Ito de ces processus. (c) Elsevier, Paris

1. INTRODUCTION

The notion of Brownian games that will be introduced in this paper is

intimately related to the analysis of the asymptotic behavior of the value
vn (p) of the n times repeated zero sum game with one sided information and
more specifically with the existence of the following asymptotic expansion
for v~ (p) :

As it will be recalled in the next section, two types of arguments were

previously invoked to prove the existence of such an expansion: on one
hand, the recurrence formula for vn yields in the limit a Partial Differential
Equation (PDE) for 03C8 and the main result of [5] states that if a smooth

function f with appropriate boundary conditions satisfies to this PDE, then
( 1 ) holds with ~ = f. This PDE is in general strongly non linear and the
existence results of the PDE literature do not apply to this equation. In
particular cases however, this PDE can be solved explicitly and its solution
is then related to the normal density.
On the other hand, for these particular cases, the expansion ( 1 ) is proved

in [6] as a consequence of the central limit theorem, giving in this way a
rational to the appearance of this normal density.

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques



3FROM REPEATED GAMES TO BROWNIAN GAMES

The approach initiated in this paper is an attempt to prove the existence of
solutions the PDE problem in the general non linear case by a probabilistic
argument. More specifically, we will introduce in the next section the notion
of Brownian games as a kind of limit in continuous time of the n times

repeated games.
These Brownian games are stochastic differential games where two

completely antagonistic players control the martingale term of a diffusion

process. Part of the interest of this paper comes from this particular feature of
the Brownian games: "stochastic" differential games are usually considered
as "classical" differential games with an additional uncontrolled random

perturbation.
The next part of this paper is mainly devoted to the definition of the

Brownian games and to the underlying intuition. We also present there the
main results concerning these games that will be proved in the remaining
parts.

In part 3, we essentially prove that the Brownian games have a value

’ljJ, and both players have optimal strategies. The recursive structure of the
Brownian games and the Markovian properties of these optimal strategies
are analyzed in part 4.

In the last section of the paper, we prove that the function ~ is a kind
of generalized solution of the above PDE: if 03C8 was a smooth function,
it would satisfy a Bellman type equation that coincides with the above
mentioned PDE.

The regularity of the function ~ will be proved in a forthcoming paper [7]
under a strict ellipticity condition and the validity of ( 1 ) will then follow.

2. DEFINITION OF THE BROWNIAN

GAMES AND MAIN RESULTS

2.1. On the history of the problem. The repeated zero-sum game with
one sided information and full monitoring was first analyzed in the now
classical paper by Aumann and Maschler in 1966 (see [ 1 ]). They deal there
with the following n-times repeated game 

DEFINITION 2.1.1. - For a finite set will denote in the following
the simplex of probability distributions on B.

Let J( be the set of the K possible states of nature. To each state of nature
k corresponds an elementary one shot zero sum game. The action sets for
player 1 and player 2 in this game are respectively denoted by I and ,7.

Vol. 35, n° 1-1999.



4 B. DE MEYER

They contains respectively I and J elements. A pair (i, j ) of actions in I X ~’
yields a payoff a ~ for player 1 in state k.
For p E 0 (JC), the game T n (p) proceeds as follows: Nature chooses

initially and once for all a state k at random with the lottery p. Player 1
is informed by nature about the true state k, while player 2 is not. At each
successive stage q ofr n (p) (q = 1, ..., n), the players choose, independently
of each other, an action iq and jq in their respective action set. They are
then informed about the choice of their opponent. At the end of the game
player 2 pays the amount n 03A3nq=1 akijq to player 1. We assume that both
players are aware of the above description of the game. In particular, they
know the payoff matrices, as well as the initial probability distribution p.

Let us remark here that only players’ actions are communicated at each
stage, but not the corresponding payoffs. As a consequence, player 2 ignores
the elementary game he is actually playing up to the end of r n (p).
The value vn(P) of rn (p) is known (see e.g. [ 12] chapter V) to be

a concave function of p which decreases, as n increases, to a limit

vex:;(p) = cav(u) (p), where u(p) denotes the value of the average one
shot game G(p) with payoffs E~=1 cav(u) denotes the
concavification of this function on the simplex 0 ( JC) . The proof of this
convergence given in [ 1 ] is based on a bound on the variation of a bounded
martingale and leads to the result := Vn (p) - Vex:; (p)  ~ for a
positive constant c depending on the payoffs 

In [13], :== is proved to converge to a limit related
to the normal density for a particular two-states-of-nature-game, leading to
the asymptotic expansion ( 1 ) for vn .

The reasoning of Mertens and Zamir is generalized in [5] to a broader
class of games called 

DEFINITION 2.1.2. - The games in are square games (i. e. I = J)
such that the completely mixed (i.e. Vi : > ~) strategy ~o is the unique
optimal strategy for player 1 in G(p), Vp, and such that the value u(p) of
G(p) is identically 0.

The next lemma is proved in [5], Section 4:

LEMMA 2.1.3. - For games in 0°0, player 2 has a unique optimal strategy
p(p) in G(p). This strategy is completely mixed (i.e. > 0, Vj) and
the mapping p : 0(lC) -~ belongs to C°°, since, Vj, Pj(p) may be
expressed as a quotient of two polynomials in p.

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



5FROM REPEATED GAMES TO BROWNIAN GAMES

Furthermore, the optimal strategies in G(p) are equalizing. With the
vector notations aij := (a~ ..., and aiT := Tjaij, this means:

where (pia) stands for the Euclidean product in IRK : (pia) 
The importance of the class 0°o is stressed in another paper of Mertens

and Zamir [14]: in case I = J = K = 2, they prove a convergence faster
than 2014 outside 0°0 .
As it follows from lemma 4.3 in [12], chapter V, there is a recurrence

relation between the functions and vn(.). Since = for

games in 0°0 , this recurrence formula for vn becomes one for ~n that can
be written in an abstract way: where Hn is a functional
operator. So, heuristically, if the were to converge, their limit ~ should
be "nearly a fixed point of Hn," as n tends to oo. By giving the meaning

= O {n-3~2 ) to the expression " f is nearly a fixed point
of Hn", the converse of this claim is proved in [5]. More precisely: if

f is such a fixed point, bounded on the simplex A(/C) and vanishing at
its extreme points, then ~~ converges uniformly to f with a rate of, at

least, When replacing f by its Taylor expansion around p in
Hn ( f ) (p), the "fixed point" property of f becomes a Partial Differential
Equation (PDE). Conversely, any sufficiently smooth solution of this PDE,
with appropriate boundary conditions will be a "fixed point" for Hn and
will therefore be the limit of the as proved in [5], theorem 5.4.

This PDE is strongly non linear: it involves the inverse of the Hessian
matrix of f. It is however made more appealing by introducing Fenchel
duality:

DEFINITION 2.1.4. - The Fenchel conjugate of a function f : D C
IRK ~ IR is defined as the function fO : IRK ~ 1R that maps x to

-.= 

We are then led to consider a dual game r~ of rn, whose value vn is
the Fenchel conjugate of the concave function vn .

DEFINITION 2.1.5. - For x in IRK, rn (x) is the following game: Player 1
chooses k E J’C, without informing player 2. Next, as in T n, the players have
to select successively their actions (iq, jq). The final payoff player 1 has to

Vol. 35, n° 1-1999.



6 B. DE MEYER

pay to player 2 is now ~~ - n ~~,-~ (Player 1 is here the minimizer
and ~~ has to be interpreted as a penalty for having chosen the state k. )

If the factor ~ is replaced with 2014= in the payoff of this dual game, we
get an other game whose value ~ is In particular, for games in
0°~ , ~n is the Fenchel conjugate of 
The interest for introducing a dual game comes from the following

observation: In the primal game rn, as underlined in [19], player 1 has

optimal strategies that are Markovian in the following sense: at each stage,
these strategies only depend on the a posteriori probability on IC given
the past moves. The process of these a posteriori distributions is thus

Markovian, since it only depends on player 1’s mixed moves.
In counterpart the dual game r~ is particularly well suited to analyze the

"Markovian" behavior of player 2 as emphasized in [6] section 4.
When restricted to concave upper semi continuous functions, the Fenchel

transform is an isometry in the uniform norm. The rate of convergence of vn
may then be analyzed through that of vn and the convergence of through
that of ~. The recursive formula for can be transformed in the following
recursive formula for ’lj; (see Lemma 5.1 in [5]): ~n+1 = where
the dual recurrence operator Hn is defined as

As in the primal model, proving the convergence of ~ turns out to

be equivalent to finding a function satisfying ~03C8* - H*n(03C8*)~~ =
O( n -3/2). This finally leads to the following dual PDE for 

where is considered as a column vector and ~*"(x) stands for
the Hessian matrix of ’ljJ*. This equation is quasi-linear elliptic (see [10],
p. 257) and is easier to handle than the primal one. This equation is solved
in [5], section 6 for a sub-class of 0°0 . Surprisingly, the solution 
then obtained is related to the normal density as happened to be the case
in Zamir’s game (see [13]).
The appearance of the normal density in a subclass of Rao is

explained in [6] as follows:

1 ) We first prove (see theorem 3.1 in [6]) that, both in and T n (p),
the knowledge of past actions ( j 1, ... , jq-l) of player 2 is irrelevant for
both players when playing stage q.

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques



7FROM REPEATED GAMES TO BROWNIAN GAMES

This allows the players to consider only their "reduced" strategies (see
section 3 in [6]). For player 2, a behavioral reduced strategy is an n-

uple (1(2022),...,n(2022)) where Tq(.) is a mapping from Iq-1 to a (,7 ) . A
mixed reduced strategy ~ for player 1 in the normal form game rn (x)
is a probability distribution over In x J’C, while in r n (p) the marginal
distribution of E on 1C must coincide with p.

Using the following notations

the payoff of player 2 in rn (x) is then written as (see equation (4) in [6]):

Similarly, the payoff of player 1 in is given by:

In 0°0 , we have = so, relation (5) leads to:

where, as in [5], denotes min{x1, ..., xK}. In this formula, 7r is the
marginal distribution of ~ on In and the minimization over the conditional
probabilities on 1C leads to the function ~y* . The min and max operators
commute in this formula.

2) For games in the optimal strategy 7r* for player 1 in formula

(7) written as a min max is proved (see theorem 5.2. in [6]) to be the i.i.d.
ao-distribution: 7r* (i1, ... , in) :== This fact together with the
particular shape of the vectors aij in Ruo leads to:

where the Aq’s are i.i.d. random vectors under 7r*. The Central Limit

Theorem justifies then the appearance of the normal distribution.

Vol. 35, n° 1-1999.



8 B. DE MEYER

2.2. An heuristic approach to the Brownian games. To introduce

heuristically the limiting game F*, let us first rewrite formula (7) in a

way that emphasizes the role of x*: ao being completely mixed, any
probability distribution 7r on In has a density y with respect to 7r*. So:

The central limit theorem indicates that, asymptotically, the distribution
of the sum of n independent F-distributed random variables only depends
on the expectation and variance of F.

This suggests that replacing the sum in equation (8) by a sum of random
vectors with the same conditional expectation and covariance matrix should
not crucially affect the final result.

Since Tq ( ~ ) is a function of ( i 1, .. , , i q _ 1 ) , we get with equation (2):

Furthermore, the covariance matrix of conditional on (iI, ..., iq _ 1 ),
under the probability x* is aTiq (vectors are considered in this
paper as column matrices and aT denotes the transpose of a).

Let us then replace the random term aiqTq by zqiaiq o, where
zq are independent I-dimensional standard normal random vectors.

Finally, z g may be seen as the increment of the 7-

dimensional Brownian motion W on a filtration E [0,1]. In this way,
we get heuristically:

In equation (8), Tq only depends on the past history (i1, ... , zq_1). This
feature will be taken into account in formula (9) by assuming it to be

0- -measurable. Similarly, y, that depends on (iI, ..., in) in (8), will be
.~’1-measurable in (9).

Letting now T denote the {~-progressively measurable step process
T(W, t) := if g n 1  t  ~ relation (9) becomes:

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



9FROM REPEATED GAMES TO BROWNIAN GAMES

The limiting game F*(x) is finally obtained by dispensing with the
condition on T to be a step process and the strategy space for player 2
is chosen to be the set of progressively measurable processes T valued
in 0 (,7) .

Before further transformations of formula (10), let us observe here that
it formalizes pretty well the optimization problem player 2 is confronted:
The infimum appearing in this formula is the essential infimum of the

random variable V" (x - f01 so player 2 has to control
the martingale x - f; dWi,t in such a way that it will remain
up to time 1 in the orthant Ra := {~ E IRK : ~*(~) ~ a ~ for the highest
possible a.

We can still modify formula (10) in order to obtain a payoff function
similar to (5), which is linear in both strategies: Since -y* (x) _

we have:

where P denotes the set of ~-measurable A(/C)-valued random vectors.
Observing that yp is valued in IRK+ and that E[yp] E 0(1C) since E[y] = 1,
we finally have:

In analogy with formula (6), we also should have:

Let us stress here that the above link between the finitely repeated games
and the Brownian games is purely heuristic and the symbol ~ in the above
formulas has only a formal meaning: In formula (9), since W2, ~ - 
is normally distributed, the random variable to the right of y in (9) ranges
all over JR. Therefore, if no further condition is imposed on y, the min
appearing in this formula equals -oo !

2.3. Definitions and main results. Let T be in [0,1], let be a
filtration on a probability space (Z, 0, P) .
Vol. 35, n° 1-1999.



10 B. DE MEYER

DEFINITION 2.3.1. - For a E (1, oo), will refer here
after to the set of IRn-valued (0t)-progressively measurable processes c
such that := E~(, f~,  oo, where stands for the
Euclidean norm of Ct in IRn. If c and c’ are such that ~c-c’~M03B12 = 0, we
say that c’ is a modification of c and we write c ~ c’. M2 ( 
denotes the quotient of M03B12 ( by the equivalence relation rv.

These notations are shorten to M03B12 and M03B12 when the filtration as well
as the target space IRn are clearly fixed by the context.
A strategy T for player 2 in formulas ( 11 ) and ( 12) is valued in 

and is therefore in Va > 1. The Burkholder-Davis-Gundy inequality
(see e.g. theorem 4.1 in Chapter IV in [ 15]) indicates that the It6-integrals
appearing in these formulas belong to and the corresponding
expectations are thus finite for all Y in as it results from Holder’s

inequality.
We are then led to the following definitions of the Brownian games

where the origin T of the time interval [T, 1] is taken as a parameter to

analyze later their recursive structure:

DEFINITION 2.3.2. - Let T be in ~0, l~, let be a filtration on a
probability space (Z, P), and let W be an I-dimensional Ft-Brownian
motion.

For a process T in M2 ( we adopt the following notation:

For p E 0 ( 1C ), the primal Brownian game Y ( p, T) is defined by the
following elements:

The strategy space for player 1 is the set yp of IRK+-valued random
vectors Y in with E[Y] = p.

The strategy space T for player 2 is the set of 0394(J)-valued Ft-
progressively measurable processes T.

The maximizer in the primal game Y(p, T) is player 1 and his payoff
is given by

DEFINITION 2.3.3. - For x E and T E set

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



11FROM REPEATED GAMES TO BROWNIAN GAMES

The dual Brownian game r*(x, T) is then defined as follows:
Player l ’s strategy space is y := (i. e. the set of IRK+ -valued

random vectors Y in with E[Y] E 0(lC)).
Player 2’s strategy space is T as in the primal game.
Player 2 is here the maximizer and his payoff T) is given by

To simplify the presentation of the main results of this paper, let us remind
here some fundamental definitions of game theory: We say that a strategy
Y of player 1 guarantees a payoff a in r(p,T) if VT E T : gT(Y, T) > a.
The least upper bound of the payoffs player 1 can guarantee is clearly

This quantity is referred to as sup inf gT . For
E > 0, an E-optimal strategy of player 1 is a strategy that guarantees

sup inf gT - E. It follows from the definition of sup inf gT that there always
exist E-optimal strategies for E > 0. The 0-optimal strategies, if any, are

called optimal strategies. When there exists such an optimal strategy, the

sup inf of the game is in fact a max inf.

Similar definitions hold for player 2 who wants to minimize the

payoff. The lowest payoff he ever could guarantee is inf sup gT :=

infTET supY~yp gT (Y, T). The inf sup of a game is always greater than
the sup inf. In case both quantities are equal, the game is said to have a
value v equal to v := inf sup gT = sup inf gT.

These definitions also translate in the framework of the dual Brownian

games, but the maximizer is here player 2.
The main results of this paper are presented in the next five theorems.

The first one deals with the existence of a value for the Brownian games
as well as of optimal strategies for both players.

THEOREM 2.3.4. - For all p E 4i($i) and x E IRK, VT E [0,1]. the

games r(p, T) and T * (x, T) have a value that will be respectively denoted
’ljJ(p, T) and Moreover both players have optimal strategies. In
other words:

These values are independent of the filtration and on the 

Brownian motion W on which the games are defined.

Vol. 35, n° 1-1999.



12 B. DE MEYER

The two first equalities in the next theorem indicate that primal and dual
games are indeed dual models and their values are Fenchel conjugates of
each other.

Relations (21) and (22) emphasize the fact that the Brownian game

starting at time T E [0, 1] is in fact a rescaling of the Brownian game
starting at 0:

THEOREM 2.3.5. - The function T) (respectively ’lj;* (., T)) is concave
and continuous on 0(7C) (resp. on Both functions are linked by the

duality relationships:

They fulfill further the following relations, bT E ~0,1 ) , Vx E IRK, bp E
ð.(1C):

The next result claims that player 1 has optimal strategies Y in the
Brownian games that are uniformly bounded in La and completely mixed
i.e. P[Y = 0] = 0.

THEOREM 2.3.6. - There exist positive numbers a > > 0, C, ""

depending only on the payoffs such that, for all p in 0(~’C) (respectively
dx E IRK), player 1 has an optimal strategy Y in T (p, T) (resp. in

r* (x, T )) fulfilling:

where u :== ( l, ... ,1 ) E IRK. In particular: P[Y = 0] = 0.
The next two theorems are devoted to the recursive structure of the dual

Brownian games and its consequences: More specifically, a strategy T of

player 2 in r* (x, 0) can be viewed as a pair (T~, T’ ) where T and T’

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



13FROM REPEATED GAMES TO BROWNIAN GAMES

denote the restriction of T to the respective times intervals [0, T) and [T, 1].
If X denotes then = and the payoff

T) in can be written as

where YT is defined as The conditional expectation in the
above equation is in fact the payoff in r* (X~,o,T (T~ ), T ) resulting from
the strategies and T’ . This suggests that the players will manage to
chose for T’ and YjYT an optimal strategy in 
Two conclusions can be derived from this kind of argument: on one

hand, assuming that all the optimal strategies T* in r* (x, T ) start in the

same way, i.e. = R(x, T) for an appropriate function R, then, if T is
optimal in r* (x, 0), T’ is optimal in r* (X~,o,T (T~ ), T ) and thus TT = T$
should be equal to T ) . This being true for all times T, the
process should satisfy a diffusion equation. This is the content of
theorem 2.3.8, where the function R is specified.
On the other hand, if, after time T, the players play an optimal strategy

in r* (Xx,o,T (T~ ), T ), they guarantee a payoff 
r*(x, 0) and we may then conjecture formula (25). Moreover, since optimal
strategies in T* (x, 0) should also be optimal in (25), we conclude with
theorem 2.3.6 that player 1 has a completely mixed optimal strategy in the
second line of (25), from which (26) can be derived.

THEOREM 2.3.7.

Furthermore, if T* is optimal in r* (x, 0), then for all t E [0,1],

Let ~~* (x, T) denote the super gradient at x of the concave function
(., T). The duality relation (19) implies in particular: 0 # (x, T) C

0(1C). We can then introduce the correspondence R that maps (x,T) E
IRK x [0,1) to R(x,T):={03C1(p)|p E ~03C8*(x,T)}, where p was introduced
in lemma 1.2.3.

THEOREM 2.3.8. - The correspondence R is single valued and can therefore
viewed as a function. This function maps continuously IRK x [0, 1) on 

Vol. 35, n° 1-1999.



14 B. DE MEYER

If T is optimal for Player 2 in r* (x, 0), then the process T and the process
r, defined as rt :== t) are modifications of each others. As a
consequence, the process X defined as Xt :- is a solution of the
stochastic differential equation:

3. EXISTENCE RESULTS FOR
UNBOUNDED BROWNIAN GAMES

3.1. The behavioral form of the Brownian games. In this section, we
prove that Brownian games are, as stated in theorem 2.3.4, independent of
the filtration and the Brownian motion on which they are defined.
This result will allow us to consider the games in their behavioral form.

Let W be a I-dimensional Ft-Brownian motion on [T, I], let {3j denotes
the process 03A3I03C30,i03B1ijWi and let 9t be E y;T  s  t}. We
will then refer to the 9t-adapted strategies of player 2 and the 91 -measurable
strategies of player 1 as the ~-strategies. The set of these strategies will be
respectively denoted and 9Y. We have then the theorem:

THEOREM 3.1.1.. - In the Brownian games T (p, T) and r* (~, T) defined
on Ft and W, there is no loss for the players to restrict themselves to their
~-strategies. In other words, both players can guarantee the same payoff
in the Brownian games and in the corresponding ~-games where they are
restricted to their G-strategies. Furthermore, the ~-optimal strategies in the
G-games are still ~-optimal in the corresponding Brownian games.

Proof. - We will prove the result for r(p, T), the same argument holds
for r*(x, T).
Let x and ~f denote respectively the image of T and 97 by the

mapping XT,i introduced in (13).
Obviously, the operator E {~ ~ ~1 ~ maps 3~p onto 
Similarly, if T E T, is the value at time 1 of the Gt-

optional projection of the process XT,t (T) and can, according to proposition
7 in [7], be written as (T’) where T’ is the Gt-predictable projection
of T. 7-~ is thus one version of and, as such, belongs a. s. to A(J).
The process T’ is thus a 9-strategy of player 2, and E{~~~1~ maps therefore
JY onto 9X.

The result follows then from these onto properties of the mapping E {~ ~ ~1 ~ .
Indeed, the payoff guaranteed by a strategy Y of player 1 is then also

Annales de l’Instatut Henri Poincaré - Probabilités et Statistiques



15FROM REPEATED GAMES TO BROWNIAN GAMES

guaranteed by its 9-strategy since

This indicates that

Moreover, if Y E guarantees p - E against any X E Y still does

so against all X E X, since = 

Similarly, let T be a strategy of player 2 and let T’ be the ~-predictable
projection of T, then

Therefore,

and if a ~-strategy T of player 2 guarantees him a payoff less than ~ + E
against the ~-strategies of player 1, it does so against all strategies Y of
player 1, since ] = D

It follows from the last theorem that the players may restrict themselves
to their St-measurable strategies, T  s  t ~ . Since
the St-Brownian motion W is isomorphic to the Wiener Brownian motion
defined on the Wiener probability space, we conclude that:

COROLLARY 3.1.2. - The payoff a player can guarantee in a Brownian game
does not depend on the probability space (Z, P), nor on the filtration

neither on the Ft-Brownian motion on which the game is defined.
The ~-strategies Y of player 1 in r(p, T) are random vectors in

with E [Y] = p. Since the Brownian motion has the predictable
representation property on the filtration (see e.g. theorem 3.5 in chapter
V of [15]), the random variable Y may be written as the Ito-integral
Y = p + where f~ is a (K x ~-dimensional process
in If we define the K-dimensional process b2 as 
it follows from the definition of {3j that Y = p + ; 
It results from lemma 2.1.3 that = O. It is then convenient to

introduce the following notations:
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16 B. DE MEYER

DEFINITION 3.1.3. - From now on, A will denote the linear space of
b = (bl , ... , bI) in such that 03A3i~I03C30,ibi = 0. For b, b’ E A
we set «b|b’» :== and for T E IRJ, we define a(T) as
a(T) := (alT, ... , a2T). Since Vi, > 0, ((.1.)) is a scalar product on A
and, due to equation (2), a(.) is a linear mapping from IRJ to A.
With these notations, the payoff gT (Y, T) becomes

We conclude then that the game F(p, T) is equivalent to its behavioral form:

DEFINITION 3.1.4. - For q E 1R~ and a A-valued 0t-measurable process
b, we set

A behavioral strategy for player 1 in r(p, T) is a A-valued Ft-measurable
process b in such that YT,1(p, b) belongs a.s. to IR+.

Player l ’s payoff 9T(b, T) is given by

Similarly, a behavioral strategy for player 1 in r* (x, T) is a pair
(p, b), where p E 0(J’C) and b is a behavioral strategy in I‘(p, T). The
behavioral form of player 2’s payoff in T * (x, T) is: ( (p, b), T) -
(pix) - 

’ ,

3.2. The unbounded Brownian Games. Player 2’s strategy space in the
Brownian games is closed, bounded, and convex in M2 . It is therefore

compact in the weak topology of the reflexive space M2 . The payoff
functions gT (Y, T) and are affine and continuous in both

strategies. We could then apply Sion’s theorem (see [18]) to infer that
the Brownian games have a value and player 2 an optimal strategy.
The main difficulty of this approach is nevertheless the proof of the

existence of player l ’s optimal strategies. This difficulty comes from the
asymmetry between both players: player 2’s strategy space is bounded,
while player l’s is not.
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17FROM REPEATED GAMES TO BROWNIAN GAMES

To bypass this difficulty it is technically convenient to first analyze
auxiliary games, referred to as the unbounded Brownian games, where both
strategy spaces are unbounded, and then to prove the equivalence between
bounded and unbounded games.

A strategy for player 2 in the bounded Brownian games takes values in
0 (,7) . In the unbounded games, a strategy for player 2 will be a process T
in for a ~3’ E ( 1, oo ) to be fixed later, such that Tj = 1.

We have then to reduce player 1 strategy space in r(p, T) for the

payoff 9T (b, T) to be defined. To this end, it is convenient to introduce

the following definitions:

DEFINITION 3.2.1. - In the following, ~ and D will denote the set of vectors
h E IRJ such that hj is respectively equal to 1 and 0.
We also set E1 :== a(D) and the orthogonal space to [1.. in A with

respect to ((.1.)) will be denoted [. Since is just a translate of ~~-,
its intersection with ~ reduces to a single point e°. In the following T° will
denote a point T° in ~l such that a(T°) = e°.

vectors in ~ and ~-valued processes are referred to as equalizing.
Similarly, vectors in [1.. and ~1-valued processes are referred to as

ortho-equalizing.
The set of equalizing (resp. ortho-equalizing) processes in M2 will be

denoted [a (resp. ~l~a).
We can then see the strategy T of player 2 as the sum T° + 8 of the

constant process T° and a D-valued process 8 in 

Similarly the strategy b of player 1 can be written in a unique way as
the sum c + z of an equalizing process c and an ortho-equalizing process z.
We have then

since the expectation collapses according to the

definition of ~.

The constant process T° is in M2 °, the first expectation in (29) is defined
for all equalizing processes c in for all a E (1, oo). The second
expectation in turn will be finite for all ortho-equalizing process in 
where 1/a’ + 1//3’ = 1, since T E M~.

This leads us to the following definition of unbounded Brownian games
in behavioral form:
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DEFINITION 3.2.2. - For a, a’ in (I, oo) the unbounded Brownian game
( p, T) is defined as follows:

Player l’ ’s strategy space is the set of processes b = c + z with c E £a
and z E ~l,a’, such that b) is 

Player 2’s strategy space is the set of H-valued processes T in M03B2’2,
with ,C3’ such that + 1/,Q’ = 1. (It does not depend on a)
The payoff function of player 1 is given by (29).

Similarly, the unbounded Brownian game (x, T) is characterized

by the same strategy space Ta~ for player 2, the strategy space for
player 1 is the set of pairs (p, b) with p E and b E yp ~~~. The payoff
function is:

The main difficulty of this paper will be to find numbers 0152, a’ insuring
the existence of a value for the corresponding unbounded Brownian games,
as well as the existence of optimal strategies.

3.3. The bounds on player l ’s strategies. Since the strategy space of player
2 is an affine space and the payoff functions gT and are respectively
linear and affine in T, we infer that the only strategies b (resp. (p, b)) of
player 1 guaranteeing a finite payoff in (resp. T a,a, (x, T )) are
such that gT (b, T) = gT (b, T’) for all strategies T, T’ of player 2. In turn, this
relation indicates that for all D-valued processes 8, = 0

and b must therefore be ~-valued.

The equalizing strategies and the strategies that are nearly equalizing will
therefore play a central role in the following argument. We define therefore:

DEFINITION 3.3.1. - For R > 0, (R) is the set of strategies (p, b) in
with b = c + z, c E ~03B1, z E ~|,03B1’ such that R.

The set (0) is referred to as the set of equalizing strategies. It does
not depend on 0152’ and will be denoted Ya in the following.

For p E Q(J~), we also set Yp (resp. set of b such that

(p, b) E va (resp. (R).)
The aim of this section is to prove that is bounded in

0(1C) x £a x ~~-~a~ for appropriate choices of This will allow

us in the next section to apply the separation theorem for convex sets to
prove that the unbounded Brownian games have a value. A first result in

this direction is the following theorem:
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THEOREM 3.3.2. - There exist positive numbers c~ > 1, ri > 0, C, C’

depending only on the payoffs such that V(p, b) E ~a:

where u : = (!,...,!) E 1R K .

The set of IRK+-valued random vectors Y with E[Y] = p is unbounded
in > 1 and, to prove this theorem, we have to find a specific
property of the equalizing processes to get a bound on (p, 

If there were in ? a "one dimensional" 0, i.e. a c such that

Vi : c2 = Àip, where ~i E IR and p E 0(JC), there would be no hope
for such a bound: the process 6~ := would be an equalizing
strategy, where On is the first time the process Yn := p + n 03C30,iciWi
exits .tR+ . The process yn being a one dimensional Brownian motion, the
set of = E IN, would then be unbounded in any La,
since the one dimensional Brownian motion killed on one side in not an

equi-integrable martingale.
The next lemma indicates that there are no such "one dimensional" c’s

in ?:

LEMMA 3.3.3. - The following implication holds Vc E ~:

Proof. - Let indeed c = (Aip,..., AIp) be an equalizing vector. It results
then from the definition of ~ that for all 8 E D:

Since £ c A, we have 0 = 03A3i~I03C30,i03BBi (see definition 3.1.3),
so, for E > 0 small enough, both ~+ and cr" are in A(V), where
cr~ := ao,i(l + and ai := Indeed, ao is completely
mixed: Vi : aO,i > 0.

Relation (33) indicates that both strategies a+ and a- are equalizing in
the average game G(p) with payoffs Since 

(see (2)), one of these two strategies guarantees then a positive payoff and
is then optimal in G(p), since u(p) = 0. According to definition 2.1.2
of A~, ao is the unique optimal strategy in G ( p) and we conclude that
Vol. 35, n° 1-1999.
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oro = o-+ or o-o = 03C3-. It follows then from the definition of cr+ and 0’-

that Vi : 0 and hence c = 0, as announced. D

As a consequence of this lemma, we have:

LEMMA 3.3.4. - There exists ~ > 0 depending on the payoffs a ~
such that Vp E A(/C). Vc E ~: > where

B := ..., 

Proof. - We will prove an even stronger result: ~k’ such that

> ~’ ( ~ B ~ ~ 2 . Since both sides in this relation are, for fixed p,
2-homogeneous in B, we just have to show that x’ := inf ~ ~ ( B - 

( = 1; p E 0 (J’C) ~ is strictly positive.
If, on the contrary, we had x’ = 0, we would infer by compactness the

existence of c ~ 0 in ~ and p E A(/C) such that B - puT B = 0. In turn,
this would imply Vi : Ci = and a contradiction would follow from

lemma 3.3.3, since it would imply c = 0. D

The keystone in the proof of theorem 3.3.2 is the following result that is

intimately related with the theory of BMO-martingales (see e.g. [11]):

LEMMA 3.3.5. - Let W be an I-dimensional Brownian motion on a

filtration 0t, and let A > 1 and 03BB > 0 be two real numbers.

If an I-dimensional process v in ~03B1>1M03B12 satisfies, for all [T,I]-valued
stopping time ():

then the exponential process yt := fT fulfills
for all stopping times B:

Moreover, there exist ~ > 0 and C’  oo depending only on A and 03BB
such that, if the local martingale y is a martingale, then

Proof - If we define ç as 1 + 6, p as ~~ and p’ as 1 - p,

a straightforward computation shows that = where U :=
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From Girsanov’s theorem, we know that, a.s., = 1,
since V is a positive local martingale and is therefore also a super-

martingale. Equation (35) follows then readily from Holder’s inequality:
E[( ye )a ~.~e~  

Let us next suppose that y is a martingale and let us prove relation (36).
Let {t be in (0,1) and let 0~ be the stopping time 
with the convention inf(0) = 1. Let then 7r denote the probability

  1) and let ~ be 1; On  1]. Since

Y is a martingale, we have:

Next, relation (35) indicates that:

where the last inequality is a consequence of Jensens’ lemma (a > 1). The
expectation of this relation conditionally to (0~  1} gives:

This relation joint with (37) leads then to C > R(7r), where

It is easy to verify that R is increasing from 1 to oo on the interval [0,1)
and therefore 7r  p  1, where p is the root of the equation R(p) = C.

Since the previous reasoning holds for all n, we get then

Hence, if ~ > 0, we have:
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Since p  1, a strictly positive ~ may be chosen such that  1,
ensuring the convergence of the last sum and (36) is thus proved. D

We are now ready to prove theorem 3.3.2:

Proof of theorem 3.3.2. - Let (p, b) be in The martingale Y
defined as Ys :== YT,s (p, b) is ~~ -valued since so is Yi.

Let us first make the additional hypothesis that Y remains, for E > 0, in
CE := {Z E  (uIZ)  Let y denote the process y := (uIY)
and Let also Bt denotes the K x I-matrix process whose
i-th column is Bi,t := We have then dYt = ytBtdWt and
dyt = From the last relation, we infer that

Furthermore, since y is uniformly bounded (CE is bounded), we

may apply Girsanov’s theorem to the exponential process y : Yl is a

probability density on the probability space ( Z, F1, P ) and, if we endow
the space (Z, .~’1 ) with the probability P := P, the process W
defined by WT = 0, dWt = dWt - BJ udt is a Brownian Motion on

(Z, Ito’ s formula indicates then that fl~ = p + J; AtdWt,
where At := ( Bt - The process II is therefore a continuous

martingale on that remains in the unit ball B[0,l]
of IRK since II is valued in the simplex 0(lC). In particular, II is an

element of BMO(P) (see e.g. [ 11 ], chapter 2),  1.

John Nirenberg’s inequality (see theorem 2.2 in [ 11 ]) implies that for all
stopping time g, for all A E [0,2),

With lemma 3.3.4, we have then

Girsanov’s theorem indicates that, for any .~1-measurable random variable
X, = Replacing then the quotient y1/y03B8 by
its exponential expression exp(103B8uTBtdWt - 1 2103B8~uTBt~2dt), we get
finally:
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Since for z in we conclude with (35) in lemma
3.3.5, that

where a = 1 + ~~2014. This is exactly relation (31). Similarly, relation
(32) follows from (36) since y is a martingale.

Observing that the constants c~ ~, C and C’ we obtain in the above

argument are independent of E, we dispense now with the hypothesis
that Y remains in CE : Let thus (p, b) be in and we set again
~ ~_ b).

For E > 0, let 8E denote the first exit time of CE by the process Y:

with the convention inf(0) = 1. Since the process Yf :- YtneE is CE-valued,
we infer that ]  C and  C’. So, to get relations (31) and
(32), it is sufficient to prove that a.s. ~1 = limE-+o 

Since on (0~  ~~, ~eE = f or YeE = we conclude that

This implies = 1 a.s., since BE is decreasing in E. Since the sample
paths of y are continuous, we infer as announced that a.s. ~1 = limE---+o 

D

THEOREM 3.3.6. - There exist a, a’ > 1, such that, VR  ~, the set

(R) is bounded in (0(lC) x ~a x £..L,a’). In particular, (R) is
bounded in (~a x ~-~~a’ ).

Moreover, the claims of theorem 3.3.2 hold for this particular a.

Proof. - Let (p, b) be in (R), with b = c+ z, c E ~a and z E £..L,a’.
We also set Zt := z), Gt := YT,t(o, c), Zs :== k E

1C; t E [T~]} and, for a > 0, let ()a be inf{ t E [T,l] : Z; 2 a~, with
again inf(0) := 1.

Then, since the process YT,t(p, b) = p + Gt + Zt is valued in IRK, so is
the process Yt :== where u = (1,..., 1) E IRK.
Moreover p’ := (p + au)/(1 + Ka) E 0(1C). The pair (p’, c/(1 + Ka))
belongs thus to va and theorem 3.3.2 indicates then that C for

an appropriate ao > 1. As a consequence
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for a constant D depending just on K and C. In turn, this implies:

If we divide this inequality by (1 + with ~y > ao + 1 and if we integrate
over a E [0,oo), we get with Fubini’s theorem:

Hence:

If we set next q := a’ ~ (~y + a’ - 1), q’ := 1 - q, a := qao, we obtain

and, according to Holder’s inequality (both q and q’ are positive):

It follows from Burkholder-Davis-Gundy’s inequality is

bounded, since and the right hand side of the last inequality
is therefore bounded.

Taking in the above argument an a’ > /30, where ~3o denotes the conjugate
of cxo (i.e. 03B1-10 + = 1) and a 1 in the interval (1 + ao, 1 + ao 03B1’ 03B20), the
resulting a belongs to the interval (1, ao).

Since Ilpll  1, R and where v is the

universal constant of Burkholder-Davis-Gundy’s inequality, we conclude as
announced that (R) is a bounded subset of 0(lC) x £a x ~1~«~.

Finally, since theorem 3.3.2 holds for ao > a, it will also hold for a. D

REMARK 3.3.7. - Theorem 3.3.6 holds for infinitely many pairs (a, a’). We
chose once for all one of these pairs (a, a’). From now on we only will be
concerned with the corresponding unbounded Brownian games (p, T)
and (x, T ) that will simply be denoted r(p, T) and Î’* (x, T).
3.4. The value of the unbounded Brownian games

THEOREM 3.4.1. - Vp E L~(J’C), player 1 has an optimal strategy b in
r(p, T). This strategy is equalizing and thus satisfies to (32). Similarly,
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Vx E player 1 has an optimal strategy (p, b) in fi* (x, T) which is
equalizing and fulfills (32).

Proof. - As mentioned in the introduction of the previous section, the
only strategies of player 1 guaranteeing a finite payoff in the unbounded
Brownian games are the equalizing strategies. There is a lot of such

equalizing strategies and we have to prove that one of them maximizes
gT(b, TO) (resp. minimizes 

Since E is a linear space, the set ~~ is a closed linear subspace of
Furthermore, as it follows from Burkholder-Davis-Gundy’s inequality,

the mapping YT,l (p, b) defined in (27) is linear and continuous from

(IRK x endowed with the product topology, to We infer
then that the set Tlp (resp. va) of the equalizing strategies in r(p, T) (resp.
r*(x, T)) is a closed convex subset of M2 (resp. (IRK x M2 ) ), since
the set of R$-valued random vectors is closed and convex in It
follows from theorem 3.3.2 that YP (resp. va) is also bounded in M2
(resp. (IRK x 
The linear functionals gT(b, TO) and are continuous on

these spaces, as it results from Holder’s inequality and therefore also weakly
continuous. Since M2 and x are reflexive Banach spaces, we
conclude then to the existence of optimal strategies for player 1 in r (p, T)
and r*(x, T). Indeed, a bounded closed convex set is compact in the weak
topology of a reflexive space (see [9]) and a continuous functional always
reaches its maximum on a compact set. D

THEOREM 3.4.2. - Vp E 0 ( lC ), bx E the games r(p, T) and r * (x, T)
have a value that will be respectively denoted (p, T) and (x, T). In
other words:

Proof. - Let us first observe that player l’s strategy spaces and

are closed convex subsets of (~a x ~1’a~ ) and x ~a x ~l~a~ )
respectively. Indeed, YT,1 (p, c + z) is a continuous linear mapping form
( IRK X ~ 1’ a ~ ) to and the set of ~~-valued random vectors
is closed in 
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Let denote the sup inf of r (p, T) and ~, the inf sup of F* (x, T).
Let also, for E > 0, VE denote the set c in £0152 such that gT (c, TO) _ _~ + E
and V~ the set of (p, c) in x £0152) such that b), T°) _ ~* - E.
We will first deal with the particular case where one of the sets VE

or VE is empty: If VE is empty, the linear functional b), TO) ==

(pix) - gT ( b, TO) must be constant on the linear space implying
thus gT(b, TO) = 0, Vb E £0152. (the hypothesis VE = 0 leads to the same
conclusion.)

Since a( TO) belongs to ~ (see definition 3.1.3), we have in particular

and thus a( TO) = 0. The strategy T° guarantees then 0 to player 2 in f(p, T)
and ~y* (x) in f* (x, T ). Since player 1 can guarantees the same values in

these games with the strategies 0 and (p’, 0) with p’ E 0(1C) such that
~y* (x) _ ~p’ ~x), we conclude as announced that the games have a value.

So, from the above discussion, we may suppose that for all E > 0,

vE 7~0 / ~:.
We will now prove that, in (£a x ~ 1 ~ a ~ ) , the distance between the convex

sets and VE is strictly positive.
If on the contrary, there were a sequence (bn, dn) in ( yP ~ ~ ~ x Ve) such

that bn - dn tends to 0 in (£a x ~1~~~ ), we could then write bn as the
sum cn + zn, where cn E £a and zn E ~1’a~ and conclude, since dn is

equalizing, that both Ilcn - are tending to 0. So, if
R denotes the maximum of the for n E IN, we would conclude

that bn belongs to (R). According to theorem 3.3.6, the sequence bn
would be uniformly bounded in (£a x ~ ~- ~ a ~ ) and would therefore have a
weak limit point b in £a since tends to 0. b would also belong
to since 

, 

is closed and convex and therefore also weakly
closed. On the other hand, b would also be a weak limit point of dn, since

and therefore b EVE, This is a contradiction: b would

then be an equalizing strategy guaranteeing ~ + E.

A similar argument indicates that the distance in (IRK x £a x ~l~a ,)
between the convex sets and VE is strictly positive.

Since (£a x ~|,03B1’) and (IRK x £a x ~|,03B1’) are Banach spaces, there
must then exist two linear functionals Hand H* on these spaces separating
respectively from VE and from V;:
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Next, the dual spaces of (£a x £..1,a’) and (lRK x £a x £..1,a’) are

respectively (E{3 x £..1,{3’) and x £(3 x £..1,{3’), where + 1//3 =
1 = 1/ a’ + The linear functionals Hand H* can then be written as:

where h = e + e’, h* = e* + e*’ with (e, e’) and (e*, e*’) in (£(3 x ~1~~~ )
and x’ E 

Since VE and V; are affine spaces of co-dimension 1 in £0: and x £0:

respectively, Hand H* must be constant respectively on VE and on V;, for
relation (41) to hold. Since the functional and g~,T t ~, T° ) have
the same property, there must exist two real numbers A and A* such that

Thus e = A~(r~), ~ = and e* = 

From the definition of VE, if c E and d EVE, then gT(C, TO) 
gT(d, TO). Comparing this with (41), we conclude that A > 0. Similarly,
À * > 0.

Next, since ~1 := a(D), the processes e’ and e*’ in can be written

as e’ = Àa( 8) and e*’ = ~* a(~* ), for D-valued processes 8 and 8* in Mf’ .
Relation (42) yields then:

and

where T := TO + 8 and T* := T° + 8* are strategies of player 2 in the
unbounded Brownian game. Relation (41) indicates that, if d for all

strategy b of player 1 in r(p, T): gT(b, T)  gT(d, T) _ _~ + E. This last
inequality indicates that T is an E-optimal strategy for player 2: up to E,

it guarantees to player 2 a lesser payoff than the best one player 1 can

guarantee: ~. The game i’(p, T) has thus a value.
Similarly, we conclude that T* guarantees a payoff E to player 2

in r* (x, T ) . Since both players can guarantee the same amount, up to an
arbitrarily small E, the game has a value. D
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3.5. Continuity and duality relations Before dealing with the problem of
the existence of optimal strategies for player 2, it is convenient to explore
the duality relationships between the primal and the dual games.

LEMMA 3.5.1. - The function ~%(~,T) on 0(JC) is positive, continuous
and concave.

Proof. - The process b = 0 is a strategy for player 1 in r(p, T) since
YT,1(p,0) = p E IR+. Therefore, 1$(p, T) > inf~T gT(0,) = 0.

Let now F denote the mapping that maps (p, b) E va on F(p, b) :==

(p, gT(b, TO)). Since V03B1 is convex closed and bounded in IRK x £a

(see theorem 3.3.6) and F is a continuous linear mapping, we conclude
that Q :== F(Va) is a closed convex subset of (0(1C) x IR) and so is
Q- := Q U (0(7C) x IR_), since Vp E 0(1C), (p,0) E Q.

Since 1$(p, T) = maxb~V03B1p 9T(b,T°), the set Q- turns out to be the

hypograph and the result follows since a function with convex closed

hypograph is concave and continuous on its domain (see [17], theorems
7.1 and 7.5). D

DEFINITION 3.5.2. - Hereafter, a~*(x,T~ will denote the super gradient
at x of the function ~* (., T):

If we define ~(q, T) == - 00 for q E the resulting function

1$(., T) is concave upper semi continuous on The next theorem

indicates that 1$* (., T) and 1$(., T) are Fenchel conjugates of each other:
THEOREM 3.5.3. - The functions ~ ( ., T) and (., T) are linked by the

duality relations:

In particular ~*(~,T) is concave and fulfills:

Proof. - We have: = gT (b, T),
as it results from the definition (30). So, by splitting the minimization over
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(p, b) in a double minimization, first on b in J~ and then over p, after
rearrangement, we get:

The continuity of ~ ( ~, T) allows us to replace the inf by min in the last
equation and (44) is proved.
As an infimum of affine functionals, the Fenchel conjugate of any function

is a concave function and the concavity of ~* (~, T) follows thus from (44).
Relation (45) is a consequence of (44) joint with the well known relation

(fO)O = f for the concave upper semi continuous function f (see [17]
theorem 12. 2.1. )

For such a function f we also have, as stated in [5], lemma 2.4,
Vx E IRK : C dom( f ), where dom( f ) is the set of points where
f is finite. Relation (47) follows then immediately.

is included in the unit ball of we get, with
z E 8q$* (z, T): b’x’ E IRK : ~*(x’, T) - ~*(x, T)  x~  
Interchanging x and x’ in this inequality, we obtain (46). D

The next corollary indicates that optimal strategies in r* ( x, T) and

r ( p, T ) coincide. This will allow us to infer the existence of player
2’s optimal strategies in r ( p, T ), once proved that player 2 has optimal
strategies in r* ( x, T).
COROLLARY 3.5.4. - If T is an optimal strategy for player 2 in r*(x, T),

where x E T) for a point p E 0(J’C), then T is also optimal in r(p, T).
Conversely, if b is optimal for player 1 in r(p, T) with p E c~~*(x, T),

then (p, b) is optimal in r* (x, T).

Proof. - The Fenchel lemma (see [17] theorem 12.2.1 ) claims that for
an upper semi continuous function f : f(x) + f ° (g) _ whenever
x E 

Let now T be an optimal strategy for player 2 in r* (x, T) with
x E o~~ (p, T ) . We conclude then that ~* (x, T ) = ~x ~ p~ - ~ (p, T ).
The optimality of T means that, for all strategy ( q, b) of player 1,
~,r((~~T-) = gT (b, T) > 1$* (x, T). Therefore, for all strategy b
in gT(b, T)  1$*(x, T) = T): T is optimal in r(p, T)
and the first claim is proved. A similar argument holds for the converse
claim. D
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3.6. Existence of optimal strategies for player 2 We have now to prove
the existence of optimal strategies for player 2 in the Brownian games. As
announced in the last section, we first will deal with the dual games. The
central result of this section is theorem 3.6.5. It states that player 2 may
restrict himself in to a bounded set of strategies. As a corollary,
we will then infer the existence of optimal strategies. The proof of this
theorem is based on several lemmas.

Let us first explore the notion of guaranteeing for player 2 in the game
T). Let T be a strategy of player 2 guaranteeing a payoff a in

r* (x, T): for all strategy (p, b) of player 1 we have

Since the argument used in the proof of theorem 3.1.1 also holds for the
unbounded Brownian games, relation (48) means that 

a, for all bounded *$-valued .~1-measurable random vector Y in M2j~
with E 0(1C). In turn, this is equivalent to

Lemma 3.6.2 indicates that player 2 can guarantee a finite payoff with

uniformly bounded strategies. Its proof relies on the following lemma that
is proved in [5], section 7:

LEMMA 3.6.1. - The function f : x ~ f(x) :== + z)], where z is
a K-dimensional standard normal vector, belongs to C°°, is concave, and

satis fies to the following properties:

where f " (x) denotes the Hessian matrix of f at x.

LEMMA 3.6.2. - There exists a finite payoff D that player 2 can guarantee
from any stopping time () with ~(,7)-valued strategies.~. for all [T,I]-valued
stopping time (), player 2 has a ~(~)-valued strategy :- such that

Proof. - As stated in lemma 2.1. 3, the mapping p( . ) is C °° on the simplex
~ ( JC ) . Therefore, is well defined, as it follows from property

(B) of f and is Lipschitzian on JRK according to property (C).
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Its diffusion term being Lipschitzian in Z, the stochastic differential

equation

has a unique solution Zt according to theorem 2.1, Chapter IX in [15].
Applying Ito’ s formula, we get:

According to relation (2), the first integral collapses.
Moreover, the second integral is bounded, as it follows from property

(C) of f. Therefore, using property (A) of f , we infer that is

a. s. bounded from below by a constant and the strategy Tt := 
guarantees, as announced, a finite payoff to player 2. D

The following results is a consequence of lemma 2.1.3:

LEMMA 3.6.3. - There exists a 03BE > 0 such that ~03B4 E D, Vp E 0 ( lC ) :

Proof. - We just have to show that

If on the contrary, we had 0 = ~ we would have ¿i = 0,
for some p and 03B4 ~ 0, and hence,

Since player 2’s optimal strategy p(p) in G(p) is completely mixed (see
lemma 2.1.3), T := p(p) + e6 would then belong to A(V) for an E > 0 and
would guarantee a null payoff player 2 in G(p), as indicates (3) joint with
(51 ). T would therefore be optimal in G(p) and the contradiction would then
follow since lemma 2.1.3 would then imply T = p(p) and hence 8 = 0. D

The next lemma is the keystone in the proof of theorem 3.6.5:
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LEMMA 3.6.4. - For all Q > 0 and v > 0, there exist ,~ > 0 and C"  00

such that if v E IRJ) and h is a progressively measurable
one-dimensional process satisfying:

and

where U is the semi-martingale Ut :== tT vTsdWs + then

Proof. - According to (52), the process cPs := with

the convention 0/0 = 0, is valued in the interval [-v, v]. Moreover,
dUs = with dWs :== dWs - Let next y be the

exponential local martingale yt := 
n ~, with the convention inf0 :== 1. The process

y’t := y03B8n^t is then a bounded martingale and y’1 is a probability density
on (Z, ~.~’t~, P). According to Girsanov’s theorem, W is a 7t-Brownian
motion up to time 8n under the probability P’, where dP’ := Under

P’, Ut := is therefore a [-Q, Q]-valued martingale. Its BM02(P’)-
norm is then less than Q and we conclude with John Nirenberg’s inequality
(see theorem 2.2 in [ 11 ]) that, for all A  2/Q2, for all stopping time 0:

where v’t := and E’ denotes the expectation with respect to P’.
Since  v, we also have

As it follows from Girsanov’s theorem, for any random variable X:
= The last relation leads then to:

and we conclude with (36) in lemma 3.3.5 that there exist q > 0 and
C’ depending only on the constant and 2/(2 - AQ~) such that

E[~-1  C’.
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and we conclude with Holder inequality and relation (54) that:

Since y is a local martingale, the stopping times 8n increase a. s. to 1 as n

tends to 0o and with Fatou’s lemma, we get (53) as wanted. D

We are now able to prove the central result of this section:

THEOREM 3.6.5. - There exists a constant N  00 such that, bx E IRK,
any amount player 2 can guarantee in T) with a strategy T is also
guaranteed by a strategy T’ with

Proof. - Let T be a strategy guaranteeing a payoff a to player
2 in r*(x,T) and let X denote the process Xt := XT,t(T). With

the usual convention inf0 := 1, we define then the stopping time

9 := inf{t E [T,l] : f (x - + D}, where D is as in lemma

3.6.2 and f as in lemma 3.6.1.
Let also T be the strategy corresponding to the stopping

time 8 in lemma 3.6.2. The new strategy T’ defined by

also guarantees a. Indeed, let X’ denote the process Xt := XT,t( 7’).
According to the definition of T’, we have the relation X e = X 8 . So,
~~(X~) = > a on {(9 = 1}. On the other hand, if 0  1, we
have a + D = f(x - Xe )  ~/*(~ 2014 Xe ), as it results from property (A)
of f. Therefore,
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since r fulfills (50).
We will now prove the existence of a bound N on that does not

depend on the initial T nor on x neither on a. Since v is 0(~)-valued,
this is equivalent to find a bound N’ on ~"~M03B2’2, where T" is the process

"t : = (03B8>t)t.

If f (x ) > a+D, then the stopping time 0 is equal to T and hence T" = 0.
We may therefore suppose f (x)  a+D. Then, it follows from the definition
of 6* that the process Xr := fulfills: ,~(~ - X")  a + D.

On the other hand, since X is a martingale and 1* a concave function,
the guaranteeing relation: a.s. ~y*(~ 2014 Xi) > a implies that the process
~*(rr 2014 X ) remains above a and so does ~y*(~ 2014 X") since Xr = Xent.
Therefore, with property (A) of f, we infer that

We apply next Ito’ s lemma to f(x - X " ) :

It is convenient to introduce here the processes ’’’t := (t03B8)03C1(~f(x -
Xt’ ) ) and Xt" :== XT,t(’’’). Since T"’ is uniformly bounded (p is 0 (,7)-
valued), bounding T" and bounding 8 := T" - T"’ are equivalent problems.
We express now relations (56) and (57) in terms of 8 and xf := XT,t(8):
Due to equation (3), ( ~ f (x - = 0 and thus

Moreover, since f is concave, f " is semi-negative, we have:

T"‘ being bounded, we conclude that 
for a constant L > 0 depending only on the payoffs of the game and
on the constant M in property (C) of f. Therefore 

-L(t - T) > -L since T E [0,1]. Relations (56) and
(57) indicates then that the semi martingale U is valued in the interval
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with I-dimensional process v : vis = and the
one dimensional process hs := 

Since a + D > f(x) > a - G, as it follows from relation (56) at time
T, the interval [a - G - f(x), a + D - f(x) + L] is included in [-Q, Q],
where Q := L + D + G and U is thus a [-Q, Q]-valued semi-martingale.

is as it follows from property (B) of f
and 8 is D-valued, we get with lemma 3.6.3: ~!P 2: ç118s112. We also have

L’I18s112 for a constant L’ depending only on the payoffs and on

the constant M of property (C) of f. Thus  with v := L’ jç.
Lemma 3.6.4 indicates then that  C" for p > O

and C" depending only on v and Q and thus 1T~03B4s~2ds)]  C".

Since for z > 0, z03B2’2 ~ (03B2’/(2e 03BE)) a, 2 we conclude as announced that

b ~03B2’M03B2’2 = E [ ( 1  ’ / 2e 03BE)) C". So b is bounded in M03B2’2) l :S (03B2’/(2e 03BE))03B2’2C". So 03B4 is bounded in Mf
and so is T’ since 7; = 6t + Tt" + where the two last terms are

0 (,~) -valued. D

COROLLARY 3.6.6. - b’~ E player 2 has an optimal strategy T in
r* (x, T) satisfying (55).

For E > 0, the set Ta’ (E) of player 2’s e-optimal strategies of in the
ball of radius N is a closed convex subset of Mg’, as it follows from

the linearity and the continuity of the payoff function g~,T((p, b), ~) in

r*(~,T), for all player 1’s strategy (p, b). Ta~ (E) is therefore compact in
the weak topology of Mg’. Moreover, since E-optimal strategies always
exist for E > 0, it follows from theorem 3.6.5 that Ta’ (E) is not empty.
The sets Ta’ (e) for E > 0 decreasing to 0 form then a decreasing system

of not empty compact subsets and have therefore a not empty intersection.

Any strategy T in this intersection is optimal and satisfies (55). D

COROLLARY 3.6.7. - Any optimal strategy T of player 2 in r* (x, T) fulfills:

Proof. - An optimal strategy T of player 2 guarantees by definition
It follows then from (49) that a.s. ~y* (X~,T,l (T)) > 

Let now (p, b) be an optimal strategy of player 1 in r* (x, T ) . We have
then,
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since b)] = p E 0(7C), so that = 1. According
to theorem 3.4.1 and relation (32), we have 0 = 0)
since (p, b) is optimal and relation (58) follows. D

We will prove in part 4 that player 2 has also optimal strategies in the
primal game T(p,T), using the corollary 3.5.4. We postpone this prove up
to then since first we want to prove that player 2 has A(y)-valued strategies
in the dual unbounded Brownian games. This will be a consequence of the

recursive structure of these games.

3.7. The time dependence. Our purpose in this section is to show that

the Brownian games starting at time T  1 are rescaled Brownian games

starting at 0. This will lead to:

LEMMA 3.7.1. - The next two equations hold:

Proof. - Let W be a Brownian motion on a filtration and for

fixed T in [0,1), let t(.) denotes the mapping from [T, 1] to [0,1] defined
by t(t’) := (t’ - T ) / ( 1 - T). Then 0§, := is a filtration indexed by
t’ E [T, 1] and W;, := I - TWt(t’) is an F’t’-Brownian motion.

Since the argument used to prove theorem 3.1.1 still holds for the

unbounded Brownian games, the values of these games do not depend on
the filtration nor on the Brownian motion on which they are defined. To
establish relation (59) between rJ;(p, 0) and rJ;(p, T), we may then consider
the game r(p,0) defined on Wand the game Î’(p, T) defined on W’. We
denote by Ta~ the strategy spaces in r(p, 0) and by 
the strategy spaces in T).

For b E y03B1,03B1’p, let b’ denote b’t, := bt(t’)/1- T. The relation

(p, b’) holds the obviously whenever b is a step process
and will then hold for all strategy b by continuity. As a consequence b’
belongs to and the mapping that takes b to b’ is one to one between

and .

Similarly, if T then T’ e T"’ with Tt, := Tt(t~) and
== XT,1 (T’). Thus
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and (59) follows. We get (60) observing that

4. THE MARKOVIAN BEHAVIOR OF PLAYER 2

4.1. The recursive structure of r*(~T). Let T be a strategy of player 2,
then = X ~ ~T~t (T ) - Xt 1 ( T). Since player 2 wants to maximize
the quantity ess. inf. ~(~~(r) 2014 Xt,l (T)), he should after time t play
optimally in t). This kind of argument leads to the following
theorem:

THEOREM 4.1.1 (The recursive structure of r* (x, T ) ) . -

Furthermore, any optimal strategy T of player 2 in r* (x, T) is optimal in
the first line of (61 ) and any optimal strategy of player 1 in r* (x, T) is

optimal in the second line of formula (61 ).

Proof. - Let T be a strategy of player 2. Let next {An}n~N be a
countable measurable partition of IRK with a diameter less than E > 0:
Vn, Vx, x’ E x’ ~ (  E. Let also xn be a sequence of points
such that Vn : xn E An and let Tn be an optimal strategy in r* (xn, t).
It is then easy to see that f := a measurable

process on the time interval [t, 1]. Moreover, if the Tn are chosen uniformly
bounded in as allowed by corollary 3.6.6, the process T defined as
~ := + is a strategy for player 2 in I‘*(x, T).

If X denotes 03A3nAn(X*x,T,t())xn, we clearly have 

X~ ~ E and thus *(X,t) ~ *(X*x,T,t(),t) - E, as it results from (46).
Moreover, it follows from the definition of i and relation (58) that a.s.

’Y*(X - Xtn(T)) - l~ (°8’ ~)°
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If (p, b) is an optimal strategy of player 1 in fi* (x, T), then

This being true for all E > 0 and all strategies T of player 2, we conclude
that the strategy (p, b) guarantees ~* (x, T ) to player 1 in the second line

of (61).
A similar reasoning works in the other direction: let now T be an

optimal strategy of player 2. Let then ( pn , bn ) be an H1-measurable optimal
strategy of player 1 in Y* (xn, t), where denotes the a-algebra generated
by Ws - Wt, for s E ~t, l~. Such a strategy exists as it follows from

theorem 3.1.1 in terms of the unbounded Brownian games. Let Y denote

03A3nAn(X*x,T,t())Y(pn,bn).
Let (p, b) be a strategy of player 1 and let y denote The

random vector Y :== yY can then be expressed as YT,1 (p, b) for a strategy
(p, b) of player 1 in r* (x, T) and we compute:

Since bn is ~-valued, Hi-measurable and optimal in t), we get
successively:

Therefore,
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This being true for all strategy (p, b) and all E > 0, we conclude that
the optimal strategy T of player 2 in r*(x,T) guarantees in the
first line of (61 ). The result is thus proved since both players guarantee the
same amount in the two lines of (61). D

It results from the first line of (61) that if T is an optimal strategy for
player 2 in fi* (x, T), then a.s.: ~* (X~,T,t (T), t) > 

According to theorem 3.4.1 and relation (32), the optimal strategies (p, b)
of player 1 satisfy: 0 = = 0). It follows then from the

second line of (61) that the inequality may be replaced by an equality in
the last formula:

COROLLARY 4.1.2. - Any optimal strategy T of player 2 in Y* (x, T) fulfills
Vt e [T,l).’

4.2. The stochastic differential equation The payoff functions in f* (x, T)
and where ~c .- (l, ... ,1) E just differ by the

constant amount A. Both games are thus strategically equivalent and we
may therefore restrict our analysis to the case ~* (x, T ) = 0.

Let then T be an optimal strategy of player 2 in T). It follows then
jointly from corollary 4.1.2 and relation (60) that: ~* (Y, 0) is constantly 0,
where V denotes the process V := X~~(~)/~/l 2014 ~.
The function (., 0) is concave and continuous, as stated in theorem

3.5.3. The correspondence ~~* (., 0) that maps a point x E IR~ to the
super gradient (x, 0) of * (., 0) at x has therefore a closed graph.
According to Kuratowski-Ryll-Nardzewski selection theorem (see

corollary 1.1 in [16]), there exists a measurable selection p in this

correspondence, i.e. a measurable mapping p from IRK to ð(JC) such
that Vx : p(x) E 
We may then consider the process II := p(V) in Mf’. Since Ht E

we have > t, t’ E [T,1):

This property implies, as proved below in lemma 4.2.2, that Gt :=
is an increasing process.

According to Ito’s formula, we have:
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Therefore,

Since G is increasing and ~ is a.s. finite, we conclude that the process
appearing in the right hand side of the last equality is a.s. with finite

variation, at least up to any time t  1.

Therefore, the martingale appearing on the left hand side, is a continuous
martingale with a.s. finite variation. We conclude then with Proposition
(1.2), Chapter IV in [15], that this martingale must be constantly equal to
0. As a consequence, Vi ~ I, the process is equal to 0 in In

turn, this indicates that the identity r = /9(II) holds in as it results

from lemma 2.1.3.

From (60), we have == and the mapping
:= is therefore a measurable selection of the

correspondence that maps (x, t) to With these notations, the
last relation leads to the following theorem:

THEOREM 4.2.1. - Let  be an optimal strategy of player 2 in 
and let Xt denote the associated integral Xt = ~f~ y ~(~)- Then the process

modification of T, ~~J the process X is a
solution of the stochastic equation: XT = x,

In the above stochastic equation, the diffusion term is apparently
depending on the measurable selection p. In the next section, we will

prove that it is in fact independent of p and that it is moreover continuous.
To conclude this section, it still remains for us to prove the lemma:

LEMMA 4.2.2. - The process is increasing.

Proof. - Let Dn denote the set of dyadic numbers of order n in 1R:
Dn := m E Let also denote the highest number in
Dn less or equal to t.

In the proof that step processes are dense in M2 made in [8], IX,5,
it is proved that, for an appropriate number 8 in [0,1], the sequence of
step processes II (T V (8 + 8))) converges to II in M2 as
n tends to 00 .
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We will prove now the convergence of to 

According to (64), this turns out to be equivalent to the convergence,
Vt  1, of the two following integrals to 0:

It results from Holder’s inequality that, a.s.,

The first factor in the right hand side is bounded since T 
i 

and t  1.

Since both II and IIn are 0(J’C) valued, the Mi convergence of IIn to 11
implies then the L1-convergence of Nn to 0.
We also have the L~~-convergence of Mn to 0, since, Vi:

as it follows from Lebesgue’s dominated convergence theorem: ~03A0 - 03A0n~
is bounded and T 

Thus converges to in L 1. Next, Vt, t’ E 8 + Dm
with t’ > t and rn  n, ft is just a Riemann sum whose terms
are positive as indicates relation (63). Letting then n increase to oo, we
infer that, a.s. ft 0, for all t, t’ E 8 + U?.,-L D,,.,.z . Almost every
trajectories of the process are therefore increasing since they
are continuous. D

4.3. The continuity of the optimal strategies. In this section, we will
use corollary 4.1.2 joint with the observation that the optimal strategies of
player 2 are to infer that these strategies are nearly constant
on small interval of time. As a corollary, this will indicate that player 2’s
optimal strategies are continuous processes.

Let T be an optimal strategy of player 2 in r* (x, T).
Corollary 4.1.2 joint with (60) indicates then that Vt E [T, 1) :
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Let now q be any point in T ), which also means that q E

(x/ 1 - T, 0).
According to the definition of c~*(.c/B/l 2014 T,0), we get:

After rearranging, this indicates that

where the last inequality follows from the fact that q E 0).
Since the left hand side of the last inequality has a zero expectation, we

infer that ~* (0, 0)  0 and we conclude that

since, for t E [T, 1), we have: 1 - i-T  
This last relation joint with the fact that T is A(y)-valued implies the

next lemma:

where M is an upper bound on the payoffs 

Proof. - It will be technically convenient for our purpose to assume that
the filtration 7t and the Ft-Brownian Motion Ware defined on the whole
time interval [T, (0). We extend then T after time 1 in a constant way:
let T’ be a non optimal strategy for player 2 in the average game G(q)
and we set Tt := T’ for t > 1. We have then dzt = ~ 
So, if vt denotes the process and Rt := we have

= according to Ito’s formula.
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For s > 0, let us define Os := inf{ t > T : Rt > 9}. Then, the stopping
time 8s is always defined and bounded. Indeed, for s > 1, we have

> o.

We may then define: /3s := According to the Dambis-Dubins-
Schwarz theorem (see [15], p. 170) /3s is a F03B8s -Brownian motion, and
zt = 

Relation (65) may then be expressed in terms of the process /3: if 8s  1,
we have /?~ := zes  D(8s - T), where D := -~~0,0)/vT~~. We
get therefore:

if ()t  1. For v in [0,1 - T), let us now compute P(RT+v > t). By
definition of 8, we have:

According to (67), P(RT+v > t)   Dv) = 
Dv) where Z is a standard variable. Indeed supst /3s has
the same distribution as (see [15], proposition 3.7 in chapter III.).

Let M be a bound on the payoffs then Vt  M2, since Ts E A(V)
and RT+v is then bounded by M2 v. So:

When computing the last expectation, the density of Z may be bounded
by its value at 0: (27r)’~ and we get then E ~RT+v~  4 2D v 2 , which is
the announced relation (66). D 

"

According to relation (3) and lemma 3.6.3, we get:

As a consequence of the last lemma, we have then:
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THEOREM 4.2.1. - There exists a constant R depending only on the payoffs
akij of the game such that, b’x E IRK, if T is optimal in r*(x, T) and
q E c~~* (x, T), then:

DEFINITION 4.3.3. - In the following, we denote by R the correspondence
~(x~ t) v= q E al~(~’ T)1°

COROLLARY 4.3.4. - For all x E IRK and all t  1, the set R(x, t) is a

singleton and R may therefore be considered as a function from IRK x [T,1)
to 0(,7). This function is continuous.

Proof. - Let q, q’ be two points of T) and let T be an optimal
strategy in fi* (x, T). It follows then from the last theorem that:

Since this relation holds Vt > T, we get T(q) = T(q’), as announced.
The correspondence that associates to x the set 8j* (x, 0) has a closed

graph since ;j;* (., 0) is concave and continuous and, according to relation
(60), for a  1, the correspondence that associates the set 8j*(x, T )
to (x, T ) in (JRK x [0, a]) has the same property. Since p is continuous,
R(. , .) = po9~*(~, .) has also a closed graph and is therefore continuous.
Letting then a increase to 1, we get the continuity of R on JRK x [0,1),
as announced. D

We can now rephrase theorem 4.2.1 in a way that does not depend on a
measurable selection p(x, t), since clearly R(x, t) = p(p(x, t)).
THEOREM 4.3.5. - Let T be an optimal strategy of player 2 in r* (x, T)

and let Xt denote the associated integral Xt :- (T). Then the process
R(Xt, t) is a 0(~)-valued continuous modification and the process X

is a solution of the stochastic equation: XT = x,
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4.4. The equivalence between the unbounded and the bounded

Brownian Games. We first will prove in this section the existence of

optimal strategies for player 2 in the unbounded primal game. This will
allow us to conclude to the equivalence between unbounded and bounded
games and theorems 2.3.4, 2.3.5, 2.3.6, 2.3.7 and 2.3.8 will then follow
from the corresponding results in terms of the unbounded games.

THEOREM 4.4.1. - Vp E 0(~’C), player 2 has an optimal A(J)-valued
strategy in f(p, T).

Proof. - As it results from lemma 3.5.1, ~(~, T) is continuous and

concave on 0 (1C) . Therefore, for all point p in the relative interior of

0(J’C), T) is not empty and the existence of optimal 0(~)-valued
strategies for player 2 follows then from corollary 3.5.4.

For p in the boundary of A(/C), we may drop the irrelevant states of
nature k for which p~ = 0 and consider p as a probability distribution
p’ on the set 1C’ : - ~ 1~ > 0}. The game f(p, T) may then be
identified with game T), with J’C’ as state of nature set. If JC’ contains
more than one element, p’ belongs to the relative interior of 0 (J’C’ ) and the
above reasoning leads to the existence of optimal strategies
for player 2 in f(p’, T) and hence in f(p, T).

So, it just remains for us to deal with the case where JC’ reduces to

a single element. p is then an extreme point of the simplex 0(J’C) and
the strategy 0 guarantees a payoff 0 to player 1, as observed in the proof
of theorem 3.5.1. On the other hand, if b is a strategy of player 1 in

f(p, T), the 1R!f. -valued martingale must remain a. s. in the half

line p, since p = is an extreme point of 0 ( lC ) . As a
consequence of relation (3), the constant strategy Tt := p(p) also guarantees
a zero payoff to player 2 in f(p, T), since Xt,1 (T) is then valued in the

hyperplane orthogonal to p and hence a. s. = 0.

It results then that rJ;(p, T) = 0 and the constant strategy T is optimal
for player 2. The theorem is then proved. D

THEOREM 4.4.2. - The values of the bounded and unbounded Brownian
games are equal and the set of player 2’s optimal strategies coincide in both
games. Similarly, the sets of ~1-measurable optimal strategies of player 1 in
both game coincide, where 91 is the a-algebra defined before theorem 3.1.1.

Proof. - We will prove this result in terms of the primal games, but a
similar argument holds in the dual framework.
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Since player l’s optimal strategies in strategy r(p,T) are equalizing
and are still strategies in T(p,T), they obviously still guarantee 1$(p, T)
in r(p,T).
On the other hand, since the optimal strategies T of player 2 in r(p, T) are

A(V)-valued, they are still strategies in T(y,T). Furthermore, any 
strategy of player 1 in r(p, T) is the limit in La of a sequence of strategies
of player 1 in fi(p, T). Since the payoff function gT(.,T) is continuous on
La when T is A(y)-valued, we conclude that T still guarantees to player
2 a payoff less than 1$(p, T) in T(p,T).
As a consequence, the game r(p, T) has a value which is exactly

1$(p, T) and optimal strategies in T) are still optimal in T).
Since player 1 has less strategies in r(p, T) than in F(p, T), any optimal

strategies of player 2 in r(p, T) is then also optimal in f(p, T) and we have
thus proved that the spaces of optimal strategies for player 2 in r(p, T)
and in r(p,T) coincide.

Let now Y be a G1-measurable optimal strategy of player 1 in r(p,T).
According to reasoning made to get the behavioral form of r(p, T) (see
definition 3.1.4), Y may be written as YT,1(p,b) for an A-valued process
b in 

Let next S denote the range of the mapping p(.) on 0(7C). Due to
the continuity of p(.), S is a compact subset of A(J). Moreover, S is
included in the relative interior of A(J), since p(p) is completely mixed,
as stated in lemma 2.1.3. Let then Ii denote the distance in between Sand
the boundary of 0(,7). Let T be an optimal strategy of player 2 in f(p, T).
According to theorem 4.3.5, T is S-valued. Therefore, if 6 is a process
valued in a ball of radius of D, T + 6 and T - 6 are strategies of player
2 in T). Since Y and T are optimal, we infer that

As a consequence gT (Y, 8) = 0. This indicates that the process b is ~-valued
and, since a.s. Y(p, b)EIR+, we conclude that b E Since theorem
3.3.6 hold for the the particular a chosen in remark 3.3.7, we conclude that
b belongs to M2 and is thus an equalizing strategy of player 1 in r(p, T)
that guarantees him a payoff ’ljJ(p, T). b is therefore optimal in f(p, T).
COROLLARY 4.4.3. - Theorems 2.3.4, 2.3.5, 2.3.6, 2.3.7 and 2.3.8 hold.

Proof. - Theorem 2.3.4. follows from the last theorem in what concerns
the existence of a value and of optimal strategies. That these values are
independent on the filtration and on the Brownian motion on which the
games are defined is proved in corollary 3.1.2.
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Theorem 2.3.5 follows from lemma 3.5.1, theorem 3.5.3 and lemma
3.7.1, and ’ljJ* = ~*, as stated theorem 4.4.1.
From theorem 4.4.1, we infer that all gi-measurable optimal strategies

Y in r(p,T) is optimal in r(p,T) and is thus in Theorem 3.3.2
indicates that the bounds in theorem 2.3.6 hold for all G1-measurable
optimal strategies Y in r ( p, T ) . This is a slightly stronger result than
theorem 2.3.6 that only states the existence of optimal strategies fulfilling
these bounds.

Theorem 4.1.1 and corollary 4.1.2 imply theorem 2.3.7 and theorem
2.3.8 is a joint consequence of corollary 4.3.4, theorem 4.3.5 and theorem
4.4.1. 0

4.5. Conclusion This first analysis of the Brownian games is still incomplete
and the convergence of the finitely repeated games to the Brownian games
remains to be proved: the link between both models presented in section
2.2 is purely heuristic.
To conclude this paper, we just want to stress that the function ~* (~, 0)

is a kind of "weak" solution of the PDE (4). Indeed, would this function
be C2, it would be a classical solution of this equation:

Indeed, if T is an optimal strategy of player 2 in r* (x, 0), and if X
denotes the process Xt := then we get with Ito’s formula joint
to relation (26):

According to relations (3) and joint to the definition of R and theorem
2.3.8, the first integral collapses in the last equation. Therefore, for almost
every trajectory of X, for all T,

Due to the continuity of Xt, this means

and with relation (21), we conclude as announced that ~*(~, 0) solves the
PDE (4).
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To prove the validity of the expansion ( 1 ) for vn it is then sufficient to
establish the regularity of (., 0), as it follows from [5].

This regularity as well as the uniqueness of player 2’s optimal strategies
is proved in a forthcoming paper [7] under a strict ellipticity condition.
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