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Shortest excursion lengths

Yueyun HU1 and Zhan SHI2
Universite Paris VI
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ABSTRACT. - An interval is composed of excursions of Brownian motion.
We determine the asymptotic contributions from the shortest lengths of
these excursions. @ Elsevier, Paris
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RESUME. - On etudie la somme des longueurs des excursions browniennes
les plus courtes. © Elsevier, Paris

1. INTRODUCTION

Let {W(t); t > 0~ be real-valued Brownian motion starting from 0,
and let

be the ordered lengths of its excursions away from 0 before time t, the
last zero-free interval being considered as a possibly incomplete excursion
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104 Y. HU AND Z. SHI

interval. The study of ranked excursion lengths of Brownian motion and
other stochastic processes has received much research interest, concerning
both distributional and sample paths properties. See for example, Csaki
et al. [6], Hu and Shi [8], Pitman [10], Pitman and Yor [ 11 ]-[ 14], Revesz
[16] and Scheffer [ 18] . Besides theoretical interest, one of the motivations
is the close relation between ranked excursion lengths and size-biased
random permutation of the Poisson-Dirichlet distribution, the latter being a
subject intervening in various branches of probability and number theory.
See Pitman and Yor [12] for a full story, and many references. We also
mention that ranked excursion lengths recently find applications in financial
mathematics, cf. Chesney et al. [4].

Consider the identity:

Of course, the longest excursion lengths have the most important
contributions in ( 1.1 ). It is known (cf. Chung and Erdos [5], Revesz
[15, Chap. 13]) that infinitely often VI(t) alone may play an overwhelming
role. More precisely, lim supt~~ V1 (t) /t = 1 with probability one.

However, one may still wonder the contributions in ( 1.1 ) from short

excursion lengths. Are they totally negligible?
The problem is attacked by Csaki et al. [6], who prove that for any finite

constant r > 0 and positive function k(t) i oo,

where log2 t def log log t. The estimates (1.2) and (1.3) together confirm
that, for any monotone positive function k(t), there is asymptotically no
contribution in (1.1) from > k(t) log2 t} if and only if k(t) i oo.

It is certainly interesting to see how negligible the shortest excursion
lengths are, in case k(t) T oo. Let us recall a recent result of Revesz [16].
THEOREM A (Revesz [16]). - For k(t) T oo such that is non-

decreasing,
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105SHORTEST EXCURSION LENGTHS

Since k(t) tends to infinity, (1.4) is clearly a quantitative refinement of
(1.3). More precisely, it tells us that with probability one, the asymptotic
proportion of the contributions in (1.1) from {Vj(t); j > k(t) log2 t} are
no more than (a constant multiplication of) 1/~(~). Is this accurate?
The answer is affirmative.

THEOREM 1.1. - If k(t) i oo and if non-decreasing, then

Even in case k(t) has a finite limit (to which we refer as the "critical"
case), (1.5) still remains true, except for the constant on the right hand side
which should be replaced by another one. For more details, cf. Section 4.
Theorem 1.1 gives us the largest contributions possible from {~(~);

j > k(t) log2 t~ along some exceptional (random) subsequences. It may
also be interesting to seek the smallest contributions possible. We consider
this problem for all {Vj(t); j > ~(t)}.
THEOREM 1 .2. - For any non-decreasing functions > 1 and > 0

such that is non-decreasing,

according as whether

diverges or converges.

Remark 1.3. - The condition ".~(t) > I" is to ensure that we are dealing
with a non-trivial situation. In case has a finite limit, Theorem 1.2 is
a particular case of [8, Theorem 1.1 ] .

Remark 1.4. - There is a discrete-time analogue (i.e. for simple symmetric
random walks) for Theorems 1.1 and 1.2, using Skorokhod’s embedding (for
details of this kind of argument for excursion lengths, cf. Csaki et al. [6]).
We also mention that the corresponding problem in discrete-time setting in
dimension 2 is studied by Csaki et al. [7], who prove that the two longest
excursion lengths eventually play an overwhelming role. In dimension 2
the problem is posed only for random walks, since any point is polar for
Brownian motion.
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106 Y. HU AND Z. SHI

Remark 1.5. - Theorems A and 1.1 remain true if, instead of the

monotonicity of we assume that k(t) is of slow variation.
The rest of the paper is organized as follows. Section 2 is devoted to the

study of tail behaviours of the excursion lengths. Theorems 1.1 and 1.2 are
proved in Section 3. In Section 4, we treat the critical case, i.e. the limsup
behaviour of Th (t) for each fixed constant r > 0. Finally, we
extend our results for all recurrent Bessel processes in Section 5.

Throughout the paper, we adopt the usual notation a(x) f’V b(x) (x - xo)
to denote a(x)/b(x) = 1.

2. DISTRIBUTIONS OF THE EXCURSION LENGTHS

We first recall two important results. The first is a decomposition theorem
due to Pitman and Yor [12]. The second is the classical Chernoff’s large
deviation theorem for iid variables (cf. for example Bahadur [1] ] for detailed
discussions).

THEOREM B (Pitman and Yor [12]). - For any n > 2,

where denotes identity in distribution, {03B1j}j~1 and are

independent positive random variables whose laws are determined by: for
all j > 1,

THEOREM C (Chernoff [3]). - Let iid variables with

e > 0. If P(Xi > b) > 0, then

where
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In view of (2.1 ) and the scaling property, the study of the Y~ (t)’s, when
t is fixed, is reduced to that of the 03B1j’s and 03B2j’s. Throughout the section,
let JU, A/2, -’’ denote independent Gaussian ~(0,1) random variables,
independent of all the other processes and variables. It is well-known that
J~-2 is a stable variable of index (1/2), in the sense that

for all n > 1 (an easy way to see this is to consider the first hitting times
for Brownian motion).

LEMMA 2.1. - For each ~ E (0, 1), there exists a finite constant > 0,
depending only on c, such that for all x > 0,

Proof. - Elementary. D

LEMMA 2.2. - For ~ E (0,1), there exist > 0 and M2(~) > 0 such
that for all n > 

Proof - From (2.3), it follows that = 1 and that  oo when
A > 0 is sufficiently small. Now Lemma 2.2 is a straightforward application
of Theorem C. 0

THEOREM 2.3. - Fix A > 0. Fo r k(t) i oo,

Vol. 35, n° 1-1999.



108 Y. HU AND Z. SHI

Proof. - Let Ai denote the probability term on the left hand side of

(2.9). For notational simplicity, we write k def ~ (t) in the proof. By (1.1)
and (2.1 ), for all sufficiently large t,

To get the upper bound for Ai, let us fix c E (0,1). Observe that by
(2.7), for all large t,

where

Applying (2.5) and then using (2.4), this leads to

which, by the usual estimate for Gaussian tails, yields

Going back to (2.10), we have

which implies the desired upper bound for Ai by sending ~ to 0.

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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The lower bound can be proved exactly in the same way, using (2.8) and
(2.6) in lieu of (2.7) and (2.5) respectively. 0

LEMMA 2.4. - There exists a universal constant c > 0 such that

Proof. - The estimate (2.11 ) is trivial. Indeed, by Chebyshev’s inequality
and (2.3),

for all 0  x  1. To verify (2.12), observe that for each 6- E (0,1),

Applying (2.8) and (2.11 ), the above is smaller than (for large n)

which implies (2.12), as e can be arbitrarily close to 0.

THEOREM 2.5. - For f(t) i 00 and cp(t) T oo,

Proof. - The main difference between the proofs of Theorems 2.5 and
2.3 is that we can no longer use Lemma 2.2, since e-M2 ~~~~~t~ is not always
negligible with respect to p-1/2(t). However, with minor modifications,
the lower bound in (2.13) can be obtained as in the proof of Theorem 2.3.

Vol. 35, n° 1-1999.
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Indeed, let A3 denote the probability term on the left hand side of (2.13).
Write and p def p(t). By an abuse of notation, we shall write .~

instead of [~ treating f as an integer. By (2.1), for large t,

Fix an c E (0,1). Since 1E(!1j) = 1, by law of large numbers, for all t

sufficiently large, ~( ¿~=I!1j  (1 + e)I) > 1 - c, which, in view of
independence, implies

According to (2.5) and (2.4),

which yields

This leads to the lower bound in (2.13) by sending c to 0.
To prove the upper bound, let us go back to (2.14), fix an é and use

(2.6) to arrive at:

for all large t. By means of (2.4) and the boundedness of the Gaussian
densitv, the above is

This yields the upper bound in Theorem 2.5 by means of Lemma 2.4. D

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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3. PROOFS OF THEOREMS 1.1 AND 1.2

Recall the statement of Theorem 1.1: for k ( t) i oo such that t/k(t) is

non-decreasing,

We first observe that the excursion lengths inherit the scaling property in
the following sense: for any fixed t > 0,

Proof of Theorem 1.1. - The upper bound (3.1 ) is a straightforward
consequence of Theorem 2.3. Indeed, fix () > 1, 6; E (0,1) and define
tn 

aef 
9n. By scaling (cf. (3.3)) and Theorem 2.3, for all sufficiently large n,

which is summable for n. By the Borel-Cantelli lemma, almost surely for
all large n,

By monotonicity, this yields

which leads to (3.1 ) by letting 8 and c tend to 1 and 0 respectively.
To verify (3.2), we have to overcome the dependence difficulty. Let 7

denote the natural filtration of the Brownian motion W. For each t > 0,
define

Vol. 35, n° 1-1999.
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In words, G(t) and D(t) are respectively the left and right extremities of
the excursion interval straddling t. Note that for each t, D(t) is a stopping
time. Fix an e E (0, 1). Let Consider the event

Of course, for each n, En is FD(tn)-measurable. If we could verify

then according to Paul Levy’s Borel-Cantelli lemma (cf. for example,
Shiryaev [19, p. 518]), we would have proved P(limsupn En) = 1 which
would in turn yield (3.2).

It remains to check (3.6). Consider the process {W(s) +

> 0}, which by the strong Markov property is again one-
dimensional Brownian motion, independent of For each t > 0,
we can define

the ordered excursion lengths of W before time t. Clearly,

for any positive m, s and ~. Consequently,

where 71 denotes the indicator function. By means of the scaling property
(cf. (3.3)) and Theorem 2.3, it is easily seen that the probability term on
the right hand side is greater than exp(- log2 t~) = 1 /(4n log n) for all
sufficiently large n, which yields

To complete the proof of (3.6), we recall a classical result of Chung and
Erdos [5] for the lower functions of G(t): for any non-decreasing function

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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f > 0, lim inft~~ f(G(t))/t equals 0 or oo almost surely, according as
whether Joo diverges or converges. (This test is extended to

general Markov processes by Bertoin [2]). In particular, the test confirms
that with probability one, G ( t) (log G ( t) ) 3 > t for all large t. This yields
D(t)  t(logt) for large t. Since  étn when n is

sufficiently large (how large depending on e), we have  etn
almost surely. In view of (3.7), we have proved (3.6), hence Theorem 1.1.
a

We restate Theorem 1.2 here: if > 1 and p(t) > 0 are non-decreasing
such that is non-decreasing,

Proof of Theorem 1.2. - When has a finite limit, Theorem 1.2 is

proved in [8] (cf. Remark 1.3). Therefore we assume f(t) i oo. Fix B > 1,
and let t~ dPf Bn,.
The proof of (3.8) is routine, using Theorem 2.5, Borel-Cantelli,

monotonicity, and the fact that Joo  oo if and only if

 00.

To verify (3.9), assume Joo dtjtcpl/2(t) = oo. In the rest of the proof,
by an abuse of notation, we shall write instead of ~P(t,~,,)~, treating

as an integer. Recall G(t) and D(t) from (3.4)-(3.5). Fix constants
b > 0 and 0  e  1. Consider the event

By scaling (cf. (3.3)) and Theorem 2.5,

which implies

Vol. 35, n° 1-1999.
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We now apply a second moment argument. Let m > ?~+1. Let 7 denote as
before the natural filtration of W. Define {W(s) > 0}
which is again Brownian motion independent of and denote by

Tlz(t,) > ~ ~ ~ the ranked excursion lengths of W over the interval
(0, t) for each t > 0. Since for all positive i and A,

we obtain:

(We have used respectively Theorem 2.5 and (3.10) in the last two

inequalities). On the other hand, by the Markov property, one can write

where N is a Gaussian A~(0,1) variable, independent of According
to Brownian path decomposition (cf. for example Revuz and Yor [17,
Exercise XII.3.8]), the process

often referred to as the "Brownian meander", is independent of 
Moreover, P((1) > x) = exp(-x2/2) for any x > 0. Of course,

~ ~1 ( s ) ; 0  s  1} and are independent. Accordingly,

which implies

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Now, a key observation is that, for each n, the event Fn is 
measurable. Therefore

Combining (3.12)-(3.13) with (3.11 ) gives

By the Borel-Cantelli lemma of Kochen and Stone [9], P(lim supn Fn ) >
1 - 8 -1. Therefore,

This yields (3.9) by sending 8 and b respectively to oo and 0. 0

4. CRITICAL CASE

Theorem 1.1 concerns the limsup behaviour of when

k ( t) tends to infinity. What happens if it has instead a constant limit? In
other words, we ask whether it is possible to get more information about
(1.2). Recall the following theorem.

The main result of this section is to determine the exact value of the

"limsup" term.

THEOREM 4.1. - For any r > 0,

Here, ~(r) E (0 , (0) denotes the unique solution to the equation Jor A > 0)

Vol. 35, n° 1-1999.
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where

Remark 4.2. - Let q be the unique positive number satisfying

Then g ( a)  0 for a 2: "’/, which means that the supremum in (4.1 ) can
be taken over a E (0,~). A few lines of elementary computations confirm

is a (strictly) increasing and continuous function, with

E(0+) = 1 and E(oo) = oo, which guarantees that the constant A(r) is

well-defined.

Remark 4.3. - We have the following asymptotic estimates for ~(r):

q being the constant in (4.4). That limr~~ r03BB(r) = is in "formal

agreement" with Theorem 1.1.

The proof of Theorem 4.1 relies on the following analogue estimate of
Theorem 2.3 for the critical case:

THEOREM 4.4. - Fix À > 0,

where is as in (4.1).

From (4.5), Theorem 4.1 can be proved exactly along the same lines of
the proof of Theorem 1.1 in Section 3. We feel free to omit the details.
The rest of the section is devoted to the proof of (4.5).

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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Proof of Theorem 4.4. - The main ingredient in the proof is again
Theorems B and C (cf. Section 2). Let A4 denote the probability expression
on the left hand side of (4.5).
To prove the upper bound, we fix a constant a > 0. By (2.1 ) and

Chebyshev’s inequality,

where p(z) def and q(z) def (for z > 0) are, respectively, the
Laplace transform of a 1 and the moment generating function of f31. From
(2.2), it is easily checked that p(z) = ( f being defined in (4.2)),
whereas using (2.3) and analytic continuation, we have q ( z ) = 1/ g(z) (for
0  z ~ ~y), where g is as in (4.3). Minimising the expression on the right
hand side of (4.7), we obtain, for some unimportant constant C > 0,

(E(A) being as in (4.1 )) which yields the upper bound in Theorem 4.4.
It remains to verify the lower bound. Going back to (4.6), we have,

for any a > 0,

According to Theorem C (cf. Section 2), for any fixed c > 0, when n
is sufficiently large,

where

(f, 9 and ’"Y being as in (4.2)-(4.4)). In view of the exact form of f, it

is easily seen that

Vol. 35, n° 1-1999.
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where s(a) > 0 is the unique solution to ~f’(s)~ f (s) _ -(c~ ~-1). Similarly,
writing ~~(A"~ - 1)+ = max(A’~ - 1,0), for each a > ao,

where t(a) E (0, q) is the unique solution to g’(t)/g(t,) _ -(a + 
By some tedious but elementary computations, it is seen that a ~ s(a)
(over (0, oo)) and a - t(a) (over (ao , oo)) are both monotone continuous
functions, with s(0+) = oo, s(oo) = 0, t(ao+) = 0 and t(oo) = 7
(recalling ~ from (4.4)). Therefore, there exists a* > ao such that

~)/A = t(a*) E (0, q), which yields

by definition of E(A). Since (4.8) holds for all a > 0, taking a = a* gives
the lower bound in Theorem 4.4. 0

5. BESSEL EXCURSIONS

Looking at Sections 1~, the Brownian properties we have exploited
essentially consist of scaling, strong Markov, path decomposition and
Theorem B, all of which are also enjoyed by recurrent Bessel processes.
Therefore, the main results of the paper can be extended to the latter

processes, which we briefly describe as follows. Let {Rd(t,); 0  t  I} be
a Bessel process of dimension d, with Rd(0) = 0. We assume 0  d  2

to ensure the recurrence (of course, in the special case d = 1, Rd can be
realized as reflecting Brownian motion). As for Brownian motion, we define

the ordered excursion lengths of Rd over theinterval [0, t]. Recall the

following

THEOREM E (Pitman and Yor [12]). - For 2,

where "l~ " denotes identity in distribution, {0152Jd)}j~1 and {{3jd)}j~1 are
independent positive random variables whose laws are determined by: for

Annales de d’Institut Henri Poincaré - Probabilités et Statistiques
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THEOREM 5.1. - Let k(t) i 00 such that is non-decreasing,

THEOREM 5.2. - For non-decreasing functions .~ ( t ) > 1 and cp(t) > 0
such that is non-decreasing, with probability one,

THEOREM 5.2. - For any r > 0,

where E (0, (0) is the unique solution to the equation for A > 0)

with
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