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ABSTRACT. - It is shown that, for site percolation on the dual Dirichlet
tiling graph of a co-compact Fuchsian group of genus &#x3E; 2, infinitely many
infinite connected clusters exist almost surely for certain values of the
parameter p = P {site is open}. In such cases, the set of limit points at
oo of an infinite cluster is shown to be a perfect, nowhere dense set of
Lebesgue measure 0. These results are also shown to hold for a class of
hyperbolic triangle groups. (c) Elsevier, Paris

RESUME. - On montre que, pour la percolation de site sur le graphe
de parage dual de Dirichlet d’un groupe Fuchsien de genre &#x3E; 2, il existe

p.s. une infinite de composantes connexes infinies, pour certaines valeurs
du parametre p = P ~ (un site est ouvert)}. On montre dans ces cas que
l’ensemble des points limites a rinfini d’une composante infinie est un
ensemble parfait d’mterieur vide de mesure de Lebesgue nulle. On obtient
aussi ces resultats pour une classe de groupes triangulaires hyperboliques.
© Elsevier, Paris

1. INTRODUCTION

Percolation on a "Euclidean" graph, such as the standard integer lattice
exhibits a single threshold probability pc, above which infinite clusters
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152 S. P. LALLEY

exist with probability 1 and below which they exist with probability 0. In
the percolation regime p &#x3E; pc the infinite cluster is unique [3]. The purpose
of this paper is to show that percolation on a "noneuclidean" graph may
exhibit several threshold probabilities, and in particular that for some values
of p infinitely many infinite clusters may coexist, while for other values of p
there is only one infinite cluster. We shall consider only site percolation, but
it will be clear that most of our results have analogues for bond percolation.

1.1. Fuchsian Groups and tessellations of H

A Fuchsian group is a discrete group r of isometries of the hyperbolic
plane H (the unit disk endowed with the Poincare metric dH). See [6],
chapters 2-4, or [9], chapters 1-2, for succinct expositions of the basic
theory of Fuchsian groups. The group F is co-compact if the quotient space
r B H is compact, equivalently, if r has a compact fundamental polygon.
A fundamental polygon for r is a closed set T bounded by finitely many
geodesic segments such that

3. Vz, z’ E T the geodesic segment from z to z’ is contained in T.

For every co-compact Fuchsian group there exist fundamental polygons,
e.g., the Dirichlet polygons Di. For any ~ E D~ is defined to be the

closure of the set of points z E H such that  dH(z, g~) for all
g E r. If ~ is not a fixed point of any g E r other than g = 1, then Dç is
a fundamental polygon for F. We shall assume throughout the paper that
the origin 0 is not a fixed point of any element of r (this may always
be arranged by a change of variable, so this assumption entails no loss of
generality). Thus, 0 is contained in the interior of a fundamental polygon,
and the elements g of r are in one-to-one correspondence with the r - orbit
of 0. Henceforth, we will (usually) identify the group element g and the
point g(0) E H, and (sometimes) the polygon g(T).

If T is a fundamental polygon for r then r and its images gT, g E F,
tessellate H, i.e., their union is H, and distinct images gT, g’T intersect
either in a point, or a geodesic segment, or not at all. We shall refer to the
polygons geT) as tiles, and to T as the fundamental tile. Because the tile
T has only finitely many edges, the set of tiles gT that share edges with
T is finite. The corresponding group elements g are called side-pairing
transformations; they constitute a set of generators for F. Thus, for any
given fundamental polygon T the tessellation gT there is a presentation of
r in terms of generators and relations. See [11, chapter 9 for details.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



153PERCOLATION ON UCHSIAN GROUPS

Two graphs will play a central role in the percolation processes, both
having vertex set r. The dual tiling graph, designated Gblue, has an edge
connecting g and g’ iff the tiles 9 (T) and g’ (T ) intersect in a geodesic
segment. Observe that this graph is the Cayley graph of (G, ~), where the
generating set Q consists of the side-pairing transformations. Henceforth,
we shall sometimes refer to the graph Gblue as "the Cayley graph of G",
suppressing the dependence on the generating set Q. The second graph of
interest, which we shall call the extended dual tiling graph, or just the
extended Cayley graph, designated Gred, has an edge connecting g and g’
iff the tiles 9 (T) and g’(T) intersect (either in a geodesic segment or a
point). Both graphs should be visualized as embedded in the hyperbolic
plane H, with geodesic segments representing the edges. For the Cayley
graph Gblue edges never cross. For the extended Cayley graph, edges [g, g’]
and [h, h’] may cross, but only if the four tiles g(T), g’ (T ) , h(T), h’ (T )
have a point in common.

Elements of F are either elliptic or hyperbolic. An elliptic isometry g
is conjugate to a rotation (i.e., for some isometry h and some rotation R
about the origin, g = every elliptic element has a unique fixed
point in H, and has finite order in r. A hyperbolic isometry has no fixed
points in H, but has two fixed points (+ , (- on 8H =the unit circle, one
((+) attractive, the other repulsive; every hyperbolic element has infinite
order in F. If g E r is hyperbolic, then for every ~ E (H U 9H) - {~},

in the usual (Euclidean) topology on the closed unit disk H U 0H, and this
convergence is uniform on compact subsets of (H U 9H) 2014 {(~-}.
Vol. 34, n° 2-1998.



154 S. P. LALLEY

1.2. Site percolation on r

Fix p E (0,1). Color each tile g(T) blue or red, blue with probability p
and red with probability q = 1 - p, with colors chosen independently for
different tiles. If there is an infinite connected set of vertices in Gblue all

of which are colored blue, say that blue percolation (or site percolation)
has occurred. If there is an infinite connected set of vertices in Gred all of
which are colored red, say that red percolation has occurred. In any case,
define a blue cluster to be a maximal connected set of blue vertices in

Gblue, and a red cluster to be a maximal connected set of red vertices in
Gred. Thus, blue percolation occurs iff there is an infinite blue cluster, and
red percolation occurs iff there is an infinite red cluster.

Similarly, define a blue path to be a (connected) path in the graph Gblue all
of whose vertices are colored blue, and define a red path to be a (connected)
path in the graph Gred all of whose vertices are colored red. Such paths will
be identified with piecewise-geodesic paths in the hyperbolic plane. When
topological properties of infinite blue paths or red paths are discussed,
the implicit topology will always be the usual Euclidean topology on the
closed unit disk H U The following topological facts will be of crucial
importance:

Fact 1. No blue path can cross a red path.

Fact 2. If there are no infinite blue (red) clusters, then for every n &#x3E; 1

there is a closed red (blue) path surrounding the (hyperbolic) circle of
radius n centered at the origin.

Fact 3. If A, B, C, D are nonoverlapping arcs arranged in clockwise
order on the unit circle 8H, then the existence of a doubly infinite red path
connecting the arcs A and C precludes the existence of a doubly infinite
blue path connecting the arcs Band D (and vice versa).

1.3. Principal results

The principal results of the paper concern the existence of a percolation
phase in which infinitely many infinite blue clusters and infinitely many red
clusters co-exist. The main result concerns the standard presentation of a
co-compact Fuchsian group of genus 9 &#x3E; 2. The group r has a generating
set with 2n + 4g elements

Annales de l’Institut Henri Poincaré - Probabilites et Statistiques



155PERCOLATION ON FUCHSIAN GROUPS

with 1  z  n and 1  j  g. These generators satisfy the relations

By a theorem of Poincaré (see [6], Theorem 4.3.2) the group r with this
presentation is Fuchsian, and there is a fundamental polygon T such that
the side-pairing transformations are the elements 

THEOREM A. - Let r be (the standard presentation of) a co-compact
Fuchsian group of genus g &#x3E; 2, and let Gblue and Gblue be the corresponding
tiling graphs. Then there exist constants 0  p~  p2  1, depending on
f, such that

1. For p  Pl there is a single infinite red cluster and no infinite blue
cluster, with probability 1.

2. For p &#x3E; p2 there is a single infinite blue cluster and no infinite red
cluster, with probability 1.

3. For pl  p  p2 there are infinitely many infinite red clusters and
infinitely many infinite blue clusters, with probability 1.

We conjecture that this is true for all hyperbolic tessellations induced by
co-compact Fuchsian groups. In section 8, we will show that it is true also
for a class of triangle groups (which have genus g = 0). Benjamini and
Schramm [2] have made the more far-reaching conjecture that a similar
statement holds for all nonamenable finitely generated discrete groups.

In section 5, we shall consider topological and metric properties of the
set of limit points in ~H of an infinite cluster (red or blue). We will prove
a series of propositions leading to the following theorem:

THEOREM B. - If for some p it is almost sure that there are infinite
red paths and infinite blue paths that converge to points of 81H1, then with
probability 1, for any infinite cluster (red or blue) the set A of its limit points
in c~~ is closed, perfect, nowhere dense, and has Lebesgue measure O.
We conjecture that in these circumstances it is always the case that A

has Hausdorff dimension strictly less than 1.

1.4. Remark. - A It will be clear that the results of sections 2-5 below

have natural analogues for co-compact discrete groups of isometries of the
hyperbolic space for every d &#x3E; 2. Classification of those groups for
which there exist values of p at which infinite red clusters and infinite

blue clusters may co-exist with positive probability may be a more difficult

Vol. 34, n° 2-1998.
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problem in dimensions d &#x3E; 3, however, and as yet we have no results
in this direction.

B. Theorems A and B were largely inspired by results obtained in [7]
concerning branching Brownian motion in the hyperbolic plane. Branching
Brownian motion is the branching process in which individual particles
follow (hyperbolic) Brownian paths and undergo binary fissions at rate

A &#x3E; 0. As shown in [7], there is a threshold value Ac = 1/8 (corresponding
to the threshold p2 in Theorem A above) such that (i) for A &#x3E; Ac the process
is "recurrent" in the sense that, with probability 1, for every compact subset
K of the hyperbolic plane there are particles in K at indefinitely large
times; and (ii) for A  Ac the process is "transient" in the sense that with
probability 1 it dies out in every compact set eventually. For A &#x3E; Ac, every
point of 9!H is an accumulation point of the traces of particle trajectories,
but for A  Ac the set of such accumulation points is, with probability 1, a
closed, perfect, nowhere dense set with Hausdorff dimension

Thus, the recurrence/transience dichotomy is reflected in the topological
and metric properties of the limit set.

C. The three phases for percolation on Fuchsian groups of genus

g &#x3E; 2 also have analogues for the contact process. The phases are (i)
certain extinction; (ii) weak survival, where the set of infected sites grows
exponentially but almost surely vacates every finite set of sites; and (iii)
strong survival, where with positive probability every site is infected at

indefinitely large times. The existence of the three phases has thus far only
been proved for the contact process on a homogeneous tree (the Cayley
graph of a free product of copies of 7~ ~ or Z) - see [14], [10], [16], and
[8] - but we believe that similar results will hold for contact processes on
Fuchsian and other hyperbolic groups, and that some of the methods of
this paper may be relevant.

2. 0-1 LAWS

A configuration is a function from the group r to the two-element set
{0,1}. Configurations may be identified with two-colorings (with 0 = red,
1 = blue) of the vertex set of either the Cayley graph Gblue(r) of F or the
extended Cayley graph Gred(r). The probability measure PP is the product
Bernoulli measure on configuration space 0, i. e. , the probability measure on
the Borel subsets of configuration space that makes the coordinate random
variables independent, identically distributed Bernoulli-p. A tail

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



157PERCOLATION ON FUCHSIAN GROUPS

event is a Borel subset B of 03A9 with the following property: for any two
configurations £, £’ that differ in only finitely many entries, either ~ E B
and ~’ E B or ç E J5~ and ~’ E B~.

LEMMA 1. - Every tail event has Pp-probability 0 or l.
This is the Kolmogorov 0-1 Law.
The group F acts on the configuration space by left translation: for g E r,

the left translation L~ is defined by = ~h. For each g E r the left
translation L~ is Pp-measure-preserving. A random variable X is said to
be g-invariant if X = X o L9 a.s. P~. An event B is called g-invariant
if its indicator function is g-invariant.

LEMMA 2. - If g E r is non-elliptic then the measure-preserving system
ergodic and mixing.

Proof - It suffices to prove that the system is mixing, as this implies
ergodicity. For this it suffices, by a routine approximation argument, to prove
that for any two cylinder events A, B (events whose indicator functions
depend only on finitely many coordinates),

If g is non-elliptic, then ~~~ 2014~ oo, and consequently for every h e iB
oo. Since each of the indicators 1~(~),1B(~) depends on only

finitely many coordinates of ç, it follows that for sufficiently large n the
indicators lA and lB o L~ depend on disjoint sets of coordinates, and
therefore are independent under Pp..
COROLLARY 1. - If g G F is non-elliptic then g-invariant event

has Pp -probability 0 or 1.
The use of the 0-1 laws is facilitated by the following comparison

lemma. For any configuration 03BE ~ 03A9 and any finite subset K of r, define
configurations and by

For any event B and any finite subset K of r, define events BI°.~ and BK by

LEMMA 3. - For any event B and any finite subset K of 0393, if &#x3E; 0
then &#x3E; 0 for i = 0 and i = 1.

Vol. 34, n° 2-1998.
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Proof. - Define Bk to be the set of all configurations ~ such that there
exists a configuration w’ E B that agrees with cJ in all coordinates except
possibly those in K. Clearly, B is a subset of B~, so if Pp(B) &#x3E; 0 then

&#x3E; 0. Since the coordinate variables are independent under Pp,

and

3. CONSEQUENCES OF THE 0-1 LAWS

The next result is taken from [2]. A similar (essentially equivalent) result
was obtained in [13].

PROPOSITION 1. - Let NR and NB be the number of infinite red clusters
and blue clusters, respectively. Then with probability 1, NR and NB are
constant, each taking one of the values 0, 1, or oo.

Proof. - Since r is nonelementary, it contains nonelliptic elements. Let
g E r be nonelliptic. For either z = R or z = B and for any k = 0, 1 , 2 , ...
or the event ~N2 = l~~ is g-invariant. Consequently, by Corollary 1,
it has probability 0 or 1. Thus, Ni is almost surely constant.

Suppose that for some k E the event {Ni = k) had positive
probability. Let Bn be the event that all infinite i-clusters intersect the ball
of radius n centered at the origin of 0-ll; then for sufficiently large n,

Let K be the set of all g E r such that g(0) is contained in the ball of

rad-ius n centered at 0. By Lemma 3,

But this is impossible, because on there is only one infinite

2 - cluster. .

For any ( E say that ( is an i-cluster point (i =Red or Blue) if
there is an infinite i-path that has ( as a cluster point. Similarly, say that
03B6 is an i-limit point (i = Red or Blue) if there is an infinite i-path that
converges to (. It is not a priori necessary that an i-cluster point be an
i-limit point, nor is it even a priori necessary that the existence of infinite
i-clusters implies the existence of 2-limit points. However, we shall see

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



159. PERCOLATION ON FUCHSIAN GROUPS

that at, least for a large class of Fuchsian groups i-cluster points must
also be i-limit points.

PROPOSITION 2. - &#x3E; 0~ = 1 then with probability 1 . the set of
i-cluster points is dense in 

Proof - Every infinite i-cluster has at least one cluster point in 8H.
Since with probability one there is (by hypothesis) at least one infinite

i-cluster, there is a nonempty open arc A of ~H such that with positive
probability there is an i-cluster point in A. -

Let g E r be hyperbolic. By Lemma 2 and the BirkhoffErgodic Theorem,

hence, with probability 1, there are 2 -cluster points’ in infinitely many of
the arcs gnA. In particular, i-cluster points accumulate at the attractive
fixed point of g. Since the attractive fixed points of hyperbolic elements
are dense in ([6], Theorem 3.4.4) it follows that with probability 1 the

i-cluster points are dense in .

This result might lead one to suspect (however briefly) that in the

i-percolation regime all points of 9fH) are i-cluster points. Later we will
show that this is not the case: When red and blue sector percolation occur
simultaneously (see section 4 for the definition) and there are infinitely
many i-clusters, the set of i-cluster points has (Lebesgue) measure zero,
with probability 1. Thus, the size (as measured, for instance, by Hausdorff
dimension) of the set of 2-cluster points is an interesting quantity.

Essentially the same proof as in the previous proposition yields the

following.
PROPOSITION 3. - Ifan 2-limit point exists with positive probability then

with probability 1 the set of i-limit points is dense in 
For any nonempty arc A (possibly a single point) of 9H, say that there

is an 2-path converging to A if there is an infinite i-path all of whose
cluster points are in A.

PROPOSITION 4. - Suppose that there is a nonempty arc A of 81H1, whose
complement in contains a nonempty open arc, such that, with positive
probability, there is an ~-path converging to A. Then for every nonempty
open arc U~ of ~~-ll there exists, almost surely, an i-path converging
to A’.

Proof. - Choose a hyperbolic element g E r whose attractive fixed point
is contained in A’. By Lemma 2 and the Ergodic Theorem, for infinitely

Vol. 34, n° 2-1998. 
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160 S. P. LALLEY

many of the arcs gn A there are infinite i-paths that converge to gn A, with
probability 1. Since the attractive fixed point of g is contained in A’, all

but finitely many of the arcs gn A are contained in A’ ..

4. SECTOR PERCOLATION

Say that 2-sector percolation occurs if there is an infinite i - path
that converges to a nonempty open arc A of ~H whose closure is not

all of By the last proposition of the preceding section, if i-sector

percolation occurs with positive probability then, with probability 1, for

every nonempty open arc A of 0H there are infinite i-paths converging
to A. Hence, 2 - sector percolation is a 0-1 event.

CONJECTURE 1. - Percolation implies sector percolation.
We will show that this is true for a large class of co-compact Fuchsian

groups (see Corollary 4 below), but a general proof has eluded us.

LEMMA 4. - If 2-sector percolation occurs then for every pair A, A’ of
nonempty arcs in 81H1 the probability that there is a doubly infinite i-path
connecting A with A’ is positive.

Proof. - With probability 1 there exist infinite paths converging to A
and A’. Consequently, for sufficiently large n there exist, with positive
probability, infinite paths converging to A and A’, respectively, both

originating in Bn = the set of all vertices g ~ r at hyperbolic distance  n
from the origin. Clearly, on the event that all vertices in Bn are colored i,
any two such infinite paths could be connected to form a doubly infinite
path connecting A with A’. It follows from Lemma 3 that this happens
with positive probability..
COROLLARY 2. - If i-sector percolation occurs then with probability 1

there exist doubly infinite i-paths connecting nonoverlapping arcs of ~~--~.

Proof - The event that there exist doubly infinite i-paths connecting
nonoverlapping arcs of 8H is g-invariant for every hyperbolic ,g E F, so
the result follows from Corollary 1..

COROLLARY 3. - If i-sector percolation and j -percolation both occur
with positive probability (where z, =Red, j =Blue or i =Blue, j =Red) then
j -sector percolation occurs, and with probability one there are infinitely
many infinite red clusters and infinitely many infinite blue clusters.

Proof - Suppose that i-sector percolation occurs. Then with proba-
bility 1 there exists a doubly infinite i-path 03B3 connecting disjoint open

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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arcs A, A’ of 8H. These arcs partition into four nonempty segments
A, A’, B, B’. If there exists an infinite j -cluster C, it must lie on one side
or the other of roy, and consequently, any infinite self-avoiding j-path in C
must converge either to B or to B’. Thus, there is j-sector percolation.
By Corollary 2, there exist doubly infinite red paths and doubly infinite

blue paths connecting disjoint arcs of It follows from Proposition 4
that 2 and NBlue &#x3E; 2. Hence, Proposition 1 implies that

NRed = 00..

COROLLARY 4. - Suppose that for some value of p red sector percolation
and blue sector percolation both occur with positive Pp-probability. Then
for all values of p and i =red or blue, if i-percolation occurs with positive
Pp-probability then 2-sector percolation occurs with Pp-probability l.

Proof - If for some p* red sector percolation and blue sector

percolation both occur with positive P~~ -probability, then they occur with
P~x -probability 1. Hence, for any p &#x3E; p~, blue sector percolation occurs
with Pp-probability 1, and for any p  p*, red sector percolation occurs
with Pp -probability 1. Thus, for every value of p, it is Pp- almost sure
that i-sector percolation occurs for either z =blue or i =red. Corollary 3
therefore implies that if j -percolation occurs with positive Pp -probability
then j-sector percolation occurs with Pp -probability 1..

Let ( e ~H and let A be a closed arc of contained in 9H! 2014 {(}.
The complement of A U {(} in 9H] is the union of two nonoverlapping,
nonempty open arcs Band B’. Say that a doubly infinite I-path separates
( from A if it connects closed sub-arcs of Band B’.

LEMMA 5. - Assume that i-sector percolation occurs. Then for every
hyperbolic fixed point ( E ~H and every closed arc A c ~H - {03B6} there
exists, with probability l, a doubly infinite 2-path that separates ( from A.

Proof - Since ( is a hyperbolic fixed point there is a hyperbolic element
g E r whose attractive fixed point is (. Let (’ be its repulsive fixed point,
and let be the (disjoint) open arcs of 8H with endpoints ( and
(’. Choose nonempty open arcs Cl, C2 whose closures are contained in
B1,B2, respectively. As n - oo the arcs gnC1 and gnC2 converge to ( -
in particular, for sufficiently large n any doubly infinite i-path connecting
gnC1 and gn C2 will separate ( from A. But Lemma 4, Lemma 2, and the
Ergodic Theorem imply that, with probability 1, for infinitely many n there
exist doubly infinite i -paths that connect gn C1 and ~~2. t!

COROLLARY 5. - Suppose that red and blue sector percolation both occur
with probability 1. Then with probability 1, no hyperbolic fixed point is a
red cluster point or a blue cluster point.

Vol. 34, n° 2-1998.
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Proof - Lemma 5 implies that, for any particular hyperbolic fixed
point the probability that ( is a red cluster point or a blue cluster point
is 0. Since the set of hyperbolic fixed points is countable, the corollary
follows..

NOTE. - A stronger result will be proved in Proposition 12 below.

PROPOSITION 5. - Assume that i-sector percolation occurs but that
j -percolation does not occur (where i =Blue or i =Blue, j =Red~.
Then with probability 1, there is a single infinite i-cluster, and every ~ E 
is a limit point of this cluster.

Proof. - If j -percolation does not occur then all j -clusters are finite,
and, consequently, surrounded by closed i-paths. It follows that for every
n &#x3E; 1 there is a closed 2-path Tn surrounding the ball of radius n centered
at the origin 0. Any infinite i-cluster must intersect all but finitely many
of the paths Tn- But if two infinite 2-clusters intersect the same Tn then
they coincide, because they are connected by It follows that there is

only one infinite i-cluster.
For any nonempty open arc A of 8H, define the angular sector A over A

to be the set of all ç E H such that the geodesic emanating from the origin
and passing through ~ converges to a point of A. The edges of this angular
sector are the two geodesics emanating from the origin and converging to
the endpoints of A. If Tn is any closed path in H that surrounds the ball
of radius n centered at the origin, then for any angular sector An there
is a segment !3n of Tn that connects the edges of An and lies entirely in
the closure of An .

Fix 03B6 E 8H; we will construct an infinite i-path that converges to ç. Let

~ An ~ n ~ 1 be a nested sequence (i. e. , the closure of each A~ is contained
in An-i) of nonempty open arcs such that

By Proposition 4, for each n there is an infinite i-path 03B1n that converges to
An. The path an may be chosen so that it lies entirely in the angular sector
Ân-1 over An-1. For each n the path rxn must cross all but finitely many
of the closed i -paths ~; in particular, for each n there exists mn &#x3E; 

so large that an crosses for all m &#x3E; mn . Build an infinite i -path as
follows: Proceed along ai until it first reaches a point of ,~~.,.~,., ; then follow

until it first reaches a point of a2 ; then follow a2 until it first reaches
a point of ,C~7-,.z3 ; etc. The resulting path a will converge to (..

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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5. SIMULTANEOUS RED AND BLUE SECTOR PERCOLATION

If red sector percolation and blue percolation occur with positive
probability, then by Corollary 3 red and blue sector percolation both occur
almost surely. In this section we will investigate the consequences of
simultaneous red and blue sector percolation. Throughout the section, the
following standing hypothesis will be in force:
HYPOTHESIS 1. - Red and blue sector percolation both occur almost surely.

5.1. Limit points and cluster points

PROPOSITION 6. - Every infinite self-avoiding i-path (i =Red or Blue)
converges to a point of ~(I-~.

Proof - For definiteness, let i =blue. Let (, (’ be distinct points of
and let B, B’ be the disjoint open arcs of 9H! with endpoints ( and

(’. Since red sector percolation occurs with probability 1, there exist, by
Proposition 4, infinite self-avoiding red paths, and y converging to Band
B’, respectively. Let g and g’ be the initial points of 03B3 and 03B3’, and let 03B2 be
a finite path in Gred connecting g and g’. The doubly infinite path comprised
of the paths /3; and " separates ( from (’ ; consequently, any infinite blue
path that has both ( and (’ as cluster points must cross /3 infinitely often.
Since (3 is finite, such a blue path could not possibly be self-avoiding..

PROPOSITION 7. - Every i-cluster point is an 2-limit point (i =Red or
Blue).

Proof - For definiteness, let i =blue. Let 03B6 ~ ~H be a blue cluster

point; then by definition there exists an infinite blue path r that has ( as
a cluster point. We will use 03B3 to construct a self-avoiding blue path y
that converges to (.
Since, has ( as a cluster point, there exists a sequence of vertices gn

on "I such that gn - (. Consequently, for each n &#x3E; 1 there exists a (finite)
self-avoiding blue path qn that connects go to gn, obtained by following 03B3
from go to gn, excising any "loops" that occur along the way. Let

Since (, for each fixed 7rz the path rn will exit Bm for all sufficiently
large n. Define to be the last vertex of B~ visited by Since is

finite, some E must occur infinitely often in the 
by a routine diagonal argument, the terms hm may be chosen so that for
some subsequence nk,
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for all k &#x3E; km, with km  oo for each m. Consequently, there exist finite
self-avoiding blue paths ~yr,.~ from go to hm such that each ’)’~+1 is an

extension of ~yr,.t . Define q’ to be the direct limit of the sequence ~,;~, i. e., q’
is the unique infinite path that is an extension of every ~. Clearly, V is a
self-avoiding infinite blue path, so by the last proposition it converges to a
point (’ of 9!HL Thus, to complete the proof, it suffices to show that (’ = (,
i.e., that ( is the only possible cluster point of V. Note that the vertices hm
converge to infinity; since they lie on y it follows that (’.

Suppose that (’ # (. Then by Proposition 4, there exist infinite red paths
/3 and /3’ that converge to the open arcs of 0H with endpoints ( and (’.
Clearly, there is an integer m &#x3E; 1 such that each of 03B2 and /3’ intersects
Bm. Recall that (’, and that for all sufficiently large j there exists
a self-avoiding blue path from hm to g~~ that does not re-enter Bm. If m
is sufficiently large (so that hm is close to (’), any path from hm to gna
that does not re-enter Bm must cross either /3 or (3’. Since /3 and {3’ are red
paths, this is a contradiction..

5.2. Limit set of an infinite cluster

For g G r and z =red or blue, define 119 to be the set of limit points in
9tH! of the 2-cluster containing g. Observe that unless g is contained in an
infinite z-cluster, 119 = 0; consequently, Ared = 0 or Ablue = 0.

PROPOSITION 8. - The set closed.

Proof - By Proposition 7, 119 is also the set of cluster points of the
i-cluster containing g. Suppose that (n G l19 is a sequence converging in

to some point (. We must show that there is an infinite path’)’ in the
(infinite) i-cluster Cg containing g that has ( as a cluster point.

For each n there is a self-avoiding path in C~ that converges to (.n.
Since (n ~ (, there exist vertices gn E such that (. Each gn is
an element of Cg; consequently, for each n there is a finite path /3~ starting
at g and ending at gn. Let 03B3 be the infinite path in Cg that first follows /3i
from g to gi and then ,~1 in reverse from gi back to g, then follows ~2
from g to g2 and then ~2 in reverse from g2 back to g, etc. For each n the
path’)’ visits gn, so ( is a cluster point of the path 

PROPOSITION 9. - The set ig is nowhere dense.
Proof. - For definiteness let i =blue. Suppose that contains two

distinct points ( and (’. Let A be one of the two closed arcs of 9H with
endpoints ( and (’, and let B = 8H - A. Since ( # (’, the arc B is a
nonempty open arc, containing at least one hyperbolic fixed point (". By
Hypothesis 1 both red and blue sector percolation occur with probability 1;
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consequently, by Lemma 5, there exists a doubly infinite red path separating
(" from A. Thus, there is an open arc containing (" that cannot contain
any points of 

PROPOSITION 10. - then almost surely f = 00.
It obviously suffices to prove the proposition for g = 1, and for

definiteness we shall consider only the case z =blue. Write = A.

The proof requires viewing the percolation process in "layers". Let Cn be
the hyperbolic circle of radius n centered at the origin 0, and let Bn be the
set of vertices g E F such that the tile 9 (T) does not lie entirely outside
Cn . For each n &#x3E; 1 define An to be the (random) set of all g E r such that
(i) there exists a blue path ry from the vertex 1 to the vertex g such that all
vertices on ry are in B.n ; and (ii) the tile g(T) intersects the circle 

LEMMA 6. - On the event {A 7~ 0}, I ---~ oc almost surely.

Proof. - First note that if A 7~ 0 then each A.n is nonempty, because if

An = 0 then the blue cluster Bi containing vertex 1 must lie entirely inside
Cn. Let v be the cardinality of the set of generators of F and q = 1 - p
be the probability that a vertex is colored red. Suppose that k; then
there is (conditional) probability at least qvk that Bi is "cut off at i. e.,
that all the tiles outside Cn bordering tiles g(T) where g E An are colored
red. If Bi is "cut off at Cn then clearly An+d = 0, where d is the smallest
integer smaller than the diameter of the tile T, and so A = 0. By Levy’s
version of the Borel-Cantelli Lemma, if I  7~ for infinitely many n,
then, with probability 1, for some n it will happen that Bi is "cut off at

Cn. Consequently, on the event {A 7~ 0}, it cannot happen that A~ I  k
for infinitely many n; thus, IAn -~ oo a.s..
Let, be an oriented doubly infinite geodesic in the hyperbolic plane H

that intersects the tile T, and define 1) to be the event that there is an
infinite self-avoiding blue path starting at 1 and passing only through tiles
g(T) that intersect the half-plane to the right of q.
LEMMA 7. - There exists p &#x3E; 0 such that for every oriented doubly

infinite geodesic -y that intersects the tile T,

l~) ~ P~

Proof - Choose finitely many half-planes H1,..., Hl such that for
every oriented doubly infinite geodesic ry intersecting the tile T, one of the
half-spaces Hi lies entirely to the right of ~y. (If l is suitably large then
the half-spaces bounded by the geodesics joining successive points 
on 81H1 will work, because the tile T is compact in HL) For each H2 there
is a vertex 9i E F -such that, .w.ith .positive probability, there is an infinite
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self-avoiding blue path starting at gi and lying entirely in Hi - this follows
from Proposition 4. Now let (3i be the geodesic segment from the vertex
1 (at the origin) to the vertex g2, and let Ki be the set of all g G F such
that (3i intersects the tile g(T) . If there is an infinite self-avoiding blue path
starting at gi and lying entirely in Hi, and if all of the vertices in Ki are
colored blue, then, clearly, for every oriented doubly infinite geodesic,
that intersects the tile T and contains Hi entirely to its right, there is an
infinite self-avoiding blue path starting at 1 and passing only through tiles
g(T) on the right of ~y. But by Lemma 3 the probability that all of the
vertices in Ki are colored blue and that there is an infinite self-avoiding
blue path starting at gi and lying entirely in Hi is positive. The lemma
follows..

Proof of Proposition 10. - By Lemma 6, |An| - oo a.s. on the event

~~, so there exist subsets A~ c An such that 2014~ oo and such that

as n - oo, where dH denotes the hyperbolic distance. For each gi G A~,
choose a geodesic ri tangent to the circle Cn that passes through the tile

and let Hi be the half-plane bounded by 03B3i exterior to Cn . Because
the hyperbolic distance between any two distinct 9i E A~ is large, the half-
planes H~2 do not overlap (in fact the minimum distance between distinct
Hi converges to oo as n - oo ) .

Let be the event that there is an infinite self-avoiding blue path starting
at gi and passing only through tiles that intersect Since the half-planes
do not overlap, the events Pi are conditionally independent (given the
assignment of colors to vertices inside Cn), and by Lemma 7, each Pi has
conditional probability at least p. For each event F2 that occurs there is a
distinct limit point in A. Hence, since I -----+ oo, the Weak Law of Large
Numbers implies that, for every m  oo, the probability that  m

is 0..
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COROLLARY 6. - For every half-plane H c there exists, with

probability 1, an infinite blue cluster contained entirely in H with infinitely
many distinct limit points in c~~.

Proof - Let A C be the boundary arc of the half-plane H.
Since hyperbolic fixed points are dense in A, Lemma 5 implies that, with
probability 1, there is a doubly infinite red path connecting non-overlapping
closed arcs B, B’ contained in A. By Proposition 2, there is an infinite

blue cluster that has a cluster point on the arc of A between B and J5~. By
Proposition 10, this infinite blue cluster has infinitely many distinct limit
points in 9!H. But all limit points of the cluster must be contained in the arc
of A between B and B’, because the blue cluster cannot cross the doubly
infinite red path connecting B and B’..

PROPOSITION 11.- If A~ ~ 0 then almost surely 119 is a pefect set.
Proof - Without loss of generality we may take g = 1. We will consider

only the case i =blue.

Suppose the statement were false. Then there would exist a nonempty
open arc A of the circle such that, with positive probability, A n A is
a nonempty finite set. Moreover, since infinite red clusters accumulate at a
dense set of points in A, for some n  oo there would exist, with positive
probability, infinite red clusters Ci, C2 such that (i) each of Ci , C2 contains a
vertex at hyperbolic distance  n. from the origin; and (ii) the limit sets of
Ci.C2 contain points (1 , (2 G A, respectively, such that all points of A n A
lie between (i and (2. Let B be the event that all of these things occur,
i. e., that A n A is a nonempty finite set and there exist infinite red clusters
Cl, C2 with the properties detailed above. By hypothesis,

Consider the event B° consisting of all configurations úJ such that, for

some configuration o/ E B, o is obtained from w’ by changing to red
the colors of all vertices g at hyperbolic distance  ?~ from the origin.
Observe that changing these vertices to red has the effect of disconnecting
the infinite blue cluster that (before the color changes) contained the vertex
1, leaving at least one infinite blue cluster all of whose limit points are in
A, and therefore with only finitely many limit points. Since Pp(B) &#x3E; 0,
Lemma 3 implies that

But on the event B° there is, by construction, an infinite blue cluster whose
limit set is finite. This contradicts Proposition 10..
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PROPOSITION 12. - For ever~y ~ E 9H!,

Proof - It suffices to prove the statement for g = 1. For definiteness,
let z =blue.

Let ~4,~,~4~~ be nonoverlapping closed arcs of each of length
l  7r /2, such that B, A’, and B’ are obtained by rotating A by 7r /2, ~,
and 37T/2 radians, respectively. (Thus, the geodesics in H from the centers
of A and B to the centers of A’ and B’, respectively, meet at the central
point 0 of H at right angles.) By Lemma 4, the probability that there is

a doubly infinite red path connecting A and A’ is positive. Such a path
cannot approach (A U A’), so it must lie entirely inside a region of
H bounded by two hypercycles joining the endpoints of A to those of A’
(a hypercycle is just the segment of a Euclidean circle that intersects the
disc H). Call such a region a hypercyclic strip bounded by A and A’ at

infinity. It now follows that for some hypercyclic strip Sa bounded by A
and A’ at infinity, the probability that there is a doubly infinite red path
connecting A and A’ and lying entirely in 5~ is positive. Similarly, there
is a hypercyclic strip Sb bounded by Band B’ at infinity such that, with
positive probability, there is a doubly infinite red path connecting Band
B’ and lying entirely in Sb.

Fix ( E 9H, and let (’ be the antipodal point of 9H). Let J and J’ be
the open arcs of 0H with endpoints ( and (’, and let q be the geodesic
ray emanating from the origin 0 that converges to (. The geodesic!
passes through a sequence 9n (T) of tiles, beginning with go = 1 (since
by convention the origin is an interior point of T). For each gn at least

one of the hypercyclic strips "cuts" the geodesic ~y, i. e. ,
the boundary arcs and (or the boundary arcs gn(B) and
gn(B’)) are contained in opposite arcs Hence, for either z = a or
i = b (or both), the hypercyclic strip cuts ~ for infinitely many
gn. It follows that there is a subsequence hk of the sequence g~ such that
for i = a or z = b

1. Each hypercyclic strip cuts ~/; and

2. Distinct hypercyclic strips are strongly nonoverlapping,
in the sense that every tile g(T) of the tessellation intersects the
closure of at most one of the strips.

Let Fk be the event that there is a doubly infinite red path lying entirely
inside the hypercyclic strip that connects its opposite boundary arcs
(hk(A) and hk(A’) if i = a, and hk(B) and hk(B’) if i = b). Since

distinct strips are strongly nonoverlapping, the events PI, .~’2 , ...
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are independent; and since the strips are all congruent by an
element of r, the events Fk all have the same probability. By construction,
this probability is positive. Consequently, by the Strong Law of Large
Numbers, infinitely many of the strips contain doubly infinite red
paths connecting opposite arcs J, J’. But the existence of any such red path
precludes the possibility of an infinite blue path that starts at the vertex i
and has ( as a cluster point..

COROLLARY 7. - With probability 1, the Lebesgue measure of l19 is 0.

6. GROUPS OF GENUS &#x3E; 2

Every finitely generated Fuchsian group has a signature that determines
a presentation in terms of the generating set g. (Recall that 9 is the set
of side-pairing transformations for the fundamental tile T.) The signature
T(e1, e2,..., en; g) consists of n &#x3E; 0 exponents ei, which are integers &#x3E; 2,
and the genus g, which is a nonnegative integer. The generating set G has
2n + 4g elements

with 1  z  n and 1  j  g. These generators satisfy the relations

and all other relations can be derived from these. See [ 11 ], page 98, for
further details.

The surface group hg is the Fuchsian group with 0 exponents and

genus g; it is the fundamental group of a compact, orientable surface of

genus g. For genus g = 0, r9 is the trivial group, and for genus g = 1,

T9 = 7~2. These are both elementary groups, so we exclude them from
further consideration. For the surface group r 9 there is one fundamental
relation, expression R == 
is called the fundamental relator. 

~ ~ 

DEHN’S THEOREM. - f4, 5 J Let h9 be the surface group of genus g with
g &#x3E; 2. Any nonempty word W in the generators b~~ that represents the
identity can be shortened in at least one of the following ways:
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1. Delete a subword xx-l, where x is one of the generators.
2. Replace a subword A by the shorter word B, where A, B are such

that AB-1 is a cyclic permutation of the fundamental relator R or
its inverse _H-1.

This theorem is often referred to as "Dehn’s algorithm" because it

provides an automatic way to determine whether a word w in the generators
represents the identity, and therefore an automatic way to determine whether
two words Wi , W2 represent the same group element of the surface group.

Say that a word W is reduced if it contains no subwords with x

a generator, and say that it is Dehn reduced if it cannot be shortened by
either of the methods specified in the theorem.

COROLLARY 8. - Let T ~, be the surface group of genus g with g &#x3E; 2. Let .~’

be a subset of the set G of generators such that for each index i, 0 contains
elements of only one of the pairs bi 1 ~. Then two reduced
words U and V containing letters only from F represent the same element
of the surface group T y if and only if they are identical as words, i. e., if and
only if U and V have the same length and Uj = Y~ for ever~~ index j.
Proof - If U and V represent the same element of then 

represents the identity. Because the letters of U and V come from 0, it is

impossible to shorten by the second of the two methods specified
in Dehn’s theorem, so it must be possible to remove a spur G g.
But U and V (and hence also V-I) are reduced, so if a spur occurs in

UV-1 it must be at the point of conjunction, i.e., U and V have the same
last letter. A routine induction argument now shows that U and V have the
same length and Uj = Vj for every index j..
COROLLARY 9. - == Fg be the subgroup of the surface group

0393g generated by the . Then F is a free group on 2g
generators. 

Proof - By the preceding corollary, if two words U, V in these generators
represent the same element, then they are identical as words. Consequently,
there are no relations in the generators a;l, and so V is a free group..

Let Q be a fundamental polygon for a Fuchsian group F with presentation
as above, where R are the relations ( 1 )-(2) above. Say

that Q is a canonical fundamental polygon (for this presentation) if the

side-pairing transformations for Q are the generators a~ 1, b~ ~ , c.~ ~ . That
there exists a canonical fundamental polygon follows from a standard
construction (see, e.g., [6]). If Q is a canonical fundamental polygon, say
that the associated tiling F3 is canonical and that the corresponding graphs

Gred,Gblue are canonical.
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THEOREM 1. - Let ~’9 be the surface group of genus g &#x3E; 2. For all

p E ( 1 / ( 2g - 1 ) ,1 - 1 / ( 2g - 1 ) ), red and blue sector percolation on the
canonical graphs Gred, Gblue occur with Pp-probability 1..

Proof - Let .~’ be the subgroup of h~ consisting of all words in

the generators a;l. By the preceding corollary, .~ is a free group on 2g
generators, so its Cayley graph ~’(~’), which is embedded in the canonical
graphs, is a homogeneous tree of degree 2g. If p &#x3E; 1/(2g - 1), blue
percolation occurs with Pp-probability 1 on C(.~), because if Zn is the
number of elements of h of word length n connected to 1 by a blue path
in C(0) then 2~ is a Galton-Watson process with mean offspring number
(2g - 1 ) p. Furthermore, blue percolation in C(0) is necessarily blue sector
percolation, because C(F) is embedded as a tree in the hyperbolic plane
H. Thus, for p &#x3E; 1 / ( 2g -1 ) blue sector percolation occurs on 0393g with Pp-
probability 1. The same argument shows that for all p  1 2014 ( 1 / (2g - 1)),
red sector percolation occurs with ~2014probability 1..
THEOREM 2. - Let r ‘ = r(ei, e 2 , ... , en ; g ) be a co-compact Fuchsian

group with genus g &#x3E; 2. Then for all p ~ ( 1 / ( 2g - 1 ) ,1 - 1 / (2g - 1 ),
red and blue sector percolation on the canonical graphs Gred, occur

with Pp-probability l.

Proof - Let be the generators of r. By a basic result
of combinatorial group theory ([12], Corollary 1.1.3) there is a natural

homomorphism cp : r 2014~ r 9 to the surface group ig of genus g such that

Consider the subgroup 0* of r generated the

homomorphism p maps 0* isomorphically onto ~, so 0* is free on

the generators and b]=l. The same argument as used in the proof of the
preceding theorem now applies..
COROLLARY 10. - Let r = e2 , ... , en ; g ) be a co-compact Fuchsian

group with genus g &#x3E; 2, and let Gred, Gblue be the canonical graphs. There
exist constants 0  p~  1 ~ (2g - 1 ~ and 1 - 1 ~ ( 2g - 1 )  p2  1 such that

1. For p  pi there is a single infinite red cluster and no infinite blue
cluster, with probability 1.

2. For p &#x3E; p2 there is a single infinite blue cluster and no infinite red
cluster, with probability 1.

3. For pl  p  p2 there are infinitely many infinite red clusters and
infinitely many infinite blue clusters, with probability l.
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Proof. - By Theorem 2, there exist values of p such that under Pp
both red and blue sector percolation occur with probability 1. Hence,
by Corollary 4, for all values of p, if i-percolation (i =red or blue)
occurs with positive Pp-probability then i-sector percolation occurs with
Pp -probability 1. Define

pi = inf {p Pp (blue percolation) &#x3E; o~;

p2 = sup {p | Pp(red percolation) &#x3E; 0}.
By Theorem 2, pi  1/(2g - 1) and p2 &#x3E; (2g - 2)/(2g - 1). By
Proposition 3, for p  pi there is, with Pp-probability 1, a single infinite
red cluster, and for p &#x3E; p2 there is with Pp -probability 1, a single infinite
blue cluster. By Corollary 3, for all p G (pl , ~2 ), there are, with probability
1, infinitely many infinite red clusters and infinitely many infinite blue
clusters. Thus, to complete the proof it suffices to show that pi &#x3E; 0 and

P2  1.

Let m be the cardinality of the set of generators of r, i. e. , the number
of sides of the fundamental tile T, and define Zn to be the number of
tiles g(T) at word distance  n from T in the blue cluster containing T.
Observe that for every tile in this blue cluster that is at word distance
n from T, the number of neighboring blue tiles g’(T) at word distance

n + 1 from T is dominated by a Binomial (m, p) random variable, since
g(T) has only m neighbors. Consequently, by an easy construction, there
exists (possibly on an enlarged probability space) a Galton-Watson process
Yn with offspring distribution Binomial (m, p) such that

If mp  1, the Galton-Watson process is subcritical, and EZn  (1-rnp)-1
for all n &#x3E; 1. This implies that the blue cluster containing T is finite with

Pp -probability 1. A similar argument shows that if m’ ( 1 - p)  1, where
m’ is the degree of each vertex in the graph Gred (i.e., the number of tiles
g (T ) that intersect T in at least one point) then the red cluster containing
T is finite with Pp -probability 1..

7. ESTIMATES ON THE CRITICAL PROBABILITIES

7.1. Critical probabilities for sector percolation

Let Gred, Gblue be the Cayley graph and extended Cayley graphs for a
co-compact Fuchsian group r, relative to some set of generators. That
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blue percolation occurs with positive Pp-probability for some value of p
follows from a general theorem of Benjamini and Schramm [2], who show
in particular that it occurs whenever

where Cheeger(r) is the Cheeger constant of 0393Gblue. If the group r is

co-compact then the Cheeger constant is always positive, but not easily
computed. In certain cases, however, simple (albeit crude) estimates for the
critical probabilities can be given.
By a theorem of Selberg [15], the group F contains a torsion-free

subgroup H of finite index v = [F : H]. Such a subgroup H must be a
surface group h9 for some 9 &#x3E; 2, because it is itself co-compact and has
neither elliptic nor parabolic elements. If there are fundamental polygons
Q and Q* for F and H, respectively, such that (a) Q* is canonical for H,
and (b) Q* is the union of v tiles in the tessellation induced by r, Q,
then call the resulting tiling graphs for r, Q regular.

PROPOSITION 13. - For site percolation on regular tiling graphs Gred, 
blue sector percolation occurs with positive Pp-probability for all

Proof. - Every tile h( Q* ) , where h G H, is the union of v tiles gi(Q) in
the tessellation induced by iB Q. Under Pp, the probability that for a given
tile h(Q*) in the H-tessellation all v of the constituent tiles in the

h-tessellation are colored blue is Consequently, by Theorem 2, if (3)
holds then blue percolation will occur with positive probability..

Remark. - The same argument shows that if ( 1 - p) ~ &#x3E; ( 2g - 1 ) -1 then
red sector percolation occurs with Pp-probability 1.

Clearly, an infinite blue cluster may intersect a tile h(T* ) in the

H-tessellation without all of its constituent subtiles gi(T) being colored
blue, so the bound is crude. Better estimates can in some cases be obtained
by a more careful consideration of the possible red-blue configurations
inside a tile h(T * ) - see Section 8 below for an example.

7.2. Critical probability for percolation

Let r be a co-compact Fuchsian group, and consider the Cayley graph
For n &#x3E; 2 let Nn be the number of self-avoiding paths in Gbiue that
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start at 1 and return to 1 after n steps. Define

PROPOSITION 14. - 1 then with Pp-probability 1 red percolation
occurs.

NOTE. - A similar result (Theorem 5 .1.1 ) is obtained by a somewhat
different method in [2]. The result stated here for Fuchsian groups may
be sharper than that in [2], because r*  where Q is the set of

(side-pairing) generators of F and /)(r) is the (inverse) spectral radius of
the simple nearest-neighbor random walk on (F, 0).

Proof ofProposition 14. - If red percolation occurs with Pp-probability
0 then, with probability 1, for every n &#x3E; 1 there is a closed blue path
,~n surrounding the circle of (hyperbolic) radius n centered at the origin.
This path may be chosen to be self-avoiding (up to the last step). It has a
point (vertex) gn of closest approach to the origin, and has (word) length
Ln satisfying

where ~g~ is the hyperbolic distance from vertex g to the vertex 1. (This is
because the hyperbolic circle of radius t has hyperbolic circumference ~ et .)
The number of self-avoiding closed paths of length whose hyperbolic

distance to the origin is less than clog l is no larger than since

the number of vertices at distance less than c log l to the origin is 
For any such path, the ~’~ -probability that all its vertices are colored blue
is pl. Hence, the expected number of such blue paths of length l &#x3E; l~ is

If pr *  1 this sum is finite, and so the number of such closed blue paths
is Pp-almost surely finite. Consequently, if pr*  oc then red percolation
occurs almost surely..

There is an analogous result for blue percolation. Let Gred be the extended
Cayley graph, and for n &#x3E; 2 define N~ to be the number of self-avoiding
paths in Gred that start at vertex 1 and return to vertex 1 after n steps. Define

PROPOSITION 15. - If ( 1 - p)r**  1 then with Pp-probability 1, blue
sector percolation occurs.
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8. THE TRIANGLE GROUPS r(2, 4m, 4m; 0)

The theorems of Dehn and Selberg can in some cases be used more
efficiently than in Proposition 13. In this section we will use Dehn’s theorem
and a coset argument to show that theorems A-B extend to the triangle
groups r(2,4m,4m;0) for m &#x3E; 5.

The triangle group r(2, 4m, 4m; 0) contains the surface group r m as

a subgoup of index 4m. Its action on the hyperbolic plane may be
described as follows. Begin with a regular hyperbolic 4m-gon R with
angles at the comers and with center at the origin; this is a

fundamental polygon for r m. Partition R into 4m congruent isosceles

hyperbolic triangles 1  i  4m, by drawing geodesic segments from
the origin 0 to the corners of R. Then Ti is a fundamental polygon
for r(2, 4m, 4m; 0) , and r(2, 4m, 4m; 0) is generated by the hyperbolic
rotations p3 through angle about the vertices 0, w2, W3 of Ti,
respectively. The tessellation g(Ti), where g G r(2, 4m, 4m; 0), coincides
with the tessellation g(Ti), where g E Fm and i = 1 , 2, ... , 4m ; thus, the
tiles g(TI), 9 E r(2, 4m, 4m; 0) are the triangles obtained by drawing the
geodesic segments from the centers to the corners in all the 4m-gons
g(R), g E Fm. The figure below shows the tessellation for the group

r(2,8,8;0).

THEOREM 3. - Let r = r(2, 4m, 4m ; 0). If m &#x3E; ~ then there exist
0  pi  p2  1 such that for all p E (p1, p2 ), red and blue sector

percolation occur with Pp -probabil ity 1 on F.

Proof. - Let 1  i  m, be the generators of the surface group
r m contained as a subgroup in r, and let be the subgroup generated
by a~~, 1  2  m. By Corollary 9, is a free group on the generators

so its Cayley graph is a homogeneous tree of degree 2m.
Consider tiles f (T~ ), fl(T1) in the r(2,4m, 4m; 0)-tessellation such that

f’ f -1 is one of the generators a~~. There is a path in Gred of length 2
Vol. 34, n° 2-1998.
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connecting f(Ti) and f’(Ti), with the connecting tile g(Ti) lying in the
4m-gon f (R) (g(Ti) intersects f(Ti) in a point and f’(Tl) in a geodesic
segment). See the figure below for the case m = 2. Moreover, any two such
paths connecting distinct pairs f (T1 ) , f ’ (Tl ) and overlap
in at most one tile. Thus, if Zn is the number of tiles E 0m
connected to Ti by a red path of length 2n, then there is a Galton-Watson
process Yn  Zn with mean offspring number

Similarly, there are paths in Gblue of lengths 3, 5, 7, ... , 2m + 1, 2m - 1,
.... 5, 3 connecting f(Ti ) to the 2m - 1 tiles f’ (Ti ) such that each f’ f -1
is one of the generators See the figure below for the case m = 2. The
intermediate tiles in these paths are all contained in the 4m-gon f(R).
Thus, if Z~ is the number of tiles f(Ti ), with f a reduced word of length
n in the generators such that f(Ti) is connected to Ti by a blue
path of length 2n, then there is a Galton-Watson process Z~ with
mean offspring number

Annales de l’Institiit Henri Poincaré - Probabilités et Statistiques



177PERCOLATION ON FUCHSIAN GROUPS

A simple numerical calculation shows that for m = 5, &#x3E; 1 and

&#x3E; 1 for all .6615  p  .6665. Since and are clearly
monotone in m, the same is true for all m &#x3E; 5. Thus, both Galton-Watson

processes Yn and Yn are supercritical when .6615  p  .6665. It follows

that with positive Pp -probability there is red sector percolation and blue
sector percolation..
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